Cerambycid Beetle Species with Similar Pheromones Are Segregated by Phenology and Minor Pheromone Components
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Key to the Genera of Cerambycidae of Western North America
KEY TO THE GENERA OF THE CERAMBYCIDAE OF WESTERN NORTH AMERICA Version 030120 JAMES R. LaBONTE JOSHUA B. DUNLAP DANIEL R. CLARK THOMAS E. VALENTE JOSHUA J. VLACH OREGON DEPARTMENT OF AGRICULTURE Begin key Contributions and Acknowledgements James R. LaBonte, ODA (Oregon Department of Agriculture: Design and compilation of this identification aid. Joshua B. Dunlap: Acquisition of most of the images. Daniel R. Clark: Design input and testing. Thomas E. Valente, ODA: Design input and testing. Joshua J. Vlach, ODA: Design input and testing. Thomas Shahan, Thomas Valente, Steve Valley – additional images ODA: Use of the imaging system, the entomology museum, and general support. Our appreciation to USDA Forest Service and ODA for funding this project. Introduction Begin key This identification aid is a comprehensive key to the genera of western North American Cerambycidae (roundheaded or long- horned wood borers). It also includes several genera (and species) that are either established in the region or that are targets of USDA and other exotic cerambycid surveys. Keys to commonly trapped or encountered (based on ODA’s years of wood borer surveys) indigenous species are also included. *This aid will be most reliable west of the Rocky Mountains. It may not function well with taxa found in the desert West and east of the Rockies. This aid is designed to be used by individuals with a wide range of taxonomic expertise. Images of all character states are provided. Begin key Use of This Key: I This key is designed like a traditional dichotomous key, with couplets. However, PowerPoint navigational features have been used for efficiency. -
Molecular Basis of Pheromonogenesis Regulation in Moths
Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A. -
Lepidoptera Learning Objective
QUARANTINE SIGNIFICANT LEPIDOPTERA OF CONCERN TO THE SOUTHERN UNITED STATES STEVEN PASSOA USDA/APHIS/PPQ 2007 1 LEPIDOPTERA GOALS . Learn techniques of specimen preparation and submission for CAPS Lepidoptera . Develop a list of Lepidoptera of regulatory concern to the southern USA . Learn to SCREEN samples for these species in the stage most likely to be seen by diagnostic labs using the MAJOR characters. Some species are only defined by a combination of features. In those cases, using the associated key and references listed is more accurate. Give examples from the major superfamilies . Distributions and hosts mentioned are the most likely pathways 2 DEVELOP A LIST . Criteria originally modified from biocontrol of weeds list in July 1991 memo, then modified by NEPSC committee . Now widely used in APHIS as mini-PRA . Survey methodology and taxonomic recognition added to economic criteria . Results are either threats (no pathway), CAPS targets (need to survey), or a dead survey (not practical to consider) 3 WHY LABS HATE TO IDENTIFY LEPIDOPTERA . Secret society of critical characters . Constant name changes . Characters hard to see, covered with scales, or both 4 EGGS . Two types . Do not kill important finds and sent urgent . Plan to rear them in a quarantine facility . Spodoptera and Lymantria (and others) cover the eggs with scales from the female’s body 5 LARVAE . Associate leaf miners with the mine and host . Mouthparts are the “genitalia” of the larval world . Fill vials so there is no air bubble when shipping . “Burp” rubber stoppers and parafilm screw top vials . Can kill and ship in vinegar . Put loose parts in small vials 6 PUPAE . -
Correspondence
