Invasive Bark and Ambrosia Beetles in California Mediterranean Forest Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Bark and Ambrosia Beetles in California Mediterranean Forest Ecosystems Timothy D. Paine · François Lieutier Editors Insects and Diseases of Mediterranean Forest Systems Insects and Diseases of Mediterranean Forest Systems Timothy D. Paine • François Lieutier Editors Insects and Diseases of Mediterranean Forest Systems Editors Timothy D. Paine François Lieutier Department of Entomology Faculté des Sciences University of California Université d'Orléans Riverside , CA , USA Orléans Cedex 2 , France ISBN 978-3-319-24742-7 ISBN 978-3-319-24744-1 (eBook) DOI 10.1007/978-3-319-24744-1 Library of Congress Control Number: 2015960968 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 Chapters 18, 20, 21, 22 was created within the capacity of an US governmental employment. US copyright protection does not apply. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www. springer.com) Contents 1 Introduction ............................................................................................. 1 Timothy D. Paine and François Lieutier 2 Introduction to Mediterranean Forest Systems: Mediterranean Basin .............................................................................. 7 François Lefèvre and Bruno Fady 3 Defoliators in Native Insect Systems of the Mediterranean Basin .................................................................... 29 Andrea Battisti , Manuela Branco , and Zvi Mendel 4 Native Fruit, Cone and Seed Insects in the Mediterranean Basin .................................................................... 47 Thomas Boivin and Marie-Anne Auger-Rozenberg 5 Native Sap-Sucker Insects in the Mediterranean Basin ...................... 89 Aurélien Sallé and Andrea Battisti 6 Bark Beetles of Mediterranean Conifers .............................................. 105 François Lieutier , Zvi Mendel , and Massimo Faccoli 7 Native Buprestid and Longhorn Beetles in the Mediterranean Basin .................................................................... 199 Aurélien Sallé 8 Foliage Feeding Invasive Insects: Defoliators and Gall Makers ......... 211 Manuela Branco , Andrea Battisti, and Zvi Mendel 9 Invasive Fruit, Cone and Seed Insects in the Mediterranean Basin .................................................................... 239 Marie-Anne Auger-Rozenberg and Thomas Boivin 10 Invasive Sap-Sucker Insects in the Mediterranean Basin ................... 261 Zvi Mendel , Manuela Branco , and Andrea Battisti v vi Contents 11 Alien Wood-Boring Beetles in Mediterranean Regions ....................... 293 Davide Rassati , François Lieutier , and Massimo Faccoli 12 The Pine Wood Nematode and Its Local Vectors in the Mediterranean Basin .................................................................... 329 Pedro Naves , Luis Bonifácio , and Edmundo de Sousa 13 Invasive Insects in the Mediterranean Forests of Chile ....................... 379 Sergio A. Estay 14 Insects and Diseases of Mediterranean Forests: A South African Perspective .................................................................. 397 Jeff Garnas , Brett Hurley , Bernard Slippers , Michael J. Wingfi eld , and Jolanda Roux 15 Native Defoliators of Australian Mediterranean Forest Trees ............ 431 Martin J. Steinbauer and Helen F. Nahrung 16 Native Phloem and Wood Borers in Australian Mediterranean Forest Trees ................................................................... 455 Simon A. Lawson and Valerie J. Debuse 17 Invasive Insects in Mediterranean Forest Systems: Australia ............ 475 Helen F. Nahrung , Andrew D. Loch , and Mamoru Matsuki 18 Native Bark Beetles and Wood Borers in Mediterranean Forests of California ................................................ 499 Christopher J. Fettig 19 Native Diseases of California Mediterranean Forest Angiosperms ................................................................................. 529 A. James Downer 20 Diseases of Conifers in California .......................................................... 549 Philip G. Cannon, Pete Angwin, and Martin MacKenzie 21 Invasive Bark and Ambrosia Beetles in California Mediterranean Forest Ecosystems......................................................... 583 Steven J. Seybold, Richard L. Penrose, and Andrew D. Graves 22 Goldspotted Oak Borer in California: Invasion History, Biology, Impact, Management, and Implications for Mediterranean Forests Worldwide .................................................. 663 Tom W. Coleman and Steven J. Seybold 23 Pitch Canker in California Mediterranean Conifer Systems ............. 699 T. R. Gordon 24 Insects Colonizing Eucalypts in California ........................................... 711 Timothy D. Paine Contents vii 25 Sudden Oak Death in California ........................................................... 731 Tedmund J. Swiecki and Elizabeth A. Bernhardt 26 Polyphagous Shot Hole Borer and Fusarium Dieback in California .............................................................................. 