The Intramandibular Joint in Girella: a Mechanism for Increased Force Production?

Total Page:16

File Type:pdf, Size:1020Kb

The Intramandibular Joint in Girella: a Mechanism for Increased Force Production? JOURNAL OF MORPHOLOGY 271:271–279 (2010) The Intramandibular Joint in Girella: A Mechanism for Increased Force Production? Lara A. Ferry-Graham1,3* and Nicolai Konow2 1California State University, Moss Landing Marine Labs, Moss Landing, California 95039 2Brown University, Ecology and Evolutionary Biology, Providence, Box G-B204, Rhode Island 02912 3CEAZA, Centro de Estudios Avanzados de Zonas Aridas (Center for Advanced Studies in Arid Zones), Universidad Cato´lica del Norte. Box 599, Benavente 980, La Serena, Chile ABSTRACT Intramandibular joints (IMJ) are novel Bellwood, 2002). This is likely due to the forces articulations between bony elements of the lower jaw required for obtaining food items many of which are that have evolved independently in multiple fish line- either tough or firmly attached to the substrate ages and are typically associated with biting herbivory. (Alfaro et al., 2001). In several reef fish lineages, This novel joint is hypothesized to function by augment- aspects of the feeding apparatus have been radically ing oral jaw expansion during mouth opening, which would increase contact between the tooth-bearing area altered for force production, either via hypertro- of the jaws and algal substratum during feeding, result- phied or via structurally altered musculature (Friel ing in more effective food removal from the substrate. and Wainwright, 1997), modified muscle attach- Currently, it is not understood if increased flexibility in ments (Vial and Ojeda, 1990; Konow and Bellwood, a double-jointed mandible also results in increased force 2005), or increased suturing and/or reinforcement generation during herbivorous biting and/or scraping. of bony elements and dentition (Tedman, 1980; Therefore, we selected the herbivore Girella laevifrons Streelman et al., 2002; Bellwood et al., 2003). Mean- for a mechanical study of the IMJ lower jaw lever sys- while, some biting lineages seem to rely on entirely tem. For comparative purposes, we selected Graus nigra, different solutions for prey acquisition, likely to a non–IMJ-bearing species, from a putative sister genus. meet the novel demands of their mechanically and Shortening of the lower jaw, during flexion at the IMJ, resulted in a more strongly force-amplifying closing le- topographically challenging feeding substrata. ver system in the lower jaw, even in the absence of nota- Among the latter type of modifications is a novel ble changes to the sizes of the muscles that power the le- joint within the mandible or lower jaw, as seen in ver system. To explain how the IMJ itself functions, we some acanthurids (Purcell and Bellwood, 1993), use a four-bar linkage that models the transmission of blennids (Konow and Bellwood, 2005), poeciliids force and velocity to and through the lower jaw via the (Gibb et al., 2008), scarids (Tedman, 1980; Streel- IMJ. When combined, the functionally interrelated lever man et al., 2002), and girellids (Vial and Ojeda, and linkage models predict velocity to be amplified dur- 1990, 1992). This intramandibular joint (IMJ) was ing jaw opening, whereas jaw closing is highly force independently derived in each of these lineages modified by the presence of the IMJ. Moreover, the func- (Konow et al., 2008), and yet, it is consistently asso- tion of the IMJ late during jaw closure provides enough velocity to detach sturdy and resilient prey. Thus, this ciated with a predominantly dislodging mode of novel jaw system can alternate between amplifying the feeding on herbivorous diet items. Herbivory is force or the velocity exerted onto the substrate where associated with a broad suite of behaviors loosely food items are attached. This unique mechanical configu- categorized as biting. These include scraping, exca- ration supports the argument that IMJs are functional vating or gouging, and shearing. Such methods of innovations that have evolved to meet novel mechanical food acquisition are required when the target items challenges and constraints placed on the feeding appara- are physically durable or difficult to dislodge tus by attached and sturdy food sources. J. Morphol. from the substrate, as can be the case with many 271:271–279, 2010. Ó 2009 Wiley-Liss, Inc. KEY WORDS: levers; four-bar linkage; herbivory; Additional Supporting Information may be found in the online version of this article. biting; functional innovation *Correspondence to: Lara A. Ferry-Graham, California State Uni- INTRODUCTION versity, Moss Landing Marine Labs, 8272 Moss Landing Road, Moss Landing, CA 95039. E-mail: [email protected] The biting mode of prey capture in aquatic feed- ing vertebrates is a remarkable phenomenon from Received 6 March 2009; Revised 20 July 2009; both an ecological and an evolutionary perspective. Accepted 12 August 2009 Morphologically, biting is thought to be correlated Published online 13 October 2009 in with an increase in the complexity of the skeletal Wiley InterScience (www.interscience.wiley.com) elements used for prey capture (Wainwright and DOI: 10.1002/jmor.10796 