Correspondence http/urn:lsid:zoobank.org:pub:410753CC-6E17-4111-91E8-9459869CCB35 A. I. Miroshnikov1, 2), B. Liu3). ANAGLYPTUS GRAPHELLUS HOLZ- SCHUH, 2011, A NEW FOR THE FAUNA OF CHINA SPECIES OF THE LONGICORN BEETLES (COLEOPTERA: CERAMBYCIDAE). – Far Eastern Entomologist. 2016. N 319: 15-16. 1) Russian Entomological Society, Krasnodar, Russia. E-mail: [email protected] 2) Sochi National Park, Moskovskaya str., 21, Sochi, Krasnodar region 354002 Russia. 3) Bin Insect Taxonomy Studio, No.16, Xizhaosi Street, Dongcheng District, Beijing 100061, P. R. China. E-mail: [email protected] Summary. The longicorn beetle Anaglyptus graphellus Holzschuh, 2011 is recorded for the first time from China. Key words: Coleoptera, Cerambycidae, Anaglyptini, Anaglyptus graphellus, fauna, Yunnan Province, China. А.И. Мирошников, Б. Лью. Anaglyptus graphellus Holzschuh, 2011 – новый для фауны Китая вид жуков-дровосеков (Coleoptera: Cerambycidae) // Дальневосточный энтомолог. 2016. N 319. С. 15-16. Резюме. Дровосек Anaglyptus graphellus Holzschuh, 2011 впервые отмечается для фауны Китая. INTRODUCTION At present more than 20 species of the genus Anaglyptus Mulsant, 1839 (Cerambycidae: Anaglyptini) are known from China (Miroshnikov et al., 2014; Viktora & Tichý, 2015). One new for the fauna of China species of Anaglyptus was collected in Yunnan Province in 2015. The material examined is kept in the collection of the Bin Insect Taxonomy Studio, Beijing, China (cBITS). NEW RECORD Anaglyptus graphellus Holzschuh, 2011 Figs 1–3 Anaglyptus graphellus Holzschuh, 2011: 318 (type locality: NE Laos, Hua Phan Prov., Phou Pan Mt., Ban Saleui, 1300–1900 m, ca 20°12' N, 104°01' E); Miroshnikov et al., 2014: 256, color plate fig. 5. MATERIAL EXAMINED. -
Artificial Laboratory Breeding of Xylophagous Insect Larvae and Its Application in Cytogenetic Studies 2)
Eos, t. LXII, págs. 7-22 (1986). Artificial laboratory breeding of xylophagous insect larvae and its application in cytogenetic studies 2) BY J. R. BARAGAÑO, A. NOTARIO y M. G. DE VIEDMA. INTRODUCTION HAYDAK, in 1936, managed to rear Oryzaephilus surinantensis (L.) in the la- boratory using an artificial diet. Many researchers have followed in his footsteps, so that since then, approximately 260 species of Coleoptera have been raised on nonnatural diets. Among these species there are 121 which are eminently xylophagous. They belong to seven families (Buprestidae, Elateridae, Bostrychiclae, Lyctidae, Myc- teridae, Cerambyciclae and Curculionidae). Their importance, from the economic point of view, varies widely : some of them attack living trees making them a pest ; others feed on dead or decaying wood so that they may be considered harmless or even beneficial (for example in the decomposition of tree stumps in forests) ; finally, a few cause damage to seasoned timber. Therefore, specialists in artificial breeding have been motivated by different objectives, and so have chosen the insect or insects in each case which were most suitable for obtaining specific desired results. It is clear that in the majority of cases the choice was not made at random. Generally, the insect studied was either recently established as a pest or well documented as such. •With these laboratory breeding experiments it is possible on the one hand to draw conclusions about the insects' nutritive requirements, parasitism, ethology etc ; and on the other to obtain enough specimens to try out different phytosanitary treatments with them. Both of these achievements are applicable to effectiye control of the insect problem. -
Title: the Role of Nature Reserves in Preserving Saproxylic Biodiversity: Using Longhorn Beetles (Coleoptera: Cerambycidae) As Bioindicators
