Fuscumol and Fuscumol Acetate Are General Attractants for Many Species of Cerambycid Beetles in the Subfamily Lamiinae

Total Page:16

File Type:pdf, Size:1020Kb

Fuscumol and Fuscumol Acetate Are General Attractants for Many Species of Cerambycid Beetles in the Subfamily Lamiinae DOI: 10.1111/j.1570-7458.2011.01167.x Fuscumol and fuscumol acetate are general attractants for many species of cerambycid beetles in the subfamily Lamiinae Robert F.Mitchell1*, Elizabeth E. Graham1§, Joseph C. H. Wong1, Peter F.Reagel1,Becca L. Striman1,GabrielP.Hughes2, Matthew A. Paschen2, Matthew D. Ginzel2, Jocelyn G. Millar3 & Lawrence M. Hanks1 1Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, 2Department of Ento- mology, Purdue University, West Lafayette, IN 47907, USA, and 3Department of Entomology, University of California, Riverside, CA 92521, USA Accepted: 1 August 2011 Key words: longhorned beetle, chemical attractant, pheromone, quarantine, invasive species, Coleoptera, Acanthocinini, Cerambycidae Abstract (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) is an important component of male-produced aggregation pheromones for several species of cerambycid beetles in the genus Tetropium (subfamily Aseminae ⁄ Spondylidinae). Here, we describe the experiments that tested the hypothesis that fuscu- mol and ⁄ or fuscumol acetate also are general attractants for species in the cerambycid subfamily Lamiinae. At field sites in northwestern Indiana and central Texas (USA), panel traps baited with fuscumol or its acetate captured 331 lamiine beetles, compared to 11 beetles captured in control traps. Three species were attracted to traps baited with fuscumol as a single component, whereas another four species were attracted to fuscumol acetate alone. Surprisingly, fuscumol acetate also attracted two species in the subfamily Cerambycinae: Xylotrechus colonus (Fabricius) (males of which produce a pheromone composed only of stereoisomers of 2,3-hexanediol and 3-hydroxyhexan-2-one), and Obrium maculatum (Olivier) (for which a pheromone has yet to be identified). In an independent field experiment in east-central Illinois (USA), traps baited with fuscumol and ⁄ or its acetate captured 136 beetles of eight lamiine species, all but one species of which were also captured in the other exper- iment. Blending fuscumol and its acetate did not inhibit responses of species to either of the individ- ual compounds, but synergized their activity for one species. Our results support the hypothesis that fuscumol and fuscumol acetate are widespread pheromone components or attractants for a variety of cerambycid species, especially lamiines in the tribe Acanthocinini. 2011). Male beetles of the subfamily Cerambycinae emit Introduction pheromones that attract both sexes when on larval host Volatile aggregation pheromones produced by males, and plants (Lacey et al., 2004), suggesting that these phero- sex pheromones produced by females have been described mones may signal the presence of breeding material that is recently for several species of cerambycid beetles (e.g., Mil- scarce and ephemeral (Hanks, 1999). Similarly, beetles of lar et al., 2009; Ray et al., 2009, 2011; Rodstein et al., the genus Tetropium (subfamily Aseminae ⁄ Spondylidinae; Monne´ & Hovore, 2005; Bousquet et al., 2009) are only attracted to aggregation pheromones when odors of host *Correspondence: Robert Mitchell, Department of Entomology, Uni- plants are present (Silk et al., 2007). versity of Illinois at Urbana-Champaign, 320 Morrill Hall, 505 South There appears to be considerable parsimony within the Goodwin Avenue, Urbana, IL 61801, USA. E-mail: rmitche3@life. illinois.edu family Cerambycidae in relation to pheromone biosynthe- §Present address: Department of Entomology, Michigan State Univer- sis and closely related species of cerambycids often share sity, East Lansing, MI, USA, 48823 pheromone components or even produce pheromones of Ó 2011 The Authors Entomologia Experimentalis et Applicata 141: 71–77, 2011 Entomologia Experimentalis et Applicata Ó 2011 The Netherlands Entomological