Ó 2009 WILEY-LISS, INC. 272 L.A. FERRY-GRAHAM AND N. KONOW marine algae (Steneck and Dethier, 1994). Algae, a Girella (Johnson and Fritzsche, 1989). Both species polyphyletic grouping that includes the macroscopic are members of the Kyphosidae (Yagishita et al., Phaeophyceae, Rhodophyta, and Chlorophyta, each 2002; Nelson, 2006). Graus nigra has been possess many traits that directly or indirectly pro- described as having an herbivorous diet at certain vide some impediments to marine herbivores. These life history stages (Aldana et al., 2002) and is include cellulose and other fibrous structures (Mar- thought to have a different suite of mechanisms for tone, 2007), lignin (in red algae; Martone et al., creating a forceful bite, most notably hypertrophied 2009), and calcification (Steneck and Martone, jaw muscles. Importantly, this species lacks the 2007). In the case of the large and resilient brown intramandibular jaw joint (Vial and Ojeda, 1992). algae, for example, a fish might only be able to Our specific aims in this study were to measure extract small pieces from whole fronds via biting or and contrast the jaw lever ratios in Girella laevi- cutting. However, even very small food items, such frons and Graus nigra to test the hypothesis that as algal or diatom films, can require elaborate meth- there is a quantifiable force advantage conferred ods to scrape and detach them from the hard sub- by the IMJ. We also investigated the lower jaw de- strate (Purcell and Bellwood, 1993). pressor and adductor musculature to determine In most cases, IMJs are thought to permit an whether other morphological changes associated increased dorsoventral expansion of the oral jaw with force production were observed either in addi- gape, yielding a larger tooth-bearing surface that tion to or in lieu of an advantage conferred by the provides increased contact with algal-covered sub- IMJ. Finally, we propose a four-bar linkage model strates (Kanda and Yamaoka, 1995). This mecha- to explain how forces are transferred to and nism may thereby potentially yield a quantita- through the IMJ during biting. tively more effective scraping bite for removing food (Bellwood et al., 2003). For one freshwater METHODS omnivore, it has also been proposed that the IMJ Specimens of Girella laevifrons and Graus nigra were obtained may allow the teeth to more effectively ‘‘comb’’ 0 through periphyton, sieving out small inverte- using SCUBA and pole spear from Punta Teatinos (29849 S, 718220W) and Caleta de Hornos (298370S, 718190W) in Northern brates, using similar jaw movements as described Chile. Ten individuals of each species were obtained, which for the marine species above (Gibb et al., 2008). ranged in size from 21.5 to 39.5 cm total length (TL; average 32.5 The forces produced by the jaws during feeding cm) for Girella, and from 35.0 to 61.0 cm TL for Graus (average have been effectively modeled using engineering 49.8 cm). The chosen specimens intentionally spanned a range of sizes because both species are known to use varying degrees of models of lever and linkage function (Westneat, algal material throughout ontogeny, with both species potentially 2004). While being a mechanical construct, biome- increasing their reliance on algal material with age, and Graus chanical levers and linkages still reflect the under- secondarily switching back to carnivory at large body sizes lying morphology of the jaw (Westneat, 1990). One (Johnson and Fritzsche, 1989; Aldana et al., 2002). Such diet strength of this approach is that such biomechanical shifts may be associated with changes in morphology that should not be ignored. Graus specimens were on average larger than representations have clear functional interpreta- Girella as is reflective of their natural distributions; mature tions (Wainwright and Richard, 1995) and therefore Graus achieve a much larger body size. Specimens were fixed in can accurately reflect the ecological consequence of 10% formalin and stored in 70% ethanol until dissected. changes to the morphology of the jaw bones and The following morphometric variables were quantified for each dissected individual total length (TL, cm); head length muscles. Species should separate based on the force (HL, cm); mass of the adductor mandibulae 2 muscle (AM2, g); and velocity transmitting capabilities of their jaws, mass of the sternohyoideus muscle (SH, g); length of the jaw which is reflected in the measurements of transmis- out-lever (cm); length of the opening in-lever (cm); and length sion coefficients from the lever and linkage systems. of the closing in-lever (cm). Muscle masses were obtained by Biomechanical systems are generally thought inca- dissecting the muscles completely from the head, blotting the muscles dry, and weighing them to the nearest 0.01 g. Lengths pable of simultaneously being speed and force of the lower jaw in- and out-lever arms were measured using a amplifying, and indeed, most species tend to occupy dial caliper to the nearest 0.1 mm, and following the protocol one end or the other of a continuum, being either ca- outlined in previous studies (Wainwright and Richard, 1995; pable of slow, forceful movements, or rapid but Wainwright and Shaw, 1999).
