CERAMBYCIDAE of the WESTERN U.S.A. Version 061313 JAMES R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Key to the Genera of Cerambycidae of Western North America
KEY TO THE GENERA OF THE CERAMBYCIDAE OF WESTERN NORTH AMERICA Version 030120 JAMES R. LaBONTE JOSHUA B. DUNLAP DANIEL R. CLARK THOMAS E. VALENTE JOSHUA J. VLACH OREGON DEPARTMENT OF AGRICULTURE Begin key Contributions and Acknowledgements James R. LaBonte, ODA (Oregon Department of Agriculture: Design and compilation of this identification aid. Joshua B. Dunlap: Acquisition of most of the images. Daniel R. Clark: Design input and testing. Thomas E. Valente, ODA: Design input and testing. Joshua J. Vlach, ODA: Design input and testing. Thomas Shahan, Thomas Valente, Steve Valley – additional images ODA: Use of the imaging system, the entomology museum, and general support. Our appreciation to USDA Forest Service and ODA for funding this project. Introduction Begin key This identification aid is a comprehensive key to the genera of western North American Cerambycidae (roundheaded or long- horned wood borers). It also includes several genera (and species) that are either established in the region or that are targets of USDA and other exotic cerambycid surveys. Keys to commonly trapped or encountered (based on ODA’s years of wood borer surveys) indigenous species are also included. *This aid will be most reliable west of the Rocky Mountains. It may not function well with taxa found in the desert West and east of the Rockies. This aid is designed to be used by individuals with a wide range of taxonomic expertise. Images of all character states are provided. Begin key Use of This Key: I This key is designed like a traditional dichotomous key, with couplets. However, PowerPoint navigational features have been used for efficiency. -
Tetropium Castaneum (Linnaeus) Coleoptera: Cerambycidae Black Spruce Beetle
Exotic Wood Borer/Bark Beetle Tetropium castaneum Survey Reference Tetropium castaneum (Linnaeus) Coleoptera: Cerambycidae Black spruce beetle CAPS-Approved Survey Host(s) Method Major hosts Spruce blend, geranyl acetol, and Abies sibirica (Siberian fir), ethanol in a cross-vane panel trap. Abies spp. (Fir), Picea spp. (Spruce), Picea abies (Norway spruce), Picea obovata (Siberian spruce), Pinus spp. (Pine), Pinus sibirica (Siberian pine), Pinus sylvestris (Scots pine) Other hosts Abies alba (Silver fir), Abies holophylla (Manchurian fir), Abies sachalinensis (Sakhalin, fir), Juglans spp. (Walnut), Juniperus communis (Common juniper), Larix spp. (Larch), Larix sibirica (Siberian larch), Picea jezoensis (Ajan spruce), Picea omorika (Serbian spruce), Picea sitchensis (Sitka spruce), Pinus cembra (Swiss stone pine), Pinus nigra (Austrian pine), Pinus strobus (Eastern white pine), Pseudotsuga spp. (Douglas-fir), Quercus spp. (Oak) (BioLib, n.d.; Novák, 1976; Cherepanov, 1990; Kolk and Starzyk, 1996; Dobesberger, 2005) Reason for Inclusion in Manual Tetropium castaneum was a target species in the original EWB/BB National Survey Manual. 1 Exotic Wood Borer/Bark Beetle Tetropium castaneum Survey Reference Pest Description Eggs: 1 The egg is white with some silver, oblong to oval and is 1.2 mm by 0.5 mm (approx. /16 in) (Dobesberger, 2005). The surface of the egg is generally smooth with a band of microsculpture 1 that run approximately /5 of the length of the egg (Dobesberger, 2005). Tetropium eggs cannot be determined to species (Dobesberger, 2005). Larvae: “The larva is yellow-white in color, with conspicuous legs on the thorax, the tarsi of which bear 9 tiny spinules (Schimitschek 1929, Cherepanov 1990). Larvae range from 15-27 mm [approx. -
4 Reproductive Biology of Cerambycids
4 Reproductive Biology of Cerambycids Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois Qiao Wang Massey University Palmerston North, New Zealand CONTENTS 4.1 Introduction .................................................................................................................................. 133 4.2 Phenology of Adults ..................................................................................................................... 134 4.3 Diet of Adults ............................................................................................................................... 138 4.4 Location of Host Plants and Mates .............................................................................................. 138 4.5 Recognition of Mates ................................................................................................................... 140 4.6 Copulation .................................................................................................................................... 141 4.7 Larval Host Plants, Oviposition Behavior, and Larval Development .......................................... 142 4.8 Mating Strategy ............................................................................................................................ 144 4.9 Conclusion .................................................................................................................................... 148 Acknowledgments ................................................................................................................................. -
