Anti-Satellite Weapons, Deterrence and Sino-American Space Relations

Total Page:16

File Type:pdf, Size:1020Kb

Anti-Satellite Weapons, Deterrence and Sino-American Space Relations Anti-satellite Weapons, Deterrence and Sino-American Space Relations Michael Krepon & Julia Thompson, Editors SEPTEMBER 2013 Anti-satellite Weapons, Deterrence and Sino-American Space Relations Michael Krepon Julia Thompson Editors September 2013 TABLE OF CONTENTS 7 Preface Ellen Laipson, Stimson Center 9 Introduction Amb. Lincoln P. Bloomfield, Jr., Stimson Center 13 List of Acronyms and Key Terms 15 Space and Nuclear Deterrence Michael Krepon, Stimson Center 41 The Absolute Weapon and the Ultimate High Ground: Why Nuclear Deterrence and Space Deterrence Are Strikingly Similar - Yet Profoundly Different Karl Mueller, RAND Corporation 61 Reconsidering Deterrence for Space and Cyberspace James A. Lewis, Center for Strategic and International Studies 81 Deterrence and Crisis Stability in Space and Cyberspace Bruce W. MacDonald, United States Institute of Peace 101 The United States and China in Space: Cooperation, Competition, or Both? Michael Nacht, University of California, Berkeley 113 U.S.-China Cooperation in Space: Constraints, Possibilities, and Options Brian Weeden, Secure World Foundation 131 Annex: A Comparison of Nuclear and Anti-satellite Testing, 1945-2013 Michael Krepon and Sonya Schoenberger, Stimson Center 6 Introduction US national security experts spend years studying, seeking to avoid and sometimes helping to mediate or prosecute conflicts. Over time, veteran policy hands in the exec- utive and legislative branches, as well as academia, thinks tanks and the media, come to believe that they understand all the important dimensions of security. And yet, for most, one dimension – space – presents a significant gap in their understanding. Space’s importance is major, growing and underappreciated inside the Washington Beltway. Over a half century ago, the US-Soviet space race captured the imagination of the American people, and the manned space program from the 1960s onward bred na- tional competence in the design, manufacture and launch of rockets, satellites and payloads with ever-greater capabilities. Scientific study, helped by access to space, flourished. Civil and military use of space-based communications grew fast as the internet, personal computing and cellular telephony gained widespread adoption be- ginning in the 1990s. By the end of the decade, the Pentagon recognized that the US military had developed a dependence on spaced-based communications, such that a sudden denial of space-enabled information in wartime could impair the effectiveness of combat units. The military saw from wargaming simulations of future conflict that space assets were like a crystal goblet: exquisite but easily shattered. An adversary would naturally con- template measures to disable US forces’ ability to command and control operations across an entire theater of operations, and to access real-time intelligence and target- ing data supplied from distant sources. The enormous warfighting advantage afforded to US forces by space systems was, because of its vulnerability, perceived as an Achilles heel. The conclusion was logical: space had to be defended. Space became a “domain,” talked about by defense analysts as one of several discrete arenas of potential confrontation, like air, land, sea or nuclear – or more recently, cyber. For security experts, these can be useful categories; yet here is where the un- derappreciation of space becomes acute. It is not just that traditional “terrestrial” war- fare, involving loss of life, destruction of property and territorial conquest imposes readily-visible costs that society has long recognized as vital interests, while the idea of attacking satellites in space seems a lesser level of aggression. The deeper problem is with the long-term consequences of destructive conflict in space, for these may be 9 poorly anticipated by policymakers during a time of hostilities, and yet, in retrospect, these may prove to be more regrettable than all but the most destructive acts of war in the other “domains.” Presidents in the 21st century will expect to exercise close control over any major future crisis; many regard the 1962 Cuban Missile Crisis as the template for wise, clever, well-advised presidential decision-making in an escalating confrontation. And yet, as useful as experience from the nuclear playbook is, wargames have suggested important differences, one of which is that the space domain imposes a particularly forbidding time element on the management of a space crisis. Not only will time be lost in detecting that US space systems have been interfered with, but knowing with certainty that a space system anomaly was due to attack, and assigning unmistakable attribution, will consume precious time as well. Because entire constellations of valuable satellite systems rotating the Earth could be destroyed quickly if indeed an adversary is targeting them, military commanders with expertise