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • List of Species Likely to Benefit from Marine Protected Areas in The
    Appendix C: Species Likely to Benefit from MPAs andSpecial-Status Species This appendix contains two sections: C.1 Species likely to benefit from marine protected areas in the MLPA South Coast Study Region C.2 Special status species likely to occur in the MLPA South Coast Study Region C.1 Species Likely to Benefit From MPAs The Marine Life Protection Act requires that species likely to benefit from MPAs be identified; identification of these species will contribute to the identification of habitat areas that will support achieving the goals of the MLPA. The California Marine Life Protection Act Master Plan for Marine Protected Areas (DFG 2008) includes a broad list of species likely to benefit from protection within MPAs. The master plan also indicates that regional lists will be developed by the MLPA Master Plan Science Advisory Team (SAT) for each study region described in the master plan. A list of species likely to benefit for the MLPA South Coast Study Region (Point Conception in Santa Barbara County to the California/Mexico border in San Diego County) has been compiled and approved by the SAT. The SAT used a scoring system to develop the list of species likely to benefit. This scoring system was developed to provide a metric that is more useful when comparing species than a simple on/off the list metric. Each species was scored using “1” to indicate a criterion was met or “0” to indicate a criterion was not met. Species on the list meet the following filtering criteria: they occur in the study region, they must score a “1” for either
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • Diet, Food Preference, and Algal Availability for Fishes and Crabs on Intertidal Reef Communities in Southern California
    Environmental Biology of Fishes 37: 75-95,1993. 0 1993 Kluwer Academic Publishers. Printed in the Netherlands. Diet, food preference, and algal availability for fishes and crabs on intertidal reef communities in southern California James P. Barry’ & Michael J. Ehret* A-001 Scripps Institution of Oceanography, La Jolla, CA 92093, U.S.A. ‘Present address: Monterey Bay Aquarium Research Institute, 160 Central Ave., Pacific Grove, CA 93950, U.S.A. 2 Present address: Biology Department, Old Dominion University, Norfolk, VA 23507, U.S. A. Received 18.9.1991 Accepted 3.9.1992 Key words: Herbivory, Kyphosidae, Girella, Hermosilla, Pachygrapsus, Community structure, Foraging, Chemical ecology Synopsis Herbivory by wide-ranging fishes is common over tropical reefs, but rare in temperate latitudes where the effects of herbivorous fishes are thought to be minimal. Along the west coast of North America, herbivory by fishes on nearshore reefs is largely restricted to a few members of the Kyphosidae, distributed south of Pt. Conception. This paper presents information on natural diets and results from feeding choice experiments for two abundant kyphosids from intertidal habitats in San Diego, California - Girella nigricans and Hermosilla azurea, and similar data for the lined shore crab, Pachygrapsus crassipes, which also forages over intertidal reefs. These results are compared with the availability of algae in intertidal habitats measured during summer and winter, on both disturbed and undisturbed habitats. The diets of juveniles of G. nigricans and H. azurea collected from nearshore habitats were dominated by animal prey (mainly amphipods), but adults of these fishes, and P. crassipes, consumed algae nearly exclusively, with 26,10, and 14 taxa of algae identified from G.