757 Colin Umeda , Akif Eskalen , and Timothy D. Paine 27 Air Pollution ............................................................................................ 769 Michele Eatough Jones and Delbert J. Eatough 28 Responses of Mediterranean Forest Phytophagous Insects to Climate Change ............................................. 801 François Lieutier and Timothy D. Paine 29 Follow the Water: Extreme Drought and the Conifer Forest Pandemic of 2002–2003 Along the California Borderland. .......................................................... 859 Richard A. Minnich, Brett R. Goforth, and Timothy D. Paine 30 General Conclusions ............................................................................... 891 François Lieutier and Timothy D. Paine Chapter 21 Invasive Bark and Ambrosia Beetles in California Mediterranean Forest Ecosystems Steven J. Seybold , Richard L. Penrose* , and Andrew D. Graves Abstract This chapter discusses the native ranges, histories of introduction, recent research efforts, and the potential impacts of some of 22 species of invasive scolytids in California’s Mediterranean forest ecosystems. The diversity of native and orna- mental tree species, the varied climatic zones, and the widespread importation of nursery stock and packaged cargo have made California a fertile location for the introduction and establishment of bark and ambrosia beetles. Eight of the twenty two taxa are ambrosia beetles; four are spermophagous (e.g., Coccotrypes and Dactylotrypes sp.); six are hardwood bark beetles ( Hypothenemus eruditus , Scolytus sp., Phloeotribus liminaris , and Pityophthorus juglandis ); and four are coniferopha- gous bark beetles ( Hylurgus ligniperda , Ips calligraphus , Orthotomicus erosus , and Phloeosinus armatus ). Five of the species have probable native ranges elsewhere in North America (indigenous exotic species), whereas nearly all of the remaining spe- cies have likely origins in Eurasia with at least four of those with clear roots in true Mediterranean ecosystems. Several appear to be from Africa. Many of the species were fi rst detected in heavily urbanized southern California. Detailed overviews are provided for an ensemble of species that have had or could potentially have the most impact on California forest or orchard resources (H. ligniperda , O. erosus , P. juglan- dis , Scolytus multistriatus, S. rugulosus , S. schevyrewi , and Xyleborinus saxeseni ). Another potentially damaging species, the polyphagous shot hole borer, Euwallacea nr. fornicatus , is treated elsewhere (Chap. 26 ). The introductions of these taxa range from species that may have invaded over 100–150 years ago (e.g., Hypothenemus eruditus , S. rugulosus , or X. saxeseni ) to 10–15 years ago (10 of the 22 species have been detected since 2000). Dactylotrypes longicollis (a spermophage); Euwallacea *Author was deceased at the time of publication. S. J. Seybold (*) Pacifi c Southwest Research Station , USDA Forest Service , Davis , CA 95616 , USA e-mail: [email protected]; [email protected] R. L. Penrose (deceased) A. D. Graves Forest Health Protection , USDA Forest Service , 333 Broadway Blvd SE , Albuquerque , NM 87102 , USA © Springer Science+Business Media Dordrecht (outside the USA) 2016 583 T.D. Paine, F. Lieutier (eds.), Insects and Diseases of Mediterranean Forest Systems, DOI 10.1007/978-3-319-24744-1_21 584 S.J. Seybold et al. nr. fornicatus ; and Hylurgus ligniperda
Recommended publications
  • Bark Beetles
    Bark Beetles O & T Guide [O-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Although New Mexico bark beetle adults are In monogamous species such as the Douglas small, rarely exceeding 1/3 inch in length, they fir beetle, Dendroctonus pseudotsugae, the are very capable of killing even the largest female bores the initial gallery into the host host trees with a mass assault, girdling them or tree, releases pheromones attractive to her inoculating them with certain lethal pathogens. species and accepts one male as her mate. Some species routinely attack the trunks and major limbs of their host trees, other bark beetle species mine the twigs of their hosts, pruning and weakening trees and facilitating the attack of other tree pests. While many devastating species of bark beetles are associated with New Mexico conifers, other species favor broadleaf trees and can be equally damaging. Scientifically: Bark beetles belong to the insect order Coleoptera and the family Scolytidae. Adult “engraver beetle” in the genus Ips. The head is on the left; note the “scooped out” area Metamorphosis: Complete rimmed by short spines on the rear of the Mouth Parts: Chewing (larvae and adults) beetle, a common feature for members of this Pest Stages: Larvae and adults. genus. Photo: USDA Forest Service Archives, USDA Forest Service, www.forestryimages.org Typical Life Cycle: Adult bark beetles are strong fliers and are highly receptive to scents In polygamous species such as the pinyon bark produced by damaged or stressed host trees as beetle, Ips confusus, the male bores a short well as communication pheromones produced nuptial chamber into the host’s bark, releases by other members of their species.
