Connecting the Chondrocranium: Biomechanics of the Suspensorium in Reptiles
70 (3): 275 – 290 © Senckenberg Gesellschaft für Naturforschung, 2020. 2020 VIRTUAL ISSUE on Recent Advances in Chondrocranium Research | Guest Editor: Ingmar Werneburg Connecting the chondrocranium: Biomechanics of the suspensorium in reptiles Alec T. Wilken 1, *, Kaleb C. Sellers 1, Ian N. Cost 2, Rachel E. Rozin 1, Kevin M. Middleton 1 & Casey M. Holliday 1 1 Department of Pathology and Anatomical Sciences, University of Missouri, M263, Medical Sciences Building, Columbia, MO, 65212, USA — 2 Department of Biology, Albright College, 13th and Bern Streets, Reading, PA, 19612, USA — * Corresponding author; atwxb6@ mail.missouri.edu Submitted February 07, 2020. Accepted June 8, 2020. Published online at www.senckenberg.de/vertebrate-zoology on June 16, 2020. Published in print on Q3/2020. Editor in charge: Ingmar Werneburg Abstract Gnathostomes all share the common challenge of assembling 1st pharyngeal arch elements and associated dermal bones (suspensorium) with the neurocranium into a functioning linkage system. In many tetrapods, the otic and palatobasal articulations between suspensorium and neurocranial elements form the joints integral for cranial kinesis. Among sauropsids, the otic (quadratosquamosal) joint is a key feature in this linkage system and shows considerable variability in shape, tissue-level construction and mobility among lineages of reptiles. Here we explore the biomechanics of the suspensorium and the otic joint in fve disparate species of sauropsids of different kinetic capacity (two squamates, one non-avian theropod dinosaur, and two avian species). Using 3D muscle modeling, comparisons of muscle moments, joint surface areas, cross-sectional geometries, and fnite element analysis, we characterize biomechanical differences in the resultants of protractor muscles, loading of otic joints, and bending properties of pterygoid bones.
[Show full text]