AMERICAN MUSEUM Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

AMERICAN MUSEUM Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2827, pp. 1-57, figs. 1-45 August 13, 1985 An Essay on Euteleostean Classification DONN E. ROSEN' ABSTRACT The anatomy of the occipital region and rostral letic and raises questions about the monophyly of cartilage in euteleostean fishes is reviewed in some the fishes formerly grouped in the Osmeroidei. detail. These data, in combination with other an- Evidence is presented on how the occipital region atomical features taken from the literature, have might be used in acanthomorph systematics, and led to a reassessment of interrelationships within includes reasons for rejecting the concept of the the Euteleostei. This review supports the notions Paracanthopterygii, as this group was formerly that the Salmoniformes, Aulopiformes, Mycto- constituted. phiformes, and Beryciformes are nonmonophy- INTRODUCTION The earliest general classification of fishes dan (1923), A. Smith-Woodward (1932), in which it is possible to pick out many of Norman (1934), Berg (1940) and its various the main components of the Euteleostei is translations, reprinted editions and slightly that ofJohannes Muller (1844), in which the modified versions, and lastly Greenwood et teleosts as a whole were presented as a ver- al. (1966), McAllister (1968), and J. Nelson tebrate subclass, and their components as or- (1984)] went through an evolution from the ders. These orders of Muller's bore names early nonsubordinated, ordinal classifica- that may seem strange and unfamiliar to to- tions of Muller (1844), Agassiz (1858), Gill day's student, but the etymological charac- (1872), Boulenger (1904), and Regan (1909, teristics of many of them were preserved for 1929), to the complex subordinated, hierar- some time, a few even to the present. chical system of Goodrich (1909). It was Some of these names and their cross- Goodrich (1909) who introduced the use of equivalents in different classifications were uniform group endings, a practice that was reviewed and explained in detail by Myers adopted by Berg (1940) and his successors, (1958) and now it remains only to emphasize to ease recognition of the hierarchical posi- that these many different classifications tion of a group in the general classification. [Muller (1844), Agassiz (1858), Gunther During all ofthis history some ofthe fishes (1859-1870), Gill (1872), Boulenger (1904), now assigned to the Euteleostei were distrib- Regan (1909, 1929), Goodrich (1909), Jor- uted throughout most of the higher taxa rec- 1 Curator, Department of Ichthyology, American Museum of Natural History. Copyright © American Museum of Natural History 1985 ISSN 0003-0082 / Price $5.25 2 AMERICAN MUSEUM NOVITATES NO. 2827 MULLER 1844 REGAN 1906 1929 FIG. 1. Branching diagrams representing the degree of resolution of teleostean classifications from 1844 (Muller) to 1909 (Goodrich) and 1929 (Regan). 1985 ROSEN: EUTELEOSTEANS 3 ognized by earlier authors. For example, in ment is a sign ofhealth and vigor in the field MiUller's (1844) classification of fishlike ver- that should serve as an example for other tebrates, the subclass Teleostei included six vertebrate systematists, some of whom have orders, each of which included taxa now en- abandoned the search for hierarchical order compassed by the Euteleostei. Thus, his in favor ofgeneral ecological research or lab- Acanthopteri included "perciform" fishes; the oratory studies of the behavior of selected Anacanthini, the codfishes, cusk eels, and species. flatfishes; Pharyngognathi, the labrids, and This paper is premised on certain new ob- their immediate allies; the Phystomi, the oto- servations and interpretations of teleostean physan Ostariophysi, percopsiforms, myc- anatomy and the cladistic notions derived tophids, salmonids, galaxiids, synbranchid from them. One of these notions, in agree- eels, pikes, and mudminnows; the Plectog- ment with Fink and Weitzman (1982) and nathi, members of the modem Tetraodon- Fink (1984), is that the Salmoniformes ofRo- tiformes; and the Lophobranchii, the pipe- sen (1974) is not monophyletic. The second fishes, and seahorses. The Physostomi of is that the Aulopiformes of Rosen (1973) is Muller also included some osteoglosso- also not monophyletic. A third is that Poly- morphs and the former is understood to be mixia and the acanthomorph neoteleosteans more or less equivalent to the Malacopteryg- are defined, in part, by the absence of a re- ii, Isospondyli, and Clupeiformes in classi- sidual neural arch between the first vertebra fications as recent as Berg's (1940). The three and the occiput that is primitively present in latter "groups" were unnatural assemblages most halecostomes, many primitive eute- of primitive teleosts, which included numer- leosts, and in neoscopelids but not