    [Show full text]
  • Spruce Beetle
    QUICK GUIDE SERIES FM 2014-1 Spruce Beetle An Agent of Subalpine Change The spruce beetle is a native species in Colorado’s spruce forest ecosystem. Endemic populations are always present, and epidemics are a natural part of the changing forest. There usually are long intervals between such events as insect and disease epidemics and wildfires, giving spruce forests time to regenerate. Prior to their occurrence, the potential impacts of these natural disturbances can be reduced through proactive forest management. The spruce beetle (Dendroctonus rufipennis) is responsible for the death of more spruce trees in North America than any other natural agent. Spruce beetle populations range from Alaska and Newfoundland to as far south as Arizona and New Mexico. The subalpine Engelmann spruce is the primary host tree, but the beetles will infest any Figure 1. Engelmann spruce trees infested spruce tree species within their geographical range, including blue spruce. In with spruce beetles on Spring Creek Pass. Colorado, the beetles are most commonly observed in high-elevation spruce Photo: William M. Ciesla forests above 9,000 feet. At endemic or low population levels, spruce beetles generally infest only downed trees. However, as spruce beetle population levels in downed trees increase, usually following an avalanche or windthrow event – a high-wind event that topples trees over a large area – the beetles also will infest live standing trees. Spruce beetles prefer large (16 inches in diameter or greater), mature and over- mature spruce trees in slow-growing, spruce-dominated stands. However, at epidemic levels, or when large-scale, rapid population increases occur, spruce beetles may attack trees as small as 3 inches in diameter.
    [Show full text]
  • 4 Reproductive Biology of Cerambycids
    4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments .................................................................................................................................
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Arhopalus Asperatus – a Common Longhorned Beetle
    Colorado Insect of Interest Arhopalus asperatus – A Common Longhorned Beetle Scientific Name: Arhopalus asperatus (LeConte) Order: Coleoptera (Beetles) Family: Cerambycidae (Longhorned Beetles) Identification and Descriptive Features: Arhopalus asperatus is a elongate-bodied longhorned beetle that is uniformly dark gray or brown. They can be moderately large but show considerable size variation, ranging from 18-33 mm in length. The antennae are about 1/2- 3/4 the body length and are longer in males. Larvae, type of roundheaded borer, are marked by a pair of Figure 1. Arhopalus asperatus. sharp spines that curve inward found on the hind segment of the body. Distribution in Colorado: Arhopalus asperatus appears to be widely distributed throughout the forested areas of the state. Life History and Habits: Arhopalus asperatus, along with the various “pine sawyers” (Monochamous spp.), are the most common longhorned beetles associated with recently dead or felled conifers. Most conifers, including most pines, firs, douglas-fir and spruce, are known hosts. Adult lay eggs in deep bark crevices. Larvae originally feed in the cambium, later moving to sapwood and heartwood where they pack the tunnels with coarse sawdust frass. Stumps and large roots are often the most common site of larval development. Development is thought to take 2-3 years to complete. Adults are attracted to recently scorched wood following forest fires. They also will often be seen around campfires. Related Species: Other Arhopalus species are known from Colorado. Museum records for A. rusticus montanus LeConte include El Paso, Jefferson, Boulder, Mesa, and Moffat counties, suggesting widespread distribution within Colorado. It is a lighter colored species than is A.
    [Show full text]
  • Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
    United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites.
    [Show full text]
  • Coleoptera) 69 Doi: 10.3897/Zookeys.481.8294 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 481: 69–108 (2015) The Bostrichidae of the Maltese Islands( Coleoptera) 69 doi: 10.3897/zookeys.481.8294 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The Bostrichidae of the Maltese Islands (Coleoptera) Gianluca Nardi1, David Mifsud2 1 Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana”, Sede di Bosco Fontana – Corpo Forestale dello Stato, Strada Mantova 29, I-46045 Marmirolo (MN), Italy 2 Institute of Earth Systems, Division of Rural Sciences and Food Systems, University of Malta, Msida MSD 2080, Malta Corresponding author: Gianluca Nardi ([email protected]) Academic editor: C. Majka | Received 17 June 2014 | Accepted 6 January 2015 | Published 4 February 2015 http://zoobank.org/4AB90367-FE56-41C0-8825-16E953E46CEC Citation: Nardi G, Mifsud D (2015) The Bostrichidae of the Maltese Islands (Coleoptera). ZooKeys 481: 69–108. doi: 10.3897/zookeys.481.8294 Abstract The Bostrichidae of the Maltese Islands are reviewed. Ten species are recorded with certainty from this Archipelago, of which 6 namely, Trogoxylon impressum (Comolli, 1837), Amphicerus bimaculatus (A.G. Olivier, 1790), Heterobostrychus aequalis (Waterhouse, 1884), Sinoxylon unidentatum (Fabricius, 1801), Xyloperthella picea (A.G. Olivier, 1790) and Apate monachus Fabricius, 1775 are recorded for the first time. Two of the mentioned species (H. aequalis and S. unidentatum) are alien and recorded only on the basis of single captures and the possible establishment of these species is discussed. Earlier records of Scobicia pustulata (Fabricius, 1801) from Malta are incorrect and should be attributed to S. chevrieri (A. Villa & J.B. Villa, 1835).