    [Show full text]
  • Eric Garcia Phd Dissertation 1 Copy 2
    UNIVERSITY OF CALIFORNIA SANTA CRUZ GENOMIC ANALYSIS OF DISJUNCT MARINE FISH POPULATIONS OF THE NORTHEASTERN PACIFIC AND SEA OF CORTEZ A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Eric Garcia December 2018 The Dissertation of Eric Garcia is approved: _________________________________ Professor Giacomo Bernardi, Chair _________________________________ Professor Pete Raimondi _________________________________ Brian Simison, Ph.D. _________________________________ Professor Octavio Aburto ___________________________________ Lori Kletzer Vice Provost and Dean of Graduate Studies Copyright © by Eric Garcia December, 2018 Table of Contents General Introduction Studying evolution in the genomic era………………………..……………………..01 The Baja California disjunct fishes…………………………………………………..06 Chapter 1 Tempo and mode of divergence in Baja California disjunct fishes based on a genome- wide calibrated substitution rate……………………………..………………………13 Chapter 2 Patterns of genomic divergence and signals of selection in sympatric and allopatric northeastern Pacific and Sea of Cortez populations of the sargo (Anisotremus davidsonii) and longjaw mudsucker (Gillichthys mirabilis)……………..………..…42 Chapter 3 Genomic divergence and signals of convergent selection between northeastern Pacific and Sea of Cortez disjunct populations of four marine fishes…………………...…..81 General Conclusion..................................................................................................126
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Middle Ear Structures in the Permian Glanosuchus Sp. (Therocephalia, Therapsida), Based on Thin Sections
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 309-318 10.11.2002 Middle ear structures in the Permian Glanosuchus sp. (Therocephalia, Therapsida), based on thin sections Wolfgang Maierl & Juri van den Heever2 With 14 figures Abstract Transverse sections of the skull of the Permian therocephalian Glunosuchus sp. were studied with regard to the structures of the middle ear region. It is generally accepted that most of the skeletal elements of the mammalian middle ear are derived from the postdentary bones of the lower jaw. During synapsid evolution there is a gradual transition from a primitive amniote condition to derived mammalian condition; the latter is characterized by the decoupling of the remaining middle ear elements (angular, prearticular, articular) from the dentary, which forms a secondary jaw articulation with the squamosal. Morgunuco- don from the Triassic-Jurassic boundary represents an evolutionary stage, where both jaw articulations are present in a coaxial position and where the primary joint is a Pready a fully effective sound transmitter. Therocephalians are considered to be a good representation of the transitory state of this evolutionary process; this may be especially true for primitive taxa such as the lycosuchid Glunosuchus, whose anatomy may represent the “groundplan” (ancestral morphotype) of Lower to Middle Permian eutheriodonts. We studied a complete sectional series of a young specimen of Glunosuchus sp. prepared using the grind-and peel-technique. This showed that the reflected lamina of Glunosuchus is in major parts an extremely thin bony plate, which is best interpreted as a sound-receiving element overlying an air-filled recessus of the pharynx.
    [Show full text]
  • Longterm Shifts in Abundance and Distribution of a Temperate Fish Fauna
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) 20, 58–72 RESEARCH Long-term shifts in abundance and PAPER distribution of a temperate fish fauna: a response to climate change and fishing practicesgeb_575 58..72 Peter R. Last1,2*, William T. White1,2, Daniel C. Gledhill1,2, Alistair J. Hobday1,2, Rebecca Brown3, Graham J. Edgar3 and Gretta Pecl3 1Climate Adaptation Flagship, CSIRO Marine ABSTRACT and Atmospheric Research, GPO Box 1538, Aim South-eastern Australia is a climate change hotspot with well-documented Hobart TAS 7001, Australia, 2Wealth from Oceans Flagship, CSIRO Marine and recent changes in its physical marine environment. The impact on and temporal Atmospheric Research, GPO Box 1538, Hobart responses of the biota to change are less well understood, but appear to be due to TAS 7001, Australia, 3Tasmanian Aquaculture influences of climate, as well as the non-climate related past and continuing human and Fisheries Institute, Private Bag 49, Hobart impacts. We attempt to resolve the agents of change by examining major temporal TAS 7001, Australia and distributional shifts in the fish fauna and making a tentative attribution of causal factors. Location Temperate seas of south-eastern Australia. Methods Mixed data sources synthesized from published accounts, scientific surveys, spearfishing and angling competitions, commercial catches and underwa- ter photographic records, from the ‘late 1800s’ to the ‘present’, were examined to determine shifts in coastal fish distributions. Results Forty-five species, representing 27 families (about 30% of the inshore fish families occurring in the region), exhibited major distributional shifts thought to be climate related. These are distributed across the following categories: species previously rare or unlisted (12), with expanded ranges (23) and/or abundance increases (30), expanded populations in south-eastern Tasmania (16) and extra- limital vagrants (4).