and responsibilities in the space domain will press for an immediate presi- dential grant of authority to take action. Are security generalists comfortable that they could advise the president on decisions and actions that would best serve the US inter- est in such a scenario? What makes this domain, and the study of deterrence in space, at once different and underappreciated, is the aftermath. Conventional wars can produce fearsome destruc- tion; lost lives cannot be replaced, but societies recover. Even the nuclear accidents at Chernobyl and Fukushima instruct us that relatively small nuclear exposure of civil- ian populations can be extremely hazardous and hard to manage; yet societies can pursue measures to cope with their effects, and recover. Imagine, however, a future conflict in which space assets are targeted with destructive force. The US Air Force Space Command in recent years hosted wargaming exercises that simulated, in one instance, hostilities that required US and allied forces to operate for “a day without space.” While loss of space-based communications was mitigated by terrestrial systems, the consequences for operating in space were certainly not rem- edied in a day. Indeed, participants were left to speculate if the United States might be contemplating a century or even much longer “without space.” Consider what this could mean for the reputation of the United States, and for the tra- jectory of human discovery. Unchecked, hostile action in space could produce debris, orbiting the earth at nine times the speed of a bullet, so prevalent as to put at risk all 10 sophisticated spacecraft including satellites. This could place manned and unmanned space flight at unacceptable risk of mission failure due to catastrophic collision with debris. Not only would investment in, and insurance for, advanced spacecraft and launch engineering be extinguished. Of much greater importance, mankind’s access to space for exploration and pursuit of knowledge would be closed off – for young and old alike, for schoolchildren, scientists and aspiring astronauts, in America and around the world, possibly for a very long time. A more toxic legacy for US security policy would be hard to conceive. That is why the study of space deterrence should matter to all policymakers, and why the Stimson Center’s Space Security project, led by Stimson co-founder Michael Kre- pon, is pleased to present this collection of six essays studying deterrence of destruc- tive acts in space, drawing from lessons from the nuclear era. I hope you find them of interest. Lincoln P. Bloomfield Jr. Chairman, Stimson Center 11 Acronyms and Key Terms A2/AD – anti-access/area denial ASAT – anti-satellite BMD – ballistic missile defense GEO – geosynchronous orbit GGE – Group of Government Experts GPS – global positioning system ICBM – intercontinental ballistic missile ICOC – International Code of Conduct for Outer Space Activities ISR – intelligence, surveillance and reconnaissance ITAR – International Traffic in Arms Regulations LEO – low Earth orbit LTBT – limited test ban treaty MEO – middle Earth orbit MIRV – multiple independently targetable re-entry vehicles NASA – National Aeronautics and Space Administration NRO – National Reconnaissance Office OST – Outer Space Treaty PNE – peaceful nuclear explosions PLNS – pre- and post-launch notification system PNT – precision navigation and timing PPWT – Prevention of the Placement of Weapons in Outer Space and the Threat or Use of Force Against Outer Space Objects SALT – Strategic Arms Limitations Talks SDI – Strategic Defense Initiative SEIS – space-enabled information services START – Strategic Arms Reduction Treaty TCBMs – Transparency and Confidence Building Measures UNCOPUOS – United Nations Committee on the Peaceful Uses of Outer Space WMD – weapons of mass destruction 13 Space and Nuclear Deterrence By Michael Krepon “Space deterrence” is defined here as deterring harmful actions by whatever means against national assets in space and assets that support space operations. Analogously, nuclear deterrence is defined as deterring harmful actions by means of nuclear weap- ons. Concepts of nuclear deterrence have been well developed. In contrast, attention to space deterrence has been sporadic during and after the Cold War, sparked mostly when anti-satellite (ASAT) capabilities have been tested. These concerns faded after the demise of the Soviet Union, and have now revived with the advent of China’s am- bitious space program. DEMONSTRABLE VS. INFERRED DETERRENCE Nuclear deterrence and space deterrence have common elements as well as distinct differences. No difference is more striking than with
Recommended publications
  • Rules for the Heavens: the Coming Revolution in Space and the Laws of War