    [Show full text]
  • The Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa
    Zootaxa 4808 (1): 171–195 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4808.1.11 http://zoobank.org/urn:lsid:zoobank.org:pub:9BE4A28B-EC09-4526-99E6-8F1F716A6F24 The bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa ROBERT J. RABAGLIA1,*, ROGER A. BEAVER2, ANDREW J. JOHNSON3, MARK A. SCHMAEDICK4 & SARAH M. SMITH5 1USDA Forest Service, Forest Health Protection, Washington DC, 20250, U.S.A. �[email protected]; https://orcid.org/0000-0001-8591-5338 2161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand. �[email protected]; https://orcid.org/0000-0003-1932-3208 3School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA. �[email protected]; https://orcid.org/0000-0003-3139-2257 4American Samoa Community College, Pago Pago, 96799, American Samoa, �[email protected]; https://orcid.org/0000-0002-1629-8556 5Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, U.S.A. �[email protected]; https://orcid.org/0000-0002-5173-3736 *Corresponding author Abstract A survey of five of the islands of American Samoa was conducted from 2016–2018 utilizing multi-funnel traps baited with ethanol and quercivorol (attractants for xyleborine ambrosia beetles). Specimens of Scolytinae and Platypodinae from this survey, as well as specimens in the American Samoa Community College Collection were identified. A total of 53 species of Scolytinae and two species of Platypodinae are reported. Fourteen species of Scolytinae and one species of Platypodinae are reported as new to American Samoa.
    [Show full text]
  • Series I. Correspondence, 1871-1894 Box 1 Folder 1 Darwin to Riley
    Special Collections at the National Agricultural Library: Charles Valentine Riley Collection Series I. Correspondence, 1871-1894 Box 1 Folder 1 Darwin to Riley. June 1, 1871. Letter from Charles Darwin to Riley thanking him for report and instructions on noxious insects. Downs, Beckerham, Kent (England). (handwritten copy of original). Box 1 Folder 2 Koble to Riley. June 30, 1874. Letter from John C. Koble giving physical description of chinch bugs and explaining how the bugs are destroying corn crops in western Kentucky. John C. Koble of L. S. Trimble and Co., Bankers. Box 1 Folder 3 Saunders to Riley. Nov. 12, 1874. William Saunders receipt to C. V. Riley for a copy of descriptions of two insects that baffle the vegetable carnivora. William Saunders, Department of Agriculture, Washington, D. C. Box 1 Folder 4 Young to Riley. Dec. 13, 1874. William Young describes the flat-headed borer and its effects on orchards during summer and winter seasons. From Palmyra Gate Co., Nebraska. Box 1 Folder 5 Saunders to Riley. Dec. 22, 1874. William Saunders receipt of notes of investigation on the insects associated with Sarracenia. William Saunders, Department of Agriculture, Washington, D.C. Box 1 Folder 6 Bonhaw to Riley. Jan. 19, 1875. L. N. Bonhaw requesting a copy of his Missouri report, for him to establish a manual or handbook on entomology, and to find out about an insect that deposits eggs. Subject: tomato worm, hawk moth. 1 http://www.nal.usda.gov/speccoll/ Special Collections at the National Agricultural Library: Charles Valentine Riley Collection Box 1 Folder 7 Holliday to Riley.