Society 71 72 Mitchell et al. identical composition. For example, (R)-3-hydroxyhexan- Materials and methods 2-one is a common, and often the sole component of vola- Synthesis of compounds tile pheromones of many species in the large subfamily Ce- Geranylacetone (97 g, 0.5 mol; Aldrich Chemical, Flavor rambycinae (Hanks et al., 2007; Millar et al., 2009; Ray and Fragrance Division, Milwaukee, WI, USA) was pur- et al., 2009). This similarity in pheromone composition chased as a 1:1.25 mixture of (Z)- and (E)-isomers due to across cerambycine species can result in simultaneous the prohibitive cost of the pure (E)-isomer. Lithium alu- attraction of multiple species to traps baited with a single minum hydride (6.3 g, 166 mmol) was added in portions synthetic pheromone component. Thus, in field bioassays, over 20 min to 1 l of dry ether at 0 °C under argon atmo- racemic 3-hydroxyhexan-2-one and the structurally sphere. Geranylacetone in 100 ml dry ether was added related 2,3-hexanediols serve as general attractants for dropwise to the resulting slurry over 40 min, and the mix- many cerambycine species, and may even attract species ture was warmed to room temperature overnight, during that do not actually produce them (Lacey et al., 2004; which time, it became viscous. After checking that the Hanks et al., 2007). In a different subfamily, the Prioninae, reduction was complete using thin layer chromatography the female-produced pheromone of Prionus californicus on silica gel [the reactant and product had virtually identi- Motschulsky (3,5-dimethyldodecanoic acid; Rodstein cal retention times by gas chromatography (GC) on a DB- et al., 2011) has been shown to attract males of seven cong- 5 column], the magnetic stir-bar was replaced with a eners (Barbour et al., 2011). Similarly, in the subfamily mechanical stirrer, and the mixture was cooled in an ice- Lamiinae, 2-(undecyloxy)-ethanol not only serves as the bath while adding, sequentially and dropwise, 6.64 ml male-produced aggregation pheromone for Monochamus water (caution: vigorous hydrogen evolution!), 5 ml aque- galloprovincialis (Olivier) (Pajares et al., 2010), but also ous 20% NaOH, and 23.5 ml water. The mixture was stir- attracts both sexes of other congeners (Teale et al., 2011; red for an additional 20 min, during which time, the metal unpubl.). salts formed a granular white precipitate. The mixture was (E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol) has filtered with suction, rinsing the filter cake with ether. The been identified as a male-produced aggregation phero- filtrate was extracted with water and brine, then dried over mone for the invasive European cerambycid Tetropium anhydrous Na SO , and concentrated on a rotary evapora- fuscum (Fabricius) and its North American congener Tet- 2 4 tor at room temperature. The residue was purified by ropium cinnamopterum (Kirby) (Silk et al., 2007). It also Kugelrohr distillation (oven temperature ca. 80 °C, attracts and is likely a pheromone component for another 0.2 mm Hg), yielding racemic fuscumol [hence (E ⁄ Z)- European species, Tetropium castaneum (L.) (Sweeney fuscumol] as a clear, colorless oil [94.6 g, 97% yield, >98% et al., 2010). In addition, this same compound has been chemically pure by GC, 1:1.25 mixture of racemic (Z)- and identified as a pheromone component for two South (E)-isomers]. The nuclear magnetic resonance (NMR) American species in the subfamily Lamiinae: Hedypathes and mass spectra were analogous to those recently betulinus (Klug) (Fonseca et al., 2010) and Steirastoma reported (Fonseca et al., 2010; Sweeney et al., 2010). breve (Sulzer) (Liendo et al., 2005; C Liendo, pers. (E ⁄ Z)-Fuscumol acetate was synthesized by adding comm.). Males of both species also produce (E)-6,10- (E ⁄ Z)-fuscumol (44 g, 224 mmol) to a solution of pyri- dimethyl-5,9-undecadien-2-one (common name: gerany- dine (20.2 ml, 250 mmol) and methylene chloride lacetone; Fonseca et al., 2010; C Liendo, pers. comm.) (400 ml), and the mixture was stirred and cooled in an and H. betulinus produces (E)-6,10-dimethyl-5,9-undeca- ice-bath