Minerals of Indiana

Total Page:16

File Type:pdf, Size:1020Kb

Minerals of Indiana MINERALS OF INDIANA by RICHARD C. ERD AND SEYMOUR S. GREENBERG Indiana Department of Conservation GEOLOGICAL SURVEY Bulletin No. 18 1960 STATE OF INDIANA HAROLD W. HANDLEY, GOVERNOR DEPARTMENT OF CONSERVATION E. KENNETH MARLIN, DIRECTOR GEOLOGICAL SURVEY JOHN B. PATTON, STATE GEOLOGIST BLOOMINGTON __________________________________________________________________________________ BULLETIN NO. 18 __________________________________________________________________________________ MINERALS OF INDIANA BY RICHARD C. ERD AND SEYMOUR S. GREENBERG PRINTED BY AUTHORITY OF THE STATE OF INDIANA BLOOMINGTON, INDIANA September 1060 __________________________________________________________________________________ For sale by Geological Survey, Indiana Department of Conservation, Bloomington, Ind. Price 75 cents 2 SCIENTIFIC AND TECHNICAL STAFF OF THE GEOLOGICAL SURVEY JOHN B. PATTON, State Geologist MAURICE E. BIGGS, Assistant State Geologist MARY BETH FOX, Mineral Statistician Coal Section Charles E. Wier, Geologist and Head G. K. Guennel, Paleobotanist S. A. Friedman, Geologist Harold C. Hutchison, Geologist Richard C. Neavel, Coal Petrographer Drafting and Photography Section William H. Moran, Chief Draftsman Robert E. Judah, Geological Artist-Draftsman Micky P. Love, Geological Draftsman John E. Peace, Senior Geological Draftsman George R. Ringer, Photographer Educational Services R. Dee Rarick, Geologist and Head Geochemistry Section R. K. Leininger, Spectrographer and Head Maynard E. Coller, Chemist Louis V. Miller, Coal Chemist E. M. Craig, Geochemical Assistant Geology Section Robert H. Shaver, Paleontologist and Head Henry H. Gray, Head Stratigrapher William J. Wayne, Head Glacial Geologist Allan F. Schneider, Glacial Geologist Geophysics Section Maurice E. Biggs, Geophysicist and Head Robert F. Blakely, Geophysicist Charles S. Miller, Instrument Maker Albert J. Rudman, Geophysicist Joseph F. Whaley, Geophysicist Glen L. Workman, Driller Jerry B. Fox, Assistant Driller Arthur Wayne Aynes, Geophysical Assistant 3 Industrial Minerals Section Duncan J. McGregor, Geologist and Head Gary R. Gates, Geologist Seymour S. Greenberg, Petrographer Jack L. Harrison, Clay Mineralogist Ned M. Smith, Geologist Jack A. Sunderman, Geologist Petroleum Section T. A. Dawson, Geologist and Head G. L. Carpenter, Geologist Andrew J. Hreha, Geologist Stanley Keller, Geologist Arthur P. Pinsak, Geologist Howard Smith, Geologist Dan M. Sullivan, Geologist George Abbott, Geological Assistant James Cazee, Geological Assistant Phillip W. Cazee, Geological Assistant John R. Helms, Geological Assistant Publications Section Gerald S. Woodard, Editor and Head Lewis W. Nellinger, Sales and Record Clerk This page intentionally blank 5 CONTENTS Page Abstract ..............................................................................................................................7 Introduction .......................................................................................................................7 Purpose and scope ......................................................................................................7 Acknowledgments ......................................................................................................9 History ...............................................................................................................................9 Geologic setting .............................................................................................................. 10 Occurrence and distribution ............................................................................................. 13 Description of individual minerals ................................................................................. 14 Allophane ................................................................................................................. 14 Anhydrite ................................................................................................................. 15 Apatite ...................................................................................................................... 15 Aragonite ................................................................................................................. 16 Asphalt ..................................................................................................................... 17 Barite ........................................................................................................................ 18 Calcite ...................................................................................................................... 20 Celestite ................................................................................................................... 22 Chalcopyrite ............................................................................................................. 23 Coplapite .................................................................................................................. 23 Copper ...................................................................................................................... 24 Diamond ................................................................................................................... 24 Dolomite ................................................................................................................... 26 Epsomite ................................................................................................................... 27 Fluorite ..................................................................................................................... 28 Galena ....................................................................................................................... 29 Glauconite ................................................................................................................ 31 Goethite .................................................................................................................... 