    [Show full text]
  • Two Remarkable New Species of Hypothenemus Westwood (Curculionidae: Scolytinae) from Southeastern USA
    Zootaxa 4200 (3): 417–425 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4200.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:8B76560E-124A-4F41-9462-4389686B5E49 Two remarkable new species of Hypothenemus Westwood (Curculionidae: Scolytinae) from Southeastern USA ANDREW J. JOHNSON1, THOMAS H. ATKINSON2 & JIRI HULCR3 1School of Forest Resources and Conservation, University of Florida, Gainesville FL. 32611. E-mail: [email protected] 2Texas Natural History Collections, Integrative Biology, University of Texas at Austin, Austin, TX. 78712. E-mail: [email protected] 3School of Forest Resources and Conservation, University of Florida, Gainesville FL. 32611, & Department of Entomology, University of Florida, Gainesville, FL. 32611. E-mail: [email protected] Abstract Two new Hypothenemus species found in southern and southeastern USA are described: Hypothenemus piaparolinae sp. n. and Hypothenemus subterrestris sp. n. The distribution and habits suggest these species are native and widely distrib- uted, but elusive, and not recently arrived exotics. Both appear to have unusual biology: H. subterrestris appears to live in material on or in the ground, and H. piaparolinae has only been collected from the xylem of extensively rotten, fungus- filled twigs. Key words: Cryphalini, Bark beetles, pygmy borers Introduction Hypothenemus Westwood, 1836 is the most speciose genus in the tribe Cryphalini (Curculionidae: Scolytinae), with 181 species described (Vega et al. 2015). Of these, there are 23 species currently known from North America (Atkinson 2015). The species of Hypothenemus are known from an incredibly diverse selection of plant families and plant material.
    [Show full text]
  • Perspectives in Phycology
    Entomologia Generalis, Vol. 37 (2018), Issues 3–4, 197–230 Article Published in print July 2018 The Phenomenon of Metathetely, formerly known as Prothetely, in Raphidioptera (Insecta: Holometabola: Neuropterida)** Horst Aspöck1, Viktoria Abbt2, Ulrike Aspöck3,4 and Axel Gruppe2* 1 Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria 2 Chair of Zoology – Entomology, Technical University of Munich (TUM), Hans-Carl- von-Carlowitz-Platz 2, 85354 Freising, Germany 3 Natural History Museum Vienna, Department of Entomology, Burgring 7, 1010 Vienna, Austria 4 Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria * Corresponding author: [email protected] With 36 figures and 4 tables Abstract: For completion of their life cycle, most snakefly species require two years, some only one, and others (at least single specimens) three years or more. In most species, the larvae of the final stage hibernate in a state of quiescence, pupate in spring and emerge as adults shortly thereafter. Hibernation starts when the temperature decreases, thus inducing quiescence in the larva. If the temperature decrease is withheld during the last hibernation, the larvae remain active and usually continue to molt, but will not pupate successfully in spring. Moreover, most of them will die prematurely and prior to that will often develop considerable pathomor- phological alterations of the eyes, sometimes also the antennae, some develop wing pads and occasionally even pathomorphological modifications of the last abdominal segments. Until now, this phenomenon in Raphidioptera has been inaccurately referred to as “prothetely”; how- ever, in reality, it represents “metathetely”.
    [Show full text]
  • Raphidioptera: Raphidiidae)
    TranSacTionS of The KanSaS Vol. 114, no. 1-2 acadeMy of Science p. 77-87 (2011) A new snakefly from the Eocene Green River Formation (Raphidioptera: Raphidiidae) Michael S. engel Division of Entomology (Paleoentomology), Natural History Museum, and Department of Ecology and Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66049-2811 [email protected] Agulla protomaculata, new species (Raphidiidae: Raphidiinae), is described and figured from a series of males and females preserved as fine compressions in middle Eocene shale from the Green River Formation of Colorado. The specimens are exquisitely preserved, complete with integumental color patterns. The species is compared with other Tertiary snakeflies. Keywords: Neuropterida, Raphidioptera, Raphidiidae, taxonomy, paleontology, Tertiary. inTroducTion be undertaken on the North American species of Raphidioptera and it is possible some new The snakeflies (Raphidioptera) of North species will yet be discovered in the mountains America are one of the lesser encountered of Mexico. orders and, along with the equally infrequent Grylloblattodea (Notoptera) and Timematodea Most North American fossil snakeflies (Phasmatodea), are restricted to the western documented to date have come from the part of the continent, albeit more ‘widespread’ prolific Eocene-Oligocene deposits around than the latter two groups and typically more Florissant in central Colorado, with single southerly than the ice crawlers. Presently species recorded from all other localities (Table there are 31 recognized species of North 2). Interestingly, the most abundant material of American Raphidioptera, mostly of the Tertiary snakeflies occurs in the middle Eocene family Raphidiidae but with some interesting deposits of the Green River Formation in Utah, Inocelliidae (Carpenter, 1936, 1958, 1960; Wyoming, and Colorado and yet this species Woglum and McGregor, 1964; Aspöck and has not been characterized to date.
    [Show full text]