while acetyl chloride (17.8 ml, 250 mmol) was dien-2-yl acetate (‘fuscumol acetate’; Fonseca et al., added dropwise. The mixture was then warmed to room 2010). These findings suggest that fuscumol and its ana- temperature and stirred overnight. The small excess of logs may be common pheromone components for a acetyl chloride was destroyed by addition of ethanol diversity of species across subfamilies of the Cerambyci- (1.4 g, 30 mmol), followed by stirring for an additional dae. In fact, in recent years, we have consistently captured 4 h. The mixture was then poured into water and the lay- several lamiine species in traps baited with the blend of ers were separated. The aqueous layer was extracted with fuscumol and its acetate during field trials in east-central ether and the combined organic extracts were washed Illinois that targeted asemine species (RF Mitchell, un- successively with water, 1 M HCl, saturated aqueous publ.). Herein, we describe experiments, conducted in NaHCO , and brine. After drying over anhydrous Indiana, Illinois, and Texas, that specifically address 3 Na SO , the solution was concentrated by rotary evapora- the hypothesis that fuscumol and fuscumol acetate 2 4 tion followed by Kugelrohr distillation of the residue represent another widespread motif for cerambycid beetle (oven temperature ca. 80 °C, 0.15 mm Hg), yielding pheromones, analogous to the 3-hydroxyalkan-2-one and (E ⁄ Z)-fuscumol acetate (52.4 g, 98%, >98% pure by GC). 2,3-alkanediol motifs. Fuscumol and its acetate are attractants for cerambycids 73 Mass and NMR spectra were analogous to those reported of Texas AgriLife Research and Extension Center in Fonseca et al. (2010). (32°14¢27.7965¢¢N, 98°11¢18.7731¢¢W). The experiment was conducted from 24 May to 8 June 2010 (air tempera- Field bioassays ture 21–34 °C, skies usually clear, 2 cm total precipitation; Two experiments were conducted to test for attraction of Weather Underground). lamiine species to (E ⁄ Z)-fuscumol and its acetate. Experi- Experiment 2 included the same treatments as Experi- ment 1 tested for attraction of beetles to each compound ment 1, but lures were loaded with 100 mg of synthetic separately, and was replicated at study sites in northwestern pheromone and included a treatment that was a blend Indiana and central Texas.
Recommended publications
  • References Affiliations
    Cover Page The handle http://hdl.handle.net/1887/20872 holds various files of this Leiden University dissertation. Author: Lommen, Suzanne Theresia Esther Title: Exploring and exploiting natural variation in the wings of a predatory ladybird beetle for biological control Issue Date: 2013-05-16 References Abouheif E (2004) A framework for studying the evolution of gene networks underlying polyphenism: insights from winged and wingless ant castes. In: Hall BK (ed) Environment, development, and evolution. MIT Press, pp. 125-137 Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249-252 Adachi-Hagimori T, Shibao M, Tanaka H, Seko T, Miura K (2011) Control of Myzus persicae and Lipaphis erysimi (Hemiptera: Aphididae) by adults and larvae of a flightless strain of Harmonia axyridis (Coleoptera: Coccinellidae) on non-heading Brassica cultivars in the greenhouse. BioControl 56:207-213 Agarwala BK, Dixon AFG (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol. Entomol. 17:303-309 Anbesse SA, Strauch O, Ehlers R-U (2012) Genetic improvement of the biological control nematode Heterorhabditis bacteriophora (Rhabditidomorpha: Heterorhabditidae): heterosis effect enhances desiccation but not heat tolerance. Biocontrol Sci. Technol. 22:1035-1045 Arnaud L, Spinneux Y, Haubruge E (2003) Preliminary observations of sperm storage in Adalia bipunctata (Coleoptera : Coccinellidae): sperm size and number. Appl. Entomol. Zoolog. 38:301-304 Atallah J, Dworkin I, Cheung U, Greene A, Ing B, Leung L, Larsen E (2004) The environmental and genetic regulation of obake expressivity: morphogenetic fields as evolvable systems. Evol. Dev. 6:114-122 Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava.