32 Gold .......................................................................................................................... 32 Gypsum .................................................................................................................... 35 Halloysite .................................................................................................................. 36 Hematite .................................................................................................................... 38 Hydromagnesite ........................................................................................................ 38 Limonite ................................................................................................................... 39 Marcasite .................................................................................................................. 40 Melanterite ................................................................................................................. 41 Millerite .................................................................................................................... 42 Nitrocalcite ................................................................................................................ 43 Opal ........................................................................................................................... 44 Potash alum .............................................................................................................. 44 Pyrite ......................................................................................................................... 46 6 CONTENTS Page Pyrrhotite .................................................................................................................. 46 Quartz ....................................................................................................................... 47 Siderite ...................................................................................................................... 48 Silver ......................................................................................................................... 49 Smythite .................................................................................................................... 49 Sphalerite .................................................................................................................. 50 Strontianite ................................................................................................................ 51 Sulfur ........................................................................................................................ 52 Wad ........................................................................................................................... 52 Doubtful and discredited mineral occurrences ................................................................53 List of selected localities with page references ............................................................... 53 Literature cited ................................................................................................................. 65 Index of minerals and mineraloids mentioned in this report .......................................... 73 ILLUSTRATIONS Page Figure 1. Map of Indiana showing counties .....................................................................8 2. Generalized geologic map of Indiana ...............................................................11
Recommended publications
  • Modern Shale Gas Development in the United States: a Primer
    U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory April 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Modern Shale Gas Development in the United States: A Primer Work Performed Under DE-FG26-04NT15455 Prepared for U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Prepared by Ground Water Protection Council Oklahoma City, OK 73142 405-516-4972 www.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 MODERN SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER ACKNOWLEDGMENTS This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Award Number DE‐FG26‐ 04NT15455. Mr. Robert Vagnetti and Ms. Sandra McSurdy, NETL Project Managers, provided oversight and technical guidance.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Two New Crinoids from Lower Mississippian Rocks in Southeastern Kentucky
    TWO NEW CRINOIDS FROM LOWER MISSISSIPPIAN ROCKS IN SOUTHEASTERN KENTUCKY BY GEORGE M. EHLERS AND ROBERT V. KESLING Reprinted from JOURNAL OF PALEONTOLOGY Val. 37, No. 5, September, 1963 JOURNALOF PALEONTOLOGY,V. 37, NO. 5, P. 1028-1041, PLS. 133,134, 3 TEXT-FIGS., SEPTEMBER,1963 TWO NEW CRINOIDS FROM L20\'C7ERMISSISSIPPIAN ROCKS IN SOUTHEASTERN KENTUCKY GEORGE M. EHLERS AKD ROBERT V. ICESLING Museum of Paleontology, The University of Michigan .~BsTR.~~T-AII~~~~specimens collected many years ago bl- the senior author and his students near Mill Springs, Kentucky, are a new species of Agaricocrinzis and a new speries of Actino- crinites. Although only one specimen of each is known, it is well preserved. The new Agnrico- crinus bears a resemblance to A. ponderoszts Wood, and the new Actinocriniles to four species described by Miller & Gurley: A. spergenensis, A. botuztosz~s,A. gibsoni, and A. shnronensis. A preliminary survey of species assigned to Agaricocrinz~ssuggests that revision of the genus is overdue. Although the occurrence of the specimens leaves some doubt as to their stratigraphic posi- tion, we conclude that they both probably weathered from the Fort Payne formation and rolled down the slope onto the New Providence, where they were found. The sites where the crinoids were picked up are now deeply inundated by water impounded by the Wolf Creek dam on the Cumberland River. INTRODUCTION onto the New Providence, \$here they were OTH of the new crinoids described here are found. rZt present, both the New Providence B from Lower Mississippian rocks in the valley formation and the I~asalbeds of the Fort Payne of the Cumberland River in Wayne and Russell are underwater at the type locality of the new Counties, Kentucky.