Longhorn Beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw
Longhorn beetles (Coleoptera, Cerambycidae) Christian Cocquempot, Ake Lindelöw To cite this version: Christian Cocquempot, Ake Lindelöw. Longhorn beetles (Coleoptera, Cerambycidae). Alien terrestrial arthropods of Europe, 4 (1), Pensoft Publishers, 2010, BioRisk, 978-954-642-554-6. 10.3897/biorisk.4.56. hal-02823535 HAL Id: hal-02823535 https://hal.inrae.fr/hal-02823535 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 193–218 (2010)Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1 193 doi: 10.3897/biorisk.4.56 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Longhorn beetles (Coleoptera, Cerambycidae) Chapter 8.1 Christian Cocquempot1, Åke Lindelöw2 1 INRA UMR Centre de Biologie et de Gestion des Populations, CBGP, (INRA/IRD/CIRAD/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, 34988 Montférrier-sur-Lez, France 2 Swedish university of agricultural sciences, Department of ecology. P.O. Box 7044, S-750 07 Uppsala, Sweden Corresponding authors: Christian Cocquempot ([email protected]), Åke Lindelöw (Ake.Linde- [email protected]) Academic editor: David Roy | Received 28 December 2009 | Accepted 21 May 2010 | Published 6 July 2010 Citation: Cocquempot C, Lindelöw Å (2010) Longhorn beetles (Coleoptera, Cerambycidae). -
Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S. -
Arhopalus Asperatus – a Common Longhorned Beetle
Colorado Insect of Interest Arhopalus asperatus – A Common Longhorned Beetle Scientific Name: Arhopalus asperatus (LeConte) Order: Coleoptera (Beetles) Family: Cerambycidae (Longhorned Beetles) Identification and Descriptive Features: Arhopalus asperatus is a elongate-bodied longhorned beetle that is uniformly dark gray or brown. They can be moderately large but show considerable size variation, ranging from 18-33 mm in length. The antennae are about 1/2- 3/4 the body length and are longer in males. Larvae, type of roundheaded borer, are marked by a pair of Figure 1. Arhopalus asperatus. sharp spines that curve inward found on the hind segment of the body. Distribution in Colorado: Arhopalus asperatus appears to be widely distributed throughout the forested areas of the state. Life History and Habits: Arhopalus asperatus, along with the various “pine sawyers” (Monochamous spp.), are the most common longhorned beetles associated with recently dead or felled conifers. Most conifers, including most pines, firs, douglas-fir and spruce, are known hosts. Adult lay eggs in deep bark crevices. Larvae originally feed in the cambium, later moving to sapwood and heartwood where they pack the tunnels with coarse sawdust frass. Stumps and large roots are often the most common site of larval development. Development is thought to take 2-3 years to complete. Adults are attracted to recently scorched wood following forest fires. They also will often be seen around campfires. Related Species: Other Arhopalus species are known from Colorado. Museum records for A. rusticus montanus LeConte include El Paso, Jefferson, Boulder, Mesa, and Moffat counties, suggesting widespread distribution within Colorado. It is a lighter colored species than is A. -
The Associations Between Pteridophytes and Arthropods
FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics. -
Ethanol and (–)-A-Pinene: Attractant Kairomones for Some Large Wood-Boring Beetles in Southeastern USA
J Chem Ecol (2006) DOI 10.1007/s10886-006-9037-8 Ethanol and (–)-a-Pinene: Attractant Kairomones for Some Large Wood-Boring Beetles in Southeastern USA Daniel R. Miller Received: 12 September 2005 /Revised: 12 December 2005 /Accepted: 2 January 2006 # Springer Science + Business Media, Inc. 2006 Abstract Ethanol and a-pinene were tested as attractants for large wood-boring pine beetles in Alabama, Florida, Georgia, North Carolina, and South Carolina in 2002–2004. Multiple-funnel traps baited with (j)-a-pinene (released at about 2 g/d at 25–28-C) were attractive to the following Cerambycidae: Acanthocinus nodosus, A. obsoletus, Arhopalus rusticus nubilus, Asemum striatum, Monochamus titillator, Prionus pocularis, Xylotrechus integer, and X. sagittatus sagittatus. Buprestis lineata (Buprestidae), Alaus myops (Elateridae), and Hylobius pales and Pachylobius picivorus (Curculionidae) were also attracted to traps baited with (j)-a-pinene. In many locations, ethanol synergized attraction of the cerambycids Acanthocinus nodosus, A. obsoletus, Arhopalus r. nubilus, Monochamus titillator, and Xylotrechus s. sagittatus (but not Asemum striatum, Prionus pocularis,orXylotrechus integer)to traps baited with (j)-a-pinene. Similarly, attraction of Alaus myops, Hylobius pales, and Pachylobius picivorus (but not Buprestis lineata) to traps baited with (j)-a- pinene was synergized by ethanol. These results provide support for the use of traps baited with ethanol and (j)-a-pinene to detect and monitor common large wood- boring beetles from the southeastern region of the USA at ports-of-entry in other countries, as well as forested areas in the USA. Keywords Cerambycidae . Xylotrechus . Monochamus . Acanthocinus Curculionidae . Hylobius . Pachylobius . Elateridae . Alaus . Ethanol a-Pinene . -
Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites. -
Coleoptera: Cerambycidae)