    [Show full text]
  • Morfo-Histologia Do Corpo Gorduroso Perivisceral Em Adultos De Hedypathes Betulinus (Klug, 1825) (Coleoptera, Cerambycidae)
    Morfo-histologia do corpo gorduroso perivisceral em adultos de Hedypathes betulinus (Klug, 1825) (Coleoptera, Cerambycidae) Fat body perviceral morphology in adults of Hedypathes betulinus (Klug, 1825) (Coleoptera, Cerambycidae) Rafael Alexandre Costa Ferreira1 Maria Eliza Miyoko Tomotake2(*) Helio Conte3 Resumo Nos insetos, o corpo gorduroso pode ser considerado um centro de metabolismo intermediário e também o local de síntese de alguns componentes da hemolinfa. Com objetivo de obter maiores informações sobre essa estrutura, foi realizado um estudo para a sua caracterização morfológica em adultos de Hedypathes betulinus Klug. Os resultados mostram que a estrutura ocorre em duas porções, a primeira, aderida ao trato digestivo e a segunda, associada ao tegumento, denominando-se, corpo gorduroso perivisceral e parietal, respectivamente. Histologicamente o corpo gorduroso apresenta dois tipos celulares, os trofócitos e os enócitos. Os trofócitos apresentam na área citoplasmática, vacúolos, núcleos esféricos, cromatina granular com variações na condensação, e em alguns casos, foram observados núcleos deslocados para a periferia celular. A presença de nucléolos múltiplos em algumas células sugere alta atividade nuclear. Os enócitos foram observados associados aos trofócitos, com núcleos centrais de formato esférico e cromatina de aspecto granular dispersa; os nucléolos apresentaram-se proeminentes em número variável e diferem dos trofócitos pela ausência de vacúolos, citoplasma granular, formato e tamanho das células. Palavras-chave: broca;
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS BRAZIL January 2007 Forest Resources Development Service Working Paper FBS/11E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Brazil DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Brazil. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Brazil TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Open Thesis Maya E. Nehme.Pdf
    The Pennsylvania State University The Graduate School Department of Entomology DEVELOPING MONITORING TRAPS FOR THE ASIAN LONGHORNED BEETLE A Dissertation in Entomology & Comparative and International Education by Maya E. Nehme © 2009 Maya E. Nehme Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2009 The dissertation of Maya E. Nehme was reviewed and approved* by the following: Kelli Hoover Associate Professor of Entomology Dissertation Advisor Co-Chair of Committee Edwin Rajotte Professor of Entomology, IPM Coordinator and CI ED joint faculty Co-Chair of Committee Thomas Baker Professor of Entomology Melody Keena US Forest Service Research Entomologist and Adjunct Faculty of Entomology Special member David Baker Professor of Education, Professor of Sociology Gary Felton Professor of Entomology Head of the Department of Entomology *Signatures are on file in the Graduate School ii ABSTRACT Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiinae), commonly known as the Asian longhorned beetle, is a wood-boring invasive species introduced from Asia to North America and Europe through solid wood packing material. A. glabripennis is a serious pest both in China and the U.S. This research project was developed in response to the need for efficient monitoring traps to assess population density and dispersal in the field and to detect new introductions at ports of entry. The first stages of the project aimed at filling the gaps in our knowledge of the effect of semiochemicals on A. glabripennis adult behavior and exploring potential use of these chemicals for monitoring purposes. Semiochemicals studied were the male- produced putative volatile pheromone vbutan-1-ol and 4-(n-heptyloxy)butanal) and plant volatiles.
    [Show full text]
  • Cerambycid Beetle Species with Similar Pheromones Are Segregated by Phenology and Minor Pheromone Components
    J Chem Ecol (2015) 41:431–440 DOI 10.1007/s10886-015-0571-0 Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components Robert F. Mitchell1,4 & Peter F. Reagel 1,5 & Joseph C. H. Wong1 & Linnea R. Meier1 & Weliton Dias Silva3 & Judith Mongold-Diers1 & Jocelyn G. Millar2 & Lawrence M. Hanks1 Received: 1 December 2014 /Revised: 11 February 2015 /Accepted: 27 February 2015 /Published online: 16 April 2015 # Springer Science+Business Media New York 2015 Abstract Recent research has shown that volatile sex and periods of adults, and/or by minor pheromone components that aggregation-sex pheromones of many species of cerambycid act as synergists for conspecifics and antagonists for beetles are highly conserved, with sympatric and synchronic heterospecifics. species that are closely related (i.e., congeners), and even more distantly related (different subfamilies), using the Keywords Reproductive isolation . Sex pheromone . same or similar pheromones. Here, we investigated mecha- Aggregation pheromone . Cerambycidae . Longhorned nisms by which cross attraction is averted among seven beetle . Anelaphus pumilus . Cyrtophorus verrucosus . cerambycid species that are native to eastern North America Euderces pini . Neoclytus caprea . Phymatodes aereus . and active as adults in spring: Anelaphus pumilus (Newman), Phymatodes amoenus . Phymatodes varius Cyrtophorus verrucosus (Olivier), Euderces pini (Olivier), Neoclytus caprea (Say), and the congeners Phymatodes aereus (Newman), P. amoenus (Say), and P.