mycto- ous taxa later treated by Greenwood et al. phids among the Myctophiformes, as rede- (1967) as euteleosteans in another unnatural fined by Rosen (1973) to include the assemblage that Greenwood et al. (1966) had myctophids and neoscopelids.2 A fourth is previously termed the Protacanthopterygii. Progress has been slow, teleost classifications 2 This and other characters conflict with four shared, going through a long period when all teleosts derived features for myctophids and neoscopelids given were assembled into one ofthree main kinds: by Stiassny (Ms), but are consistent with the presence of lower, intermediate, or higher even as re- a subocular shelf, and single, medial, rostral cartilage in cently as Gosline (1971). most polymixiids and acanthomorphs (absent in neo- The first comprehensive modem attempt scopelids), and three or fewer predorsal bones in myc- at detailed hierarchical synthesis since Good- tophids, polymixiids, and acanthomorphs (four in neo- rich (1909) was that of Greenwood et al. scopelids). One of Stiassny's characters linking the two (1966), closely followed by that ofMcAllister families is the cone-shaped ventrally directed parapoph- (1968). This history is best appreciated by yses for Baudelot's ligament that will, I believe, prove a of dia- to be the primitive state of a similar structure in Poly- examining sprinkling branching mixia and other acanthomorphs (fig. 18). Another of grams extracted from the main components Stiassny's reasons for linking myctophids and neosco- of each of the systems proposed since 1844 pelids is described by Lauder (1983). In Lauder's paper, (figs. 1 and 2). he stated that "all myctophiforms (including neoscope- It might be guessed that many major taxo- lids; Rosen, 1973) possess a unique attachment of the nomic problems have remained unsolved branchial skeleton to the urohyal." In myctophids, how- once an interest in cladistic methods ofanal- ever, the third hypobranchials have long anteroventral ysis and classification was adopted by the ich- tips that clasp the urohyal laterally, whereas in neosco- thyological community and most of these pelids, the anteroventral tips ofthe third hypobranchials problems might be expected to be within the extend forward above the urohyal to the dorsal edge as the of all where they are attached by ligament. The latter condition Euteleostei, largest recognized is similar to that for primitive acanthomorphs (e.g., Poly- teleostean assemblages. I do not regard these mixia) except that in the latter, the ligaments from the problems as close to solution since there ex- third hypobranchials extend forward to contact the dor- ists, still, significant disagreement amongst sal edge of the urohyal more anteriorly. In any event, I ichthyologists on the interpretation of char- see no character here that clearly aligns myctophids with acter information and the delimitation of neoscopelids. This leaves two ligament characters of natural groups (Fink, 1984). This disagree- Stiassny's to align those taxa, as compared with the eight 4 AMERICAN MUSEUM NOVITATES NO. 2827 that the Neoteleostei is characterized by a Certain subsidiary notions also emerge as tripartite occipital condyle (the basioccipital consequences of this work, (1) that the "os- and two exoccipital condyles), as described meroids" and the Salmonidae might not be and illustrated by Rosen and Patterson (1969), monophyletic groups. Pefiaz (1983, p. 370) and which unites stomiiforms with them, as recently attempted an ontogenetic diagnosis elaborated by Fink and Weitzman (1982) and ofthe Salmonidae, but pointed out that some Fink (1984). A fifth is that, in disagreement of the diagnostic features may also be found with Fink and Weitzman (1982), the presence in other fish groups, (2) that Aulopus, and ofa well-defined triplejoint that incorporates perhaps some closely allied forms excluding two large exoccipital condyles is not evidence Chlorophthalmus, mightjointly form the sis- for linking the Salmonidae with the neote- ter group to the Ctenosquamata based, in part, leosts since this type of joint has a limited on the anatomy of the rostral cartilage, and distribution only in Recent salmonines and (3) that within the groups that remain, the is, therefore, probably convergent. A sixth is old Paracanthopterygii toadfishes and their that neoteleosts primitively show a cervical immediate allies might be more closely linked gap between the occiput and first vertebra. A to cods and theirs than the cods are to cusk seventh is that the Acanthomorpha are de- eels and brotulas based on both neurocranial, fined by complete closure of the cervical gap vertebral, and gill arch evidence.3 via two prezygapophyseal
Recommended publications
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • The Intramandibular Joint in Girella: a Mechanism for Increased Force Production?