    [Show full text]
  • Harrodsburg Limestone in Kentucky
    Harrodsburg Limestone In Kentucky By E. G. SABLE, R. C. KEPFERLE, and W. L. PETERSON CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1224-1 Prepared in cooperation with the Com­ monwealth of Kentucky, University of Kentucky, Kentucky Geological Survey UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 10 cents (paper cover) CONTENTS Fag* Abstract.________________________________________________________ II Introduction.____________________________-_--____--____-__--_-_--_ 1 History of nomenclature_________________ ______________________ 1 Harrodsburg Limestone redefined in Kentucky._______________________ 6 Round Hollow section__-__-___-_---____._-___-_----__-._.__--_.__ 7 Correlations._____________________________________________________ 11 References cited.................__________________________________ 11 ILLUSTRATIONS Pag» FIGURE 1. Stratigraphic nomenclature of selected Mississippian units in 12 northwest-central Kentucky __________________________ 2. Map of central Kentucky showing counties and topographic quadrangles referred to in this re port..____.___.._.__.__.__ 4 ill 799-251 66 CONTRIBUTIONS TO STRATIGRAPHY HARRODSBURG LIMESTONE IN KENTUCKY By E. G. SABLE, R. C. KEPFERLE, and W. L. PETERSON ABSTRACT The Harrodsburg Limestone (Mississippian) in northwest-central Kentucky consists of 20 to 50 feet of light-gray coarse-grained fossil-fragmental limestone and minor silty limestone. It underlies the Salem Limestone, overlies the Borden Formation, and includes the Leesville and Guthrie Creek Members, of the Lower Harrodsburg of P. B. Stockdale and the Harrodsburg (restricted) as used by him. INTRODUCTION The name Harrodsburg Limestone was given (Hopkins and Sieben- tlial, 1897) to a unit of predominantly carbonate rocks of Mississippian age in Indiana and was subsequently used in Kentucky.
    [Show full text]
  • Pickeringite from the Stone Town Nature Reserve in Ciężkowice (The
    minerals Article Pickeringite from the Stone Town Nature Reserve in Ci˛e˙zkowice(the Outer Carpathians, Poland) Mariola Marszałek * , Adam Gaweł and Adam Włodek Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; [email protected] (A.G.); [email protected] (A.W.) * Correspondence: [email protected] Received: 26 January 2020; Accepted: 17 February 2020; Published: 19 February 2020 Abstract: Pickeringite, ideally MgAl (SO ) 22H O, is a member of the halotrichite group minerals 2 4 4· 2 XAl (SO ) 22H O that form extensive solid solutions along the joints of the X = Fe-Mg-Mn-Zn. 2 4 4· 2 The few comprehensive reports on natural halotrichites indicate their genesis to be mainly the low-pH oxidation of pyrite or other sulfides in the Al-rich environments of weathering rock-forming aluminosilicates. Pickeringite discussed here occurs within the efflorescences on sandstones from the Stone Town Nature Reserve in Ci˛e˙zkowice(the Polish Outer Carpathians), being most probably the first find on such rocks in Poland. This paper presents mineralogical and geochemical characteristics of the pickeringite (based on SEM-EDS, XRPD, EPMA and RS methods) and suggests its possible origin. It belongs to the pickeringite–apjohnite (Mg-Mn joints) series and has the calculated formula Mg Mn Zn Cu Al (S O ) 22H O (based on 16O and 22H O). The unit cell 0.75 0.21 0.02 0.01 2.02 0.99 to 1.00 4 4· 2 2 parameters refined for the monoclinic system space group P21/c are: a = 6.1981(28) Å, b = 24.2963(117) 1 Å, c = 21.2517(184) Å and β = 100.304(65)◦.