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases
    plants Review Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases Alejandro Moreno-Gavíra, Victoria Huertas, Fernando Diánez , Brenda Sánchez-Montesinos and Mila Santos * Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; [email protected] (A.M.-G.); [email protected] (V.H.); [email protected] (F.D.); [email protected] (B.S.-M.) * Correspondence: [email protected]; Tel.: +34-950-015511 Received: 17 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Abstract: Incorporating beneficial microorganisms in crop production is the most promising strategy for maintaining agricultural productivity and reducing the use of inorganic fertilizers, herbicides, and pesticides. Numerous microorganisms have been described in the literature as biological control agents for pests and diseases, although some have not yet been commercialised due to their lack of viability or efficacy in different crops. Paecilomyces is a cosmopolitan fungus that is mainly known for its nematophagous capacity, but it has also been reported as an insect parasite and biological control agent of several fungi and phytopathogenic bacteria through different mechanisms of action. In addition, species of this genus have recently been described as biostimulants of plant growth and crop yield. This review includes all the information on the genus Paecilomyces as a biological control agent for pests and diseases. Its growth rate and high spore production rate in numerous substrates ensures the production of viable, affordable, and efficient commercial formulations for agricultural use. Keywords: biological control; diseases; pests; Paecilomyces 1. Introduction The genus Paecilomyces was first described in 1907 [1] as a genus closely related to Penicillium and comprising only one species, P.
    [Show full text]
  • Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity
    Biodiversity and Coarse woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA - October 18-20,1993 Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workhop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA October 18-20,1993 Editors: James W. McMinn, USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, and D.A. Crossley, Jr., University of Georgia, Athens, GA Sponsored by: U.S. Department of Energy, Savannah River Site, and the USDA Forest Service, Savannah River Forest Station, Biodiversity Program, Aiken, SC Conducted by: USDA Forest Service, Southem Research Station, Asheville, NC, and University of Georgia, Institute of Ecology, Athens, GA Preface James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in The effects of CWD on biodiversity depend upon the management of forest ecosystems. The implied harvesting variables, distribution, and dynamics. This objective is the conservation of a full complement of native proceedings addresses the current state of knowledge about species and communities within the forest ecosystem. the influences of CWD on the biodiversity of various Effective implementation of conservation measures will groups of biota. Research priorities are identified for future require a broader knowledge of the dimensions of studies that should provide a basis for the conservation of biodiversity, the contributions of various ecosystem biodiversity when interacting with appropriate management components to those dimensions, and the impact of techniques. management practices. We thank John Blake, USDA Forest Service, Savannah In a workshop held in Athens, GA, October 18-20, 1993, River Forest Station, for encouragement and support we focused on an ecosystem component, coarse woody throughout the workshop process.
    [Show full text]
  • Effects of Pheromone and Plant Volatile Release Rates and Ratios on Trapping Anoplophora Glabripennis (Coleoptera: Cerambycidae) in China
    CHEMICAL ECOLOGY Effects of Pheromone and Plant Volatile Release Rates and Ratios on Trapping Anoplophora glabripennis (Coleoptera: Cerambycidae) in China P. S. MENG,1 R. T. TROTTER,2 M. A. KEENA,2 T. C. BAKER,1 S. YAN,3 E. G. SCHWARTZBERG,4 1,5 AND K. HOOVER Environ. Entomol. 43(5): 1379Ð1388 (2014); DOI: http://dx.doi.org/10.1603/EN14129 ABSTRACT Native to China and Korea, the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is a polyphagous wood-boring pest for which a trapping system would greatly beneÞt eradication and management programs in both the introduced and native ranges. Over two Þeld seasons, a total of 160 ßight intercept panel traps were deployed in Harbin, China, which trapped a total of 65 beetles. In 2012, traps using lures with a 1:1 ratio of the male- produced pheromone components (4-(n-heptyloxy)butanal and 4-(n-heptyloxy)butan-1-ol) de- signed to release at a rate of 1 or 4 milligram per day per component in conjunction with the plant volatiles (-)-linalool, trans-caryophyllene, and (Z)-3-hexen-1-ol caught signiÞcantly more A. glabri- pennis females than other pheromone release rates, other pheromone ratios, plant volatiles only, and no lure controls. Males were caught primarily in traps baited with plant volatiles only. In 2013, 10ϫ higher release rates of these plant volatiles were tested, and linalool oxide was evaluated as a fourth plant volatile in combination with a 1:1 ratio of the male-produced pheromone components emitted at a rate of 2 milligram per day per component.