    RULES FOR THE HEAVENS: THE COMING REVOLUTION IN SPACE AND THE LAWS OF WAR John Yoo* Great powers are increasing their competition in space. Though Russia and the United States have long relied on satellites for surveillance of rival nations’ militaries and the detection of missile launches, the democratization of space through technological advancements has allowed other nations to assert greater control. This Article addresses whether the United States and other nations should develop the space-based weapons that these policies promise, or whether they should cooperate to develop new international agreements to ban them. In some areas of space, proposals for regulation have already come too late. The U.S.’s nuclear deterrent itself depends cru- cially on space: ballistic missiles leave and then re-enter the atmosphere, giving them a global reach without serious defense. As more nations develop nuclear weapons and intercontinental ballistic missile (ICBM) technology, outer space will become even more important as an arena for defense against weapons of mass destruction (WMD) proliferation. North Korea’s progress on ICBM and nuclear technology, for example, will prompt even greater in- vestment in space-based missile defense systems. This Article makes two contributions. First, it argues against a grow- ing academic consensus in favor of a prohibition on military activities in space. It argues that these scholars over-read existing legal instruments and practice. While nations crafted international agreements to bar WMDs in outer space, they carefully left unregulated reconnaissance and commu- nications satellites, space-based conventional weapons, antisatellite sys- tems, and even WMDs that transit through space, such as ballistic missiles.
    [Show full text]
  • Nasa Advisory Council Human Exploration and Operations
    NASA ADVISORY COUNCIL HUMAN EXPLORATION AND OPERATIONS COMMITTEE NASA Headquarters Washington, DC January 13-14, 2021 MEETING REPORT _____________________________________________________________ N. Wayne Hale, Chair ____________________________________________________________ Bette Siegel, Executive Secretary Table of Contents Call to Order 3 Commercial Crew Program 5 Public Comments 8 Artemis Program 9 SMD Artemis CLPS Activities 11 Moon to Mars Update 12 Solar System and Beyond 12 HERMES Instrument Update Artemis III SDT Update Advancing Biological and Physical Sciences Through Lunar Exploration 14 SMD Mars Science Update 14 Artemis Accords 15 Planetary Protection Activities 15 Discussion/Findings and Recommendations 16 Appendix A- Attendees Appendix B- HEOC Membership Appendix C- Presentations Appendix D- Agenda Appendix E- Chat Transcript Prepared by Joan M. Zimmermann Zantech IT, Inc. 2 January 13, 2021 Call to order and welcome Dr. Bette Siegel, Executive Secretary of the Human Exploration and Operations Committee (HEOC), called the meeting to order, and provided details of the Federal Advisory Committee Act (FACA), which provides governance rules for the meeting. She introduced Mr. N. Wayne Hale, Chair of the HEOC. Mr. Hale noted to the public that this particular HEO meeting counts as the last meeting of 2020, and the next scheduled meeting in March/April will be the first meeting of 2021. Mr. Hale welcomed three new members, Ms. Lynn Cline, Mr. David Thompson, and Mr. Kwatsi Alibaruho. The present meeting is focused on an update on the HEO areas, and a joint meeting with the NASA Advisory Council (NAC) Science Committee. Mr. Hale asked if NAC Chair, General Lester Lyles, who was attending the meeting virtually, had any remarks to proffer.
    [Show full text]
  • HUFPI Space Policy
    Harvard Undergraduate Foreign Policy Initiative (HUFPI) US National Security Space: Maintaining US Leadership in Space with Strategic Collaboration Strategies and Implications Rohan Jakhete, Chair Qijia Zhou Syed Umar Ahmed Shane Rockett Simeon Sayer Ryan Santos George Whitford Report Spring 2021 About the Authors Rohan Jakhete ([email protected]) is an undergraduate at Harvard College pursuing a BS in Mechanical Engineering with a minor in political science. He is the policy chair for this project, the deputy director for the policy of businesses for HUFPI, the co-president of the Harvard Undergraduate Clean Energy Group, and is part of the club swim team. He has experience in national security strategy, private equity, clean energy, electro-mechanical design, and ventures. Qijia Zhou ([email protected]) is an undergraduate at Harvard College with an intended concentration in Physics and Astrophysics with a secondary in Government. She intends to pursue a career at the intersection of science and policy. She is the Vice President of the Harvard Undergraduate Ethics Bowl and a staff writer at the Harvard International Review. She is also a member of the Harvard Swimming Club and the Harvard Band. She has experience in mechanics, public speaking, science communication, and continues to pursue her interest in astrophysics research. Her focus in this paper was on US x India. Ryan Santos ([email protected]) is an undergraduate at Harvard College concentrating in History with a secondary in Economics. He has done research at Stanford University’s Empirical Studies of Conflict Program and has worked for the Fragile and Conflict-Affected Situations unit at the Asian Development Bank.