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • Metacinnabar Hgs C 2001-2005 Mineral Data Publishing, Version 1
    Metacinnabar HgS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Commonly massive; rarely as small (to 1 mm) tetrahedral crystals having rough faces. Twinning: Common on {111}, forming lamellae in polished section. Physical Properties: Fracture: Subconchoidal. Tenacity: Brittle. Hardness = 3 VHN = n.d. D(meas.) = 7.65 D(calc.) = 7.63 Optical Properties: Opaque. Color: Grayish black; in polished section, grayish white. Streak: Black. Luster: Metallic. Pleochroism: Weak, rarely. Anisotropism: Very weak, rarely. R: (400) 28.4, (420) 27.6, (440) 26.8, (460) 26.3, (480) 25.9, (500) 25.6, (520) 25.4, (540) 25.2, (560) 25.1, (580) 25.0, (600) 24.9, (620) 24.9, (640) 24.8, (660) 24.7, (680) 24.7, (700) 24.7 Cell Data: Space Group: F 43m. a = 5.8717(5) Z = 4 X-ray Powder Pattern: Synthetic. 3.378 (100), 2.068 (55), 1.7644 (45), 2.926 (35), 1.3424 (12), 1.6891 (10), 1.3085 (10) Chemistry: (1) (2) (3) (4) Hg 79.73 67.45 81.33 86.22 Zn 4.23 3.10 Cd 11.72 Fe trace 0.2 Se 1.08 6.49 S 14.58 15.63 10.30 13.78 Total 99.62 98.10 98.12 100.00 (1) Guadalc´azar,Mexico; corresponds to (Hg0.85Zn0.14)Σ=0.99(S0.97Se0.03)Σ=1.00. (2) Uland area, Russia; corresponds to (Hg0.69Cd0.21Zn0.10Fe0.01)Σ=1.01S1.00. (3) San Onofre, Mexico; corresponds to Hg1.00(S0.80Se0.20)Σ=1.00.
    [Show full text]
  • Raman Spectroscopy of Efflorescent
    ASTROBIOLOGY Volume 13, Number 3, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.0908 Raman Spectroscopy of Efflorescent Sulfate Salts from Iron Mountain Mine Superfund Site, California Pablo Sobron1 and Charles N. Alpers2 Abstract The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination. Key Words: Acid mine drainage—Efflorescent sulfate minerals—Mars analogue—Iron Mountain—Laser Raman spectroscopy. Astro- biology 13, 270–278. 1. Introduction efflorescent sulfate minerals. This reconnaissance sampling resulted in characterization of the extremely acidic mine ron Mountain, California, is the host of massive sulfide waters (pH values from - 3.6 to + 0.5) and a variety of iron- Ideposits that were mined for copper, zinc, gold, silver, and sulfate efflorescent salts (Nordstrom and Alpers, 1999; pyrite (for sulfuric acid) between the early 1860s and the early Nordstrom et al., 2000).
    [Show full text]
  • Drive Historic Southern Indiana
    HOOSIER HISTORY STATE PARKS GREEK REVIVAL ARCHITECTURE FINE RESTAURANTS NATURE TRAILS AMUSEMENT PARKS MUSEUMS CASINO GAMING CIVIL WAR SITES HISTORIC MANSIONS FESTIVALS TRADITIONS FISHING ZOOS MEMORABILIA LABYRINTHS AUTO RACING CANDLE-DIPPING RIVERS WWII SHIPS EARLY NATIVE AMERICAN SITES HYDROPLANE RACING GREENWAYS BEACHES WATER SKIING HISTORIC SETTLEMENTS CATHEDRALS PRESIDENTIAL HOMES BOTANICAL GARDENS MILITARY ARTIFACTS GERMAN HERITAGE BED & BREAKFAST PARKS & RECREATION AZALEA GARDENS WATER PARKS WINERIES CAMP SITES SCULPTURE CAFES THEATRES AMISH VILLAGES CHAMPIONSHIP GOLF COURSES BOATING CAVES & CAVERNS Drive Historic PIONEER VILLAGES COVERED WOODEN BRIDGES HISTORIC FORTS LOCAL EVENTS CANOEING SHOPPING RAILWAY RIDES & DINING HIKING TRAILS ASTRONAUT MEMORIAL WILDLIFE REFUGES HERB FARMS ONE-ROOM SCHOOLS SNOW SKIING LAKES MOUNTAIN BIKING SOAP-MAKING MILLS Southern WATERWHEELS ROMANESQUE MONASTERIES RESORTS HORSEBACK RIDING SWISS HERITAGE FULL-SERVICE SPAS VICTORIAN TOWNS SANTA CLAUS EAGLE WATCHING BENEDICTINE MONASTERIES PRESIDENT LINCOLN’S HOME WORLD-CLASS THEME PARKS UNDERGROUND RIVERS COTTON MILLS Indiana LOCK & DAM SITES SNOW BOARDING AQUARIUMS MAMMOTH SKELETONS SCENIC OVERLOOKS STEAMBOAT MUSEUM ART EXHIBITIONS CRAFT FAIRS & DEMONSTRATIONS NATIONAL FORESTS GEMSTONE MINING HERITAGE CENTERS GHOST TOURS LECTURE SERIES SWIMMING LUXURIOUS HOTELS CLIMB ROCK WALLS INDOOR KART RACING ART DECO BUILDINGS WATERFALLS ZIP LINE ADVENTURES BASKETBALL MUSEUM PICNICKING UNDERGROUND RAILROAD SITE WINE FESTIVALS Historic Southern Indiana (HSI), a heritage-based