    JOURNAL OF MORPHOLOGY 271:271–279 (2010) The Intramandibular Joint in Girella: A Mechanism for Increased Force Production? Lara A. Ferry-Graham1,3* and Nicolai Konow2 1California State University, Moss Landing Marine Labs, Moss Landing, California 95039 2Brown University, Ecology and Evolutionary Biology, Providence, Box G-B204, Rhode Island 02912 3CEAZA, Centro de Estudios Avanzados de Zonas Aridas (Center for Advanced Studies in Arid Zones), Universidad Cato´lica del Norte. Box 599, Benavente 980, La Serena, Chile ABSTRACT Intramandibular joints (IMJ) are novel Bellwood, 2002). This is likely due to the forces articulations between bony elements of the lower jaw required for obtaining food items many of which are that have evolved independently in multiple fish line- either tough or firmly attached to the substrate ages and are typically associated with biting herbivory. (Alfaro et al., 2001). In several reef fish lineages, This novel joint is hypothesized to function by augment- aspects of the feeding apparatus have been radically ing oral jaw expansion during mouth opening, which would increase contact between the tooth-bearing area altered for force production, either via hypertro- of the jaws and algal substratum during feeding, result- phied or via structurally altered musculature (Friel ing in more effective food removal from the substrate. and Wainwright, 1997), modified muscle attach- Currently, it is not understood if increased flexibility in ments (Vial and Ojeda, 1990; Konow and Bellwood, a double-jointed mandible also results in increased force 2005), or increased suturing and/or reinforcement generation during herbivorous biting and/or scraping. of bony elements and dentition (Tedman, 1980; Therefore, we selected the herbivore Girella laevifrons Streelman et al., 2002; Bellwood et al., 2003).
    [Show full text]
  • Order MYCTOPHIFORMES NEOSCOPELIDAE Horizontal Rows
    click for previous page 942 Bony Fishes Order MYCTOPHIFORMES NEOSCOPELIDAE Neoscopelids By K.E. Hartel, Harvard University, Massachusetts, USA and J.E. Craddock, Woods Hole Oceanographic Institution, Massachusetts, USA iagnostic characters: Small fishes, usually 15 to 30 cm as adults. Body elongate with no photophores D(Scopelengys) or with 3 rows of large photophores when viewed from below (Neoscopelus).Eyes variable, small to large. Mouth large, extending to or beyond vertical from posterior margin of eye; tongue with photophores around margin in Neoscopelus. Gill rakers 9 to 16. Dorsal fin single, its origin above or slightly in front of pelvic fin, well in front of anal fins; 11 to 13 soft rays. Dorsal adipose fin over end of anal fin. Anal-fin origin well behind dorsal-fin base, anal fin with 10 to 14 soft rays. Pectoral fins long, reaching to about anus, anal fin with 15 to 19 rays.Pelvic fins large, usually reaching to anus.Scales large, cycloid, and de- ciduous. Colour: reddish silvery in Neoscopelus; blackish in Scopelengys. dorsal adipose fin anal-fin origin well behind dorsal-fin base Habitat, biology, and fisheries: Large adults of Neoscopelus usually benthopelagic below 1 000 m, but subadults mostly in midwater between 500 and 1 000 m in tropical and subtropical areas. Scopelengys meso- to bathypelagic. No known fisheries. Remarks: Three genera and 5 species with Solivomer not known from the Atlantic. All Atlantic species probably circumglobal . Similar families in occurring in area Myctophidae: photophores arranged in groups not in straight horizontal rows (except Taaningichthys paurolychnus which lacks photophores). Anal-fin origin under posterior dorsal-fin anal-fin base.