    [Show full text]
  • Outer Space in Russia's Security Strategy
    Outer Space in Russia’s Security Strategy Nicole J. Jackson Simons Papers in Security and Development No. 64/2018 | August 2018 Simons Papers in Security and Development No. 64/2018 2 The Simons Papers in Security and Development are edited and published at the School for International Studies, Simon Fraser University. The papers serve to disseminate research work in progress by the School’s faculty and associated and visiting scholars. Our aim is to encourage the exchange of ideas and academic debate. Inclusion of a paper in the series should not limit subsequent publication in any other venue. All papers can be downloaded free of charge from our website, www.sfu.ca/internationalstudies. The series is supported by the Simons Foundation. Series editor: Jeffrey T. Checkel Managing editor: Martha Snodgrass Jackson, Nicole J., Outer Space in Russia’s Security Strategy, Simons Papers in Security and Development, No. 64/2018, School for International Studies, Simon Fraser University, Vancouver, August 2018. ISSN 1922-5725 Copyright remains with the author. Reproduction for other purposes than personal research, whether in hard copy or electronically, requires the consent of the author(s). If cited or quoted, reference should be made to the full name of the author(s), the title, the working paper number and year, and the publisher. Copyright for this issue: Nicole J. Jackson, nicole_jackson(at)sfu.ca. School for International Studies Simon Fraser University Suite 7200 - 515 West Hastings Street Vancouver, BC Canada V6B 5K3 Outer Space in Russia’s Security Strategy 3 Outer Space in Russia’s Security Strategy Simons Papers in Security and Development No.
    [Show full text]
  • The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization
    American University National Security Law Brief Volume 11 Issue 2 Article 5 2021 The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization Elya A. Taichman Follow this and additional works at: https://digitalcommons.wcl.american.edu/nslb Part of the National Security Law Commons Recommended Citation Elya A. Taichman "The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization," American University National Security Law Brief, Vol. 11, No. 2 (2021). Available at: https://digitalcommons.wcl.american.edu/nslb/vol11/iss2/5 This Response or Comment is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in American University National Security Law Brief by an authorized editor of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization Elya A. Taichman* “Those who came before us made certain that this country rode the first waves of the industrial revolutions, the first waves of modern invention, and the first wave of nuclear power, and this generation does not intend to founder in the backwash of the coming age of space. We mean to be a part of it—we mean to lead it. For the eyes of the world now look into space, to the Moon and to the planets beyond, and we have vowed that we shall not see it governed by a hostile flag of conquest, but by a banner of freedom and peace.
    [Show full text]
  • The Influence of Space Power Upon History (1944-1998)*
    * The Influence of Space Power upon History (1944-1998) by Captain John Shaw, USAF * My interest in this subject grew during my experiences as an Air Force Intern 1997-98, working in both the Office of the Deputy Undersecretary of Defense for Space, and in SAF/AQ, Space and Nuclear Deterrence Directorate. I owe thanks to Mr. Gil Klinger (acting DUSD(Space)) and BGen James Beale (SAF/AQS) for their advice and guidance during my internships. Thanks also to Mr. John Landon, Col Michael Mantz, Col James Warner, Lt Col Robert Fisher, and Lt Col David Spataro. Special thanks to Col Simon P. Worden for his insight on this topic. A primary task of the historian is to interpret events in the course of history through a unique lens, affording the scholar a new, and more intellectually useful, understanding of historical outcomes. This is precisely what Alfred Thayer Mahan achieved when he wrote his tour de force The Influence of Sea Power upon History (1660-1783). He interpreted the ebb and flow of national power in terms of naval power, and his conclusions on the necessity of sea control to guarantee national welfare led many governments of his time to expand their naval capabilities. When Mahan published his work in 1890, naval power had for centuries already been a central determinant of national military power.1 It remained so until joined, even eclipsed, by airpower in this century. Space, by contrast, was still the subject of extreme fiction a mere one hundred years ago, when Jules Verne’s From the Earth to the Moon and H.G.