Title: The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators Author: Lech Karpiński, István Maák, Piotr Węgierek Citation style: Karpiński Lech, Maák István, Węgierek Piotr. (2021). The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators. "The European Zoological Journal" (2021, iss. 1, s. 487-504), doi 10.1080/24750263.2021.1900427 The European Zoological Journal, 2021, 487–504 https://doi.org/10.1080/24750263.2021.1900427 The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators L. KARPIŃSKI 1*, I. MAÁK 2, & P. WEGIEREK 3 1Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland, 2Department of Ecology, University of Szeged, Szeged, Hungary, and 3Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland (Received 9 August 2020; accepted 2 March 2021) Abstract The potential of forest nature reserves as refuges for biodiversity seems to be overlooked probably due to their small size. These, however, may constitute important safe havens for saproxylic organisms since forest reserves are relatively numerous in Europe. Saproxylic beetles are among the key groups for the assessment of biodiversity in forest habitats and longhorn beetles may play an important role in bioindication as they are ecologically associated with various micro- habitats and considered a very heterogeneous family of insects. To study the role of forest reserves as important habitats for saproxylic beetles, we compared cerambycid assemblages in corresponding pairs of sites (nature reserves and managed stands) in a forest region under high anthropogenic pressure (Upper Silesia, Poland, Central Europe). -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
References Affiliations
Cover Page The handle http://hdl.handle.net/1887/20872 holds various files of this Leiden University dissertation. Author: Lommen, Suzanne Theresia Esther Title: Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control Issue Date: 2013-05-16 References Abouheif E (2004) A framework for studying the evolution of gene networks underlying polyphenism: insights from winged and wingless ant castes. In: Hall BK (ed) Environment, development, and evolution. MIT Press, pp. 125-137 Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249-252 Adachi-Hagimori T, Shibao M, Tanaka H, Seko T, Miura K (2011) Control of Myzus persicae and Lipaphis erysimi (Hemiptera: Aphididae) by adults and larvae of a flightless strain of Harmonia axyridis (Coleoptera: Coccinellidae) on non-heading Brassica cultivars in the greenhouse. BioControl 56:207-213 Agarwala BK, Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol. Entomol. 17:303-309 Anbesse SA, Strauch O, Ehlers R-U (2012) Genetic improvement of the biological control nematode Heterorhabditis bacteriophora (Rhabditidomorpha: Heterorhabditidae): heterosis effect enhances desiccation but not heat tolerance. Biocontrol Sci. Technol. 22:1035-1045 Arnaud L, Spinneux Y, Haubruge E (2003) Preliminary observations of sperm storage in Adalia bipunctata (Coleoptera : Coccinellidae): sperm size and number. Appl. Entomol. Zoolog. 38:301-304 Atallah J, Dworkin I, Cheung U, Greene A, Ing B, Leung L, Larsen E (2004) The environmental and genetic regulation of obake expressivity: morphogenetic fields as evolvable systems. Evol. Dev. 6:114-122 Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava. -
Miroshnikov, 2014: 19
Russian Entomological Society Sochi National Park ADVANCES IN STUDIES ON ASIAN CERAMBYCIDS (COLEOPTERA: CERAMBYCIDAE) Papers by Alexandr I. MIROSHNIKOV, dedicated to the memory of Dr. Judson Linsley GRESSITT Edited by Alexandr S. KONSTANTINOV, S. Adam Ślipiński & Alexey Yu. SOLODOVNIKOV KMK Scientific Press Ltd. Krasnodar – Moscow 2014 KONSTANTINOV A.S., Ślipiński s.A. & SOLODOVNIKOV A.Yu. (Eds): Advances in studies on Asian cerambycids (Coleoptera: Cerambycidae). Papers by Alexandr I. MIROSHNIKOV, dedicated to the memory of Dr. Judson Linsley GRESSITT. Krasnodar – Moscow: KMK Scientific Press Ltd. 2014. – 237 pp. Dr. Alexandr S. KONSTANTINOV Systematic Entomology Laboratory, USDA, c/o Smithsonian Institution, Washington, U.S.A. Dr. S. Adam Ślipiński CSIRO Australian National Insect Collection, Canberra, Australia Dr. Alexey Yu. SOLODOVNIKOV Natural History Museum of Denmark, University of Copenhagen, Denmark Cover design by A.I. Miroshnikov Frontispiece illustration by K.V. Makarov & A.I. Miroshnikov © A.I. Miroshnikov, 2014 © Sochi National Park, 2014 © Russian Entomological Society, 2014 © KMK Scientific Press Ltd., 2014 ISBN 978-5-87317-820-9 To the memory of Dr. Judson Linsley Gressitt (1914–1982), to the day of his forthcoming centenary, this work is being dedicated. CONTENTS From the editors ............................................................................................... 7 –8 From the author ................................................................................................ 9 A.I. MIROSHNIKOV. New genera -