    [Show full text]
  • Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
    BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes
    [Show full text]
  • Order Myctophiformes, Lanternfishes
    Order Myctophiformes, lanternfishes • 241 species, 35 genera, 2 families • Deep sea pelagic and benthic, numerically dominant in deep sea habitats • Large terminal mouth (reminiscent of anchovy) • Adipose fin present • Compressed head and body (Myctophiformes = nose serpent shape) Lampridiformes • Large eyes Percopsiformes • Photophores Acanthomorpha •Hollow unsegmented spines on dorsal and anal fins •Rostal and premaxilla cartilidge and ligaments allow greater jaw protrusability Order Lampridiformes, opahs and oarfish Order Lampridiformes, opahs and oarfish • Oarfish • 19 species, 12 genera, 7 families – Longest teleost – over 30 feet • no true spines in fins – Only one individual observed • unique upper jaw protrusion – alive, used amiiform maxilla not directly attached to swimming ethmoid or palentine • deep bodied or ribbon-like • pelagic and deep water marine 1 Order Percopsiformes, trout perch, pirate perch, cavefish • 3 families, 7 genera, 9 species • All freshwater • Few with adipose fins – one of the most derived fishes with them • Pirate perch (Aphredoderidae) – One species – Fairly extensive parental care – Anus migration • Cavefish (Amblyopsidae) Zeiformes – Reduction or loss of eyes Gadiformes – Sensory papillae on head, body and tail Acanthomorpha •Hollow unsegmented spines on – Anus migration dorsal and anal fins •Rostal and premaxilla cartilidge – Convergent evolution of cave fish and ligaments allow greater jaw and other cave characins, protrusability catfishes etc. Order Zeiformes Order Gadiiformes • Dories • 555 species,
    [Show full text]
  • Euteleostei: Aulopiformes) and the Timing of Deep-Sea Adaptations ⇑ Matthew P
    Molecular Phylogenetics and Evolution 57 (2010) 1194–1208 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Estimating divergence times of lizardfishes and their allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations ⇑ Matthew P. Davis a, , Christopher Fielitz b a Museum of Natural Science, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA b Department of Biology, Emory & Henry College, Emory, VA 24327, USA article info abstract Article history: The divergence times of lizardfishes (Euteleostei: Aulopiformes) are estimated utilizing a Bayesian Received 18 May 2010 approach in combination with knowledge of the fossil record of teleosts and a taxonomic review of fossil Revised 1 September 2010 aulopiform taxa. These results are integrated with a study of character evolution regarding deep-sea evo- Accepted 7 September 2010 lutionary adaptations in the clade, including simultaneous hermaphroditism and tubular eyes. Diver- Available online 18 September 2010 gence time estimations recover that the stem species of the lizardfishes arose during the Early Cretaceous/Late Jurassic in a marine environment with separate sexes, and laterally directed, round eyes. Keywords: Tubular eyes have arisen independently at different times in three deep-sea pelagic predatory aulopiform Phylogenetics lineages. Simultaneous hermaphroditism evolved a single time in the stem species of the suborder Character evolution Deep-sea Alepisauroidei, the clade of deep-sea aulopiforms during the Early Cretaceous. This result indicates the Euteleostei oldest known evolutionary event of simultaneous hermaphroditism in vertebrates, with the Alepisauroidei Hermaphroditism being the largest vertebrate clade with this reproductive strategy. Divergence times Ó 2010 Elsevier Inc.
    [Show full text]
  • Comparative Anatomy of the Caudal Skeleton of Lantern Fishes of The
    Revista de Biología Marina y Oceanografía Vol. 51, Nº3: 713-718, diciembre 2016 DOI 10.4067/S0718-19572016000300025 RESEARCH NOTE Comparative anatomy of the caudal skeleton of lantern fishes of the genus Triphoturus Fraser-Brunner, 1949 (Teleostei: Myctophidae) Anatomía comparada del complejo caudal de los peces linterna del género Triphoturus Fraser-Brunner, 1949 (Teleostei: Myctophidae) Uriel Rubio-Rodríguez1, Adrián F. González-Acosta1 and Héctor Villalobos1 1Instituto Politécnico Nacional, Departamento de Pesquerías y Biología Marina, CICIMAR-IPN, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz, BCS, 23096, México. [email protected] Abstract.- The caudal skeleton provides important information for the study of the systematics and ecomorphology of teleostean fish. However, studies based on the analysis of osteological traits are scarce for fishes in the order Myctophiformes. This paper describes the anatomy of the caudal bones of 3 Triphoturus species: T. mexicanus (Gilbert, 1890), T. nigrescens (Brauer, 1904) and T. oculeum (Garman, 1899). A comparative analysis was performed on cleared and stained specimens to identify the differences and similarities of bony elements and the organization of the caudal skeleton among the selected species. Triphoturus mexicanus differs from T. oculeum in the presence of medial neural plates and a foramen in the parhypural, while T. nigrescens differs from their congeners in a higher number of hypurals (2 + 4 = 6) and the separation and number of cartilaginous elements. This osteological description of the caudal region allowed updates to the nomenclature of bony and cartilaginous elements in myctophids. Further, this study allows for the recognition of structural differences between T.