    [Show full text]
  • Master Thesis
    Master’s Thesis 2018 30 ECTS Department of International Environment and Development Studies Katharina Glaab Dividing Heaven: Investigating the Influence of the U.S. Ban on Cooperation with China on the Development of Global Outer Space Governance Robert Ronci International Relations LANDSAM The Department of International Environment and Development Studies, Noragric, is the international gateway for the Norwegian University of Life Sciences (NMBU). Established in 1986, Noragric’s contribution to international development lies in the interface between research, education (Bachelor, Master and PhD programmes) and assignments. The Noragric Master’s theses are the final theses submitted by students in order to fulfil the requirements under the Noragric Master’s programmes ‘International Environmental Studies’, ‘International Development Studies’ and ‘International Relations’. The findings in this thesis do not necessarily reflect the views of Noragric. Extracts from this publication may only be reproduced after prior consultation with the author and on condition that the source is indicated. For rights of reproduction or translation contact Noragric. © Robert Ronci, May 2018 [email protected] Noragric Department of International Environment and Development Studies The Faculty of Landscape and Society P.O. Box 5003 N-1432 Ås Norway Tel.: +47 67 23 00 00 Internet: https://www.nmbu.no/fakultet/landsam/institutt/noragric i ii Declaration I, Robert Jay Ronci, declare that this thesis is a result of my research investigations and findings. Sources of information other than my own have been acknowledged and a reference list has been appended. This work has not been previously submitted to any other university for award of any type of academic degree.
    [Show full text]
  • Space Weapons Earth Wars
    CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that EDUCATION AND THE ARTS helps improve policy and decisionmaking through ENERGY AND ENVIRONMENT research and analysis. HEALTH AND HEALTH CARE This electronic document was made available from INFRASTRUCTURE AND www.rand.org as a public service of the RAND TRANSPORTATION Corporation. INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND Purchase this document TERRORISM AND HOMELAND SECURITY Browse Reports & Bookstore Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. The monograph/report was a product of the RAND Corporation from 1993 to 2003. RAND monograph/reports presented major research findings that addressed the challenges facing the public and private sectors. They included executive summaries, technical documentation, and synthesis pieces. SpaceSpace WeaponsWeapons EarthEarth WarsWars Bob Preston | Dana J. Johnson | Sean J.A. Edwards Michael Miller | Calvin Shipbaugh Project AIR FORCE R Prepared for the United States Air Force Approved for public release; distribution unlimited The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003.
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • Space Warfare Text
    THE CHINESE PEOPLE’S LIBERATION ARMY AND SPACE WARFARE by Larry M. Wortzel ★ EMERGING UNITED STATES–CHINA MILITARY COMPETITION A PROJECT OF THE AMERICAN ENTERPRISE INSTITUTE pace warfare will be an integrated part of battle advocated establishing a jointly manned “aerospace Splanning by the Chinese People’s Liberation command” for India to use the missile, satellite, and Army (PLA) in any future conflict. One of the major communications capabilities of the Indian armed proponents of integrated space power for the PLA, forces effectively.6 Major General Cai Fengzhen, believes that “control U.S. security planners must monitor China’s of portions of outer space is a natural extension of efforts carefully, however, because the United States other forms of territorial control,” such as sea or air is singled out in much of the literature as the most control.1 More seriously, because of American supe- likely adversary for the PLA. The PLA has also made riority in space, China’s military theorists treat the surprisingly rapid advances in this area. United States as the most likely opponent in that The most senior and widely published author in domain of war. The head of the U.S. Army Space the Chinese military on space warfare and aerospace and Missile Defense Command, Lieutenant General doctrine, Cai Fengzhen, borrows most of his termi- Kevin Campbell, thinks it is possible that “within nology and concepts from U.S. military doctrine. three years we can be challenged at a near-peer level” Indeed, Cai credits U.S. Lieutenant General Daniel O. by China.2 This means that China will be capable of Graham and his book High Frontier with developing “taking out a number of communications capabil- the original concept.7 Cai traces the concept of ities over a theater of war.”3 expanding one’s borders directly into space to Gra- ham and his “high frontier” theory.8 Cai opines that space control is a natural extension of other forms of The Genesis of China’s Space territorial control, such as sea control or the control of Warfare Doctrine a nation’s airspace.