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • 2012 Bmc Auction Specimens
    A SAMPLER OF SELECTED 2017 BMC AUCTION SPECIMENS (2017 Auction Date is Saturday, 21 January) Volume 3 3+ Hematite [Fe 2O3] & Quartz [SiO2] Locality Cleator Moor Iron Mines Cleator Moor West Cumberland Iron Field Cumbria, England, UK Size 13.5 x 9.5 x 7.0 cm 1498 g Donated by Stonetrust Hematite Crystal System: Trigonal Photograph by Mike Haritos Physical Properties Transparency: Subtranslucent to opaque Mohs hardness: 6.5 Density: approx 5.3 gm/cm3 Streak: Red Luster: Metalic Vanadinite [Pb5(VO4)3Cl] var. Endlichite Locality Erupción Mine (Ahumada Mine) Los Lamentos Mountains (Sierra de Los Lamentos) Mun. de Ahumada Chihuahua, Mexico Size 12.0 x 9.5 x 7.0 cm 1134 g Donated by Stonetrust Crystal System: Hexagonal Physical Properties Transparency: Subtranslucent to opaque Mohs hardness: 3.5-4 Photograph by Mike Haritos Density: 6.8 to 7.1 gm/cm3 Streak: Brownish yellow Endlichite, Pb5([V, As]O4)3Cl, is the arsenic rich Luster: Adamantine variety of vanadinite with arsenic atoms (As) substituting for some of the vanadium (V) 2+ Dolomite [CaMg(CO3)2] & Chalcopyrite [CuFe S2] Locality Picher Field Tri-State District Ottawa Co. Oklahoma, USA Size 19.0 x 14.5 x 6.0 cm 1892 g Consigned with Reserve by Stonetrust Dolomite Crystal System: Trigonal Physical Properties Photograph by Mike Haritos Transparency: Transparent, Translucent, Opaque Mohs hardness: 3.5 to 4 Density: 2.8 to 2.9 gm/cm3 Streak: White Luster: Vitreous Calcite [CaCO3] Locality Mexico Size 15.5 x 12.8 x 6.2 cm 1074 g Donated by Stonetrust Calcite Crystal System: Trigonal Physical Properties Transparency: Transparent, Translucent Mohs hardness: 3 Density: 2.71 gm/cm3 Streak: White Luster: Vitreous, Sub-Vitreous, Photograph by Mike Haritos Resinous, Waxy, Pearly Quartz [SiO2], var.
    [Show full text]
  • Report of State Geologist, 18Q6. WASHINGTON's Monmlent
    Report of State Geologist, 18Q6. PLATE IV. WASHINGTON'S MONmlENT MARENGO CAVE. INDIANA CAYES AND THEIR FAUNA. BY W. S. BLATOHLEY. The Bubcarboniferous limestone area of southern Indiana contains many sink holes and caves within its bounds. This area is, for the most part, embraced in the counties of Owen, Monroe, Lawrence, Washington, Orange, Harrison and Crawford. Going southward from the center of the State, the sink holes first become a prominent feature of the surface in eastern Owen and western Morgan Counties, and are found in num­ bers thereafter, in the area mentioned, until the Ohio River is reached, beyond which, in Kentucky, they are said to be still more numerous, in Sink many portions of the State averaging 100 to the square mile. These sink holes vary much in size, sometimes being but a Holes. rod or two across, and again embracing several acres in extent. They are, for the most part, inverted cones or funnel shaped cavities, and, where small, usually have the sides covered with a matt~d growth of vines and shrubs. Where larger, trees of varying size are often found growing from the scanty soil on the sides, or from the bottom of the sink. If one will examine closely the lowest point of a sink hole, he will usually find a crevice or fissure through the limestone, or sometimes a la~ge opening which, if it be possible to enter, will be found to lead to an underground cavity-a cave. Both sink holes and caves not only owe their origin, but usually their entire formation, to the slow, unceasing action of rain or carbonated water upon the limestone strata in which they occur.
    [Show full text]