    [Show full text]
  • Jaw Suspension
    JAW SUSPENSION Jaw suspension means attachment of the lower jaw with the upper jaw or the skull for efficient biting and chewing. There are different ways in which these attachments are attained depending upon the modifications in visceral arches in vertebrates. AMPHISTYLIC In primitive elasmobranchs there is no modification of visceral arches and they are made of cartilage. Pterygoqadrate makes the upper jaw and meckel’s cartilage makes lower jaw and they are highly flexible. Hyoid arch is also unchanged. Lower jaw is attached to both pterygoqadrate and hyoid arch and hence it is called amphistylic. AUTODIASTYLIC Upper jaw is attached with the skull and lower jaw is directly attached to the upper jaw. The second arch is a branchial arch and does not take part in jaw suspension. HYOSTYLIC In modern sharks, lower jaw is attached to pterygoquadrate which is in turn attached to hyomandibular cartilage of the 2nd arch. It is the hyoid arch which braces the jaw by ligament attachment and hence it is called hyostylic. HYOSTYLIC (=METHYSTYLIC) In bony fishes pterygoquadrate is broken into epipterygoid, metapterygoid and quadrate, which become part of the skull. Meckel’s cartilage is modified as articular bone of the lower jaw, through which the lower jaw articulates with quadrate and then with symplectic bone of the hyoid arch to the skull. This is a modified hyostylic jaw suspension that is more advanced. AUTOSTYLIC (=AUTOSYSTYLIC) Pterygoquadrate is modified to form epipterygoid and quadrate, the latter braces the lower jaw with the skull. Hyomandibular of the second arch transforms into columella bone of the middle ear cavity and hence not available for jaw suspension.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara The effects of parasites on the kelp-forest food web A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Dana Nicole Morton Committee in charge: Professor Armand M. Kuris, Chair Professor Mark H. Carr, UCSC Professor Douglas J. McCauley Dr. Kevin D. Lafferty, USGS/Adjunct Professor March 2020 The dissertation of Dana Nicole Morton is approved. ____________________________________________ Mark H. Carr ____________________________________________ Douglas J. McCauley ____________________________________________ Kevin D. Lafferty ____________________________________________ Armand M. Kuris, Committee Chair March 2020 The effects of parasites on the kelp-forest food web Copyright © 2020 by Dana Nicole Morton iii ACKNOWLEDGEMENTS I did not complete this work in isolation, and first express my sincerest thanks to many undergraduate volunteers: Cristiana Antonino, Glen Banning, Farallon Broughton, Allison Clatch, Melissa Coty, Lauren Dykman, Christian Franco, Nora Frank, Ali Gomez, Kaylyn Harris, Sam Herbert, Adolfo Hernandez, Nicky Huang, Michael Ivie, Conner Jainese, Charlotte Picque, Kristian Rassaei, Mireya Ruiz, Deena Saad, Veronica Torres, Savanah Tran, and Zoe Zilz. I would also like to thank Ralph Appy, Bob Miller, Clint Nelson, Avery Parsons, Christoph Pierre, and Christian Orsini for donating specimens to this project and supporting my own sample collection. I also thank Jim Carlton, Milton Love, David Marcogliese, John McLaughlin, and Christoph Pierre for sharing their expertise in thoughtful discussions on this work. The quality of this work would have suffered without assistance on parasite identification from Ralph Appy, Francisco Aznar, Janine Caira, Willy Hemmingsen, Ken Mackenzie, Harry Palm, Julli Passarelli, Mark Rigby, and Danny Tang.
    [Show full text]