    [Show full text]
  • Cerambycidae of Tennessee
    Cerambycidae of Tennessee! Disteniinae: Disteniini! Parandrinae: Parandriini! Closed circles represent previously published county records, museum specimen records, and specimens examined. Open circles are county records reported in Jamerson (1973) for which a specimen could not be located. Future collections are needed to substantiate these accounts. Fig. 2. Elytrimitatrix (Elytrimitatrix) undata (F.)! Fig. 3. Neandra brunnea (F.)! Prioninae: Macrotomini! Prioninae: Meroscheliscini! Fig. 4. Archodontes melanoplus melanoplus (L.)! Fig. 5. Mallodon dasystomus dasystomus Say! Fig. 6. Tragosoma harrisii (LeConte)! Prioninae: Prionini! Fig. 7. Derobrachus brevicollis Audinet-Serville! Fig. 8. Orthosoma brunneum (Forster)! Fig. 9. Prionus (Neopolyarthron) imbricornis (L.)! Prioninae! : Solenopterini! Fig. 10. Prionus (Prionus) laticollis (Drury) ! Fig. 11. Prionus (Prionus) pocularis Dalman ! Fig. 12. Sphenosethus taslei (Buquet) ! Necydalinae: Necydalini! Spondylidinae: Asemini! Fig. 13. Necydalis melitta (Say)! Fig. 14. Arhopalus foveicollis (Haldeman)! Fig. 15. Arhopalus rusticus obsoletus (Randall)! ! ! Suppl. Figs. 2-15. Tennessee county collection localities for longhorned beetle (Cerambycidae) species: Disteniinae, Parandrinae, Prioninae, Necydalinae, Spondylinae: Asemini (in part). ! Spondylidinae: Asemini (ctd.)! Fig. 16. Asemum striatum (L.)! Fig. 17. Tetropium schwarzianum Casey! Fig. 18. Atimia confusa confusa (Say)! ! Spondylidinae: Saphanini! Lepturinae: Desmocerini! Lepturinae: Encyclopini! Fig. 19. Michthisoma heterodoxum LeConte
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]
  • Coleoptera: Cerambycidae)
    PHEROMONE CHEMISTRY AND REPRODUCTIVE ISOLATION IN THE SUBFAMILY LAMIINAE (COLEOPTERA: CERAMBYCIDAE) BY LINNEA R. MEIER DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Doctoral Committee: Professor Lawrence M. Hanks, Chair, Director of Research Professor May R. Berenbaum Professor Andrew V. Suarez Associate Professor Brian F. Allan ABSTRACT Research on the chemical ecology of cerambycid beetles has revealed that the pheromone chemistry of related species is often highly conserved. Sympatric species often share pheromone components, even having identical attractant pheromones. For example, many cerambycines native to different continents use pheromones composed of hydroxyalkanones and related alkanediols. Avoidance mechanisms of interspecific attraction in cerambycines that share pheromone components include segregation by seasonal and diel phenology and synergism and antagonism by minor pheromone components. Less is known about the pheromone chemistry of cerambycid species in the largest subfamily, the Lamiinae. As with the cerambycines, all known pheromones of lamiines are male-produced aggregation-sex pheromones, and pheromone chemistry has been conserved across continents. Lamiine pheromones identified to date are based on either hydroxyethers or terpenoids. The purpose of my dissertation research is to broaden the current understanding of pheromone chemistry in lamiines and to elucidate chemical mechanisms of reproductive isolation among sympatric species that share pheromone components. In Chapter 1, I summarize what is known about the pheromone chemistry of cerambycids, with emphasis on the subfamily Lamiinae. In Chapter 2, I identify the pheromone composition for two species of lamiines common in East-Central Illinois.
    [Show full text]