New Longhorn Beetles (Coleoptera: Cerambycidae) from Serbia
Arch. Biol. Sci., Belgrade, 57 (4), 27P-28P, 2005. NEW LONGHORN BEETLES (COLEOPTERA: CERAMBYCIDAE) FROM SERBIA. Nataša Pil1 and D. Stojanović2. 1Institute for Nature Conservation of Serbia, 21000 Novi Sad, Serbia and Montenegro, 2”Fruška Gora” National Park, 21208 Sremska Kamenica, Serbia and Montenegro UDC 597.76(497.11) Since the 1980’s, longhorn beetles (Coleoptera, Cerambycidae) They feed in the central region of the cone or occasionally in have been only randomly researched in Serbia. From earlier the base of old scales. The life cycle probably last two years, years, there are very detailed publications on this insect group and pupation very likely occurs in the soil. Adults emerge in (A d a m o v i ć , 1965; M i k š i ć and G e o r g i j e v i ć , 1971; April-July, on flowers. The given species differs from the simi- 1973; M i k š i ć and K o r p i č , 1985). lar Cortodera humeralis (Schaller, 1783) in having only sparse pubescence on the pronotum and head, with glabrous median The most recent data (I l i ć , 2005) indicate the presence line, and sparse pubescence on the outer border of the eye and of 245 longhorn beetle species (Coleoptera: Cerambycidae) in base of the antennae. Serbia. Not included in the mentioned publication, the follow- ing five species should be added to the list: Cortodera discolor 3. Vadonia hirsuta (Daniel and Daniel,1891) Fairmaire, 1866; Stenopterus similatus Holzschuh, 1979; Chlo- rophorus aegyptiacus (Fabricius, 1775); Agapanthia osmanlis (New data: Mt. -
The Associations Between Pteridophytes and Arthropods
FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics. -
Callidiellum Rufipenne (Motschulsky, 1860) New Longhorn Beetle to the Fauna of Bosnia and Herzegovina and Slovenia (Coleoptera Cerambycidae)
Biodiversity Journal, 2020, 11 (3): 761–763 https://doi.org/10.31396/Biodiv.Jour.2020.11.3.761.763 Callidiellum rufipenne (Motschulsky, 1860) new longhorn beetle to the fauna of Bosnia and Herzegovina and Slovenia (Coleoptera Cerambycidae) Aleksandar Đukić1 & Pierpaolo Rapuzzi2 1Scientific Research Society of Biology and Ecology Students “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; e-mail: [email protected] 2Via Cialla 48, 33040 Prepotto, Udine, Italy; e-mail: [email protected] ABSTRACT In this paper the authors record for the first time the invasive species Callidiellum rufipenne (Motschulsky, 1860) (Coleoptera Cerambycidae) for the fauna of the republics of Bosnia and Herzegovina and Slovenia. KEY WORDS Cerambycidae; Callidiellum; new record; Bosnia and Herzegovina; Slovenia. Received 14.07.2020; accepted 16.08.2020; published online 30.09.2020 INTRODUCTION RESULTS Invasive longhorn beetles (Coleoptera Ceram- Systematics bycidae) have been present in Europe for a rela- tively long time. However, in the last two to three Ordo COLEOPTERA Linnaeus, 1750 decades the number of these invasive insects in Eu- Superfamilia CHRYSOMELOIDEA Latreille, 1802 rope has risen exponentially due to increased inter- Familia CERAMBYCIDAE Latreille, 1802 national trade of goods which created new and rapid Tribus CALLIDIINI Mulsant, 1839 transport pathway opportunities (Cocquempot & Genus Callidiellum Linsley, 1940 Mifsud, 2013). To this effect, in these last twenty years, 19 species of alien longhorn beetles have been introduced and established in Europe, and Callidiellum rufipenne (Motschulsky, 1860) some 20 other species have been intercepted or recorded, but so far not naturalized (Cocquempot, EXAMINED MATERIAL. BOSNIA and HERZE- 2007; Cocquempot & Lindelöw, 2010).