    [Show full text]
  • MIDDLE EAST, NORTH AFRICA UAE Expansion Into Space Yields Positive Earthly Results
    MIDDLE EAST, NORTH AFRICA UAE Expansion into Space Yields Positive Earthly Results OE Watch Commentary: The UAE has become the first Arab nation to join the race towards reaching Mars via its successful Mars probe launch and is already benefiting from this space exploration. As evident from local media in Japan, China and the UAE, kickstarting the Emirates’ space industry has enhanced mutual relations with China and will serve as an inspiration for future generations of Emirati youth to pursue “future sciences.” In July 2020, Japanese rockets helped carry the first UAE made H-IIA (Hope) probe orbiter mission to Mars. This successful rocket launch was done by a private engineering company, which has conducted other launches for various foreign countries over the years. As stated in The Japan Times, “the Emirati project is one of three racing to Mars, along with Tianwen-1 from China…, taking advantage of a period when the Earth and Mars are closest.” This is only the beginning for the UAE’s ambitious plans UAE Vice President, Mohammed Bin Rashid Al Maktoum. Source: https://commons.wikimedia.org/wiki/File:Mohammed_Bin_Rashid_Al_Maktoum_at_the_World_Economic_Forum_Summit_on_the_Global_Agenda_2008_2.jpg CCA SA for space, as they also plan to send an unarmed 2.0 Generic spacecraft to the moon in 2024. According to the Global Times China, space exploration serves to expand scientific research and diversify the UAE’s economy, which remains heavily dependent upon oil exports. Joining the UAE’s space initiatives with China’s Tianwen-1 Mars project has expanded relations between the two nations. In August 2020, Global Times China reports that the UAE Ambassador to China stated that he sees “…great potential for cooperation … [ as they move] humanity to further levels of advancement.” This cooperation centers upon the Beijing-based China Academy of Space Technology (CAST) and the UAE space agency.
    [Show full text]
  • Security in Space the Next Generation UNITED NATIONS UNITED
    UNIDIR Security in Space: The Next Generation “Security in Space: The Next Generation” is the seventh annual conference held by the United Nations Institute for Disarmament Research on the issues of space security, the peaceful uses of outer space and the prevention of an arms race in outer space. This conference looked at ways to build trust in space activities in the future as well as how THE SIMONS to move from confrontation to cooperation as a way to increase space security and improve FOUNDATION access to outer space for peaceful activities. Participants and presenters discussed the need for new international legal instruments, with specific reference to the Chinese–Russian SECURE WORLD FOUNDATION proposal for a Treaty on the Prevention of the Placement of Weapons in Outer Space, the Threat or Use of Force against Outer Space Objects. Conference Report 2008 UNITED NATIONS INSTITUTE FOR DISARMAMENT UNIDIR UNIDIRRESEARCH Security in Space The Next Generation UNITED NATIONS UNITED NATIONS Designed and printed by the Publishing Service, United Nations, Geneva GE.08-02341 — November 2008 — 3,000 — UNIDIR/2008/14 United Nations Publication Conference Report Sales No. GV.E.08.0.3 ISBN 978-92-9045-192-1 31 March –1 April 2008 UNIDIR/2008/14 Security in Space: The Next Generation Conference Report 31 March–1 April 2008 UNIDIR United Nations Institute for Disarmament Research Geneva, Switzerland New York and Geneva, 2008 About the cover Cover photograph courtesy of the National Aeronautics and Space Administration. NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]