J Insect Behav (2012) 25:569–577 DOI 10.1007/s10905-012-9321-0 Role of Volatile Semiochemicals in the Host and Mate Location Behavior of Mallodon dasystomus (Coleoptera: Cerambycidae) Matthew A. Paschen & Nathan M. Schiff & Matthew D. Ginzel Revised: 18 January 2012 /Accepted: 1 March 2012 / Published online: 16 March 2012 # Springer Science+Business Media, LLC 2012 Abstract Little is known of the role semiochemicals play in the mating systems of longhorned beetles (Coleoptera: Cerambycidae) in the primitive subfamily Prioninae. Mallodon dasystomus (Say), the hardwood stump borer, is a widely distributed prionine native to the southern US. Preferred hosts of M. dasystomus include oak, sweetgum, sugarberry and hackberry; although they also colonize a variety of other hardwoods. Here, we study the mate location behavior of M. dasystomus by testing the hypotheses that the sexes are mutually attracted to volatiles emanating from the larval host and that females release a volatile pheromone that is attractive to males alone. In a Y-tube olfactometer, male and female M. dasystomus responded to volatiles from host material (i.e., sweetgum and sugarberry). However, only males responded to females in the olfactometer, suggesting that females release a volatile sex pheromone. In choice experiments conducted in a greenhouse, we determined that both males and females prefer host over non-host material. In further bioassays in the greenhouse, males chose host material containing a live female over that containing a live male or host material alone. These findings are further evidence of the critical role host volatiles and pheromones play in mating systems of longhorned beetles. -
North American Species of Cerambycid Beetles in the Genus Neoclytus Share a Common Hydroxyhexanone-Hexanediol Pheromone Structural Motif
FOREST ENTOMOLOGY North American Species of Cerambycid Beetles in the Genus Neoclytus Share a Common Hydroxyhexanone-Hexanediol Pheromone Structural Motif ANN M. RAY,1,2 JOCELYN G. MILLAR,3 JARDEL A. MOREIRA,3 J. STEVEN MCELFRESH,3 4,5 6 4 ROBERT F. MITCHELL, JAMES D. BARBOUR, AND LAWRENCE M. HANKS J. Econ. Entomol. 108(4): 1860–1868 (2015); DOI: 10.1093/jee/tov170 ABSTRACT Many species of cerambycid beetles in the subfamily Cerambycinae are known to use male-produced pheromones composed of one or a few components such as 3-hydroxyalkan-2-ones and the related 2,3-alkanediols. Here, we show that this pheromone structure is characteristic of the ceram- bycine genus Neoclytus Thomson, based on laboratory and field studies of 10 species and subspecies. Males of seven taxa produced pheromones composed of (R)-3-hydroxyhexan-2-one as a single compo- nent, and the synthetic pheromone attracted adults of both sexes in field bioassays, including the eastern North American taxa Neoclytus caprea (Say), Neoclytus mucronatus mucronatus (F.), and Neoclytus scu- tellaris (Olivier), and the western taxa Neoclytus conjunctus (LeConte), Neoclytus irroratus (LeConte), and Neoclytus modestus modestus Fall. Males of the eastern Neoclytus acuminatus acuminatus (F.) and the western Neoclytus tenuiscriptus Fall produced (2S,3S)-2,3-hexanediol as their dominant or sole pheromone component. Preliminary data also revealed that males of the western Neoclytus balteatus LeConte produced a blend of (R)-3-hydroxyhexan-2-one and (2S,3S)-2,3-hexanediol but also (2S,3S)- 2,3-octanediol as a minor component. The fact that the hydroxyketone-hexanediol structural motif is consistent among these North American species provides further evidence of the high degree of conservation of pheromone structures among species in the subfamily Cerambycinae. -
Deadwood and Saproxylic Beetle Diversity in Naturally Disturbed and Managed Spruce Forests in Nova Scotia
A peer-reviewed open-access journal ZooKeysDeadwood 22: 309–340 and (2009) saproxylic beetle diversity in disturbed and managed spruce forests in Nova Scotia 309 doi: 10.3897/zookeys.22.144 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia DeLancey J. Bishop1,4, Christopher G. Majka2, Søren Bondrup-Nielsen3, Stewart B. Peck1 1 Department of Biology, Carleton University, Ottawa, Ontario, Canada 2 c/o Nova Scotia Museum, 1747 Summer St., Halifax, Nova Scotia Canada 3 Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada 4 RR 5, Canning, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Jan Klimaszewski | Received 26 March 2009 | Accepted 6 April 2009 | Published 28 September 2009 Citation: Bishop DJ, Majka CG, Bondrup-Nielsen S, Peck SB (2009) Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia In: Majka CG, Klimaszewski J (Eds) Biodiversity, Bio- systematics, and Ecology of Canadian Coleoptera II. ZooKeys 22: 309–340. doi: 10.3897/zookeys.22.144 Abstract Even-age industrial forestry practices may alter communities of native species. Th us, identifying coarse patterns of species diversity in industrial forests and understanding how and why these patterns diff er from those in naturally disturbed forests can play an essential role in attempts to modify forestry practices to minimize their impacts on native species. Th is study compares diversity patterns of deadwood habitat structure and saproxylic beetle species in spruce forests with natural disturbance histories (wind and fi re) and human disturbance histories (clearcutting and clearcutting with thinning).