    [Show full text]
  • Marine Ecology Progress Series 503:23
    The following supplement accompanies the article 1 Species composition and acoustic signatures of mesopelagic organisms in a subtropical convergence zone, the New Zealand Chatham Rise Stéphane Gauthier1, 2,*, Johannes Oeffner1, Richard L. O’Driscoll1 1National Institute of Water and Atmospheric Research, Private Bag 14-901, Kilbirnie, Wellington, New Zealand 2Fisheries and Oceans Canada, Institute of Ocean Sciences, PO Box 6000, Sidney, British Columbia V8L 4B2, Canada *Corresponding author: [email protected] Marine Ecology Progress Series: 503: 23–40 (2014) Supplement. Additional data Table S1. Species occurrence (Occ.) in number of tows, and abundance in weight (Wt) and number (No.) in successful mid - water trawls. Trawls are separated by voyage and type (daytime mark identification trawls ID, and nighttime oblique tows) Name Order May−June 2008 ID Nov 2011 ID Nov 2011 Oblique Occ. Wt (g) No. Occ. Wt (g) No. Occ. Wt (g) No. Acanthephyra pelagica Decapoda − − − − − − 3 9 3 Acanthephyra quadrispinosa Decapoda − − − − − − 1 7 1 Acanthephyra spp. Decapoda − − − − − − 3 17 4 Agrostichthys parkeri Lampriformes 1 8 1 − − − 3 1813 3 Alainopasiphaea australis Decapoda − − − 3 273 356 14 287 366 Allocyttus niger Zeiformes − − − − − − 1 600 1 Amphipod (unspecified) Amphipoda − − − 1 3 4 8 34 17 Anoplogaster cornuta Beryciformes − − − − − − 1 25 1 Apristurus spp. Carcharhiniformes − − − − − − 1 900 1 Argentina elongata Argentiniformes − − − − − − 4 541 6 Argyropelecus gigas Stomiiformes 2 20 2 2 38 5 8 165 12 Argyropelecus hemigymnus Stomiiformes 4 12 6 1 1 1 1 19 2 Astronesthes spp. Stomiiformes − − − 1 3 3 3 103 3 Atolla wyvillei Coronatae − − − − − − 4 83 7 Bathophilus ater Stomiiformes 1 12 1 − − − − − − Bathylagus spp.
    [Show full text]
  • Middle Ear Structures in the Permian Glanosuchus Sp. (Therocephalia, Therapsida), Based on Thin Sections
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 309-318 10.11.2002 Middle ear structures in the Permian Glanosuchus sp. (Therocephalia, Therapsida), based on thin sections Wolfgang Maierl & Juri van den Heever2 With 14 figures Abstract Transverse sections of the skull of the Permian therocephalian Glunosuchus sp. were studied with regard to the structures of the middle ear region. It is generally accepted that most of the skeletal elements of the mammalian middle ear are derived from the postdentary bones of the lower jaw. During synapsid evolution there is a gradual transition from a primitive amniote condition to derived mammalian condition; the latter is characterized by the decoupling of the remaining middle ear elements (angular, prearticular, articular) from the dentary, which forms a secondary jaw articulation with the squamosal. Morgunuco- don from the Triassic-Jurassic boundary represents an evolutionary stage, where both jaw articulations are present in a coaxial position and where the primary joint is a Pready a fully effective sound transmitter. Therocephalians are considered to be a good representation of the transitory state of this evolutionary process; this may be especially true for primitive taxa such as the lycosuchid Glunosuchus, whose anatomy may represent the “groundplan” (ancestral morphotype) of Lower to Middle Permian eutheriodonts. We studied a complete sectional series of a young specimen of Glunosuchus sp. prepared using the grind-and peel-technique. This showed that the reflected lamina of Glunosuchus is in major parts an extremely thin bony plate, which is best interpreted as a sound-receiving element overlying an air-filled recessus of the pharynx.
    [Show full text]