Studies on the Spermatogenesis of Some Indian Homoptera Part II

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Spermatogenesis of Some Indian Homoptera Part II 1955 225 Studies on the Spermatogenesis of Some Indian Homoptera Part II. Chromosomes of the Sugarcane Leaf Hopper Pyrilla perpusilla Wlk (Fulgoridae) S. R. Venkatasubba Rao Department of Zoology, Birla College of Science , Pilani, India Received January 6, 1955 Introduction Our knowledge of the cytology of Fulgoridae is very fragmentary. The only work in this field is that by Boring ('07) on the spermatogenesis of three species of Poeciloptera, viz., P. septentrionalis; P. pruinosa; P. bivittata and of Amphiscapa bivittata. She recorded in all these insects an XO (_??_) type of sex chromosome mechanism. In these species the X-chromosome occupies a position removed from the autosomal bivalents on the metaphase plate of primary spermatocyte division and it lags behind the autosomes during anaphase I. She also described in P. septentrionalis and P. pruinosa the occurence of in-chromosomes. The interesting XY mechanism in two species of this family Fulgoridae, belonging to the genus Eurybrachis has already been described in a previous paper (Rao, S. R. V. 1955). In view of the interesting cytology of this family a study of Indian Fulgorid bugs was undertaken. The present paper refers to the chromosomes of Pyrilla perpusilla Wlk, the Indian sugar-cane leaf hopper. Material and methods Specimens of Pyrilla perpusilla were collected from three different localities in India viz., Mandya (South India), Delhi (North India), and Pilani (Rajasthan, North India). Collections were made during several months of the year. The testes were fixed in Bouin's (Allen's modification) and Carnoy's fluids. After the usual method of dehydration through a graded series of alcohols and embedding in paraffin, sections were cut at a thickness of 10ƒÊ. Squash preparations were also made. Sections of material fixed in Bouin's were stained with Heidenhain's iron hematoxylin. Sections of Carnoy material were stained with the Feulgen technique. Observations The testes are orange red in colour. They occur between the 4th and 7th abdominal segments. The follicles of the testis are elongated and range from 6 to 8 in number. The spermatogonia are present at the apices of the follicles and are closely 226 S. R. V. Rao Cytologia 20 packed together. The diploid chromosome number (2n) is 27 and can be easily counted on the metaphase plates of spermatogonial divisions. Of these, four chromosomes (A1, A2, A3, A4, fig. 1) are distinct ly larger than the rest of the autosomes. The sex chromosomes, however, does not exhibit any stain ing peculiarity and cannot be identified at this stage. But it becomes ap parent, being posi tively heteropycno tic, at the beginn ing of meiosis (fig. 2). As meiosis pro ceeds, there is a considerable in crease in the vol ume of the nucleus and of the cell (compare figs. 2 and 3). During the "diffuse" stage Figs. 1-10. 1. Polar view of a spermatogonial metaphase show when the nucleus ing 27 chromosomes out of which there are 4 comparatively large has reached the chromosomes (A, to A,). The X-chromosome cannot be identified. maximum size, the 2. Beginning of meiosis. The X-chromosome is condensed over sex chromosome the rest of the autosomes. 3. The 'diffuse' nucleus. The X chromosome stands out clearly as a darkly staining body. The appears as a darkly nucleolus is lightly staining and is larger than that of X. 4. The staining body while diakinetic nucleus showing the dumb-bell shaped autosomal biva the autosomes can lents. In some the chiasma still persists. The X-chromosome apears not be distinguish as a round body. 5. Metaphase I (Polar view) showing the X, distributed away from the autosomal bivalent cluster. Two large ed (fig. 3). A autosomal bivalents are recognisable (A1, A2). 6. Same (side lightly staining view). The presence of sex-chromosome is marked out by its shape nucleolus is present which is different from the characteristic dumb-bell shaped auto at this stage, but somal bivalents. The X-chromosome is attached to only one pole (compare the spindle fibre on either side of the X-chromosome). disappears at the 7. Anaphase I (side view). The X-chromosome is lagging on the onset of diskinesis. spindle. 8. Telophase I. (side view). The X-chromosome is still on its poleward movement. 9 and 10. Metaphase II (polar views) During diskinesis showing 13 and 14 chromosomes. the autosomes are 1955 Studies on the Spermatogenesis of Some Indian Homoptera 227 dumb-bell shaped while the sex-chromosome is rounded body . The terminal isation of the chiasmata is not complete in all the bivalents (fig . 4). How ever, by the time metaphase I is reached, all the chiasmata become com pletely terminalised. On the metaphase plate whereas the autosomal bivalents form a cluster, the sex-chromosome occupies a position outside the autosome bivalents (fig. 5). Careful observation of the spindle fibres reveals that the sex-chromosome is attached to one pole only. This is further substantiated by the fact that while continuous fibres of a uniform thickness run from one pole to the other, in the case of the sex-chromosome only on one side there appears a thick fibre, while on the opposite side the fibre is very thin (fig. 6). The fine fibre is obviously a continuous one while the thicker fibre is the sex chromosomal fibre superimposed on the continuous fibre. In anaphase I (fig. 7), the autosomes are seen to be very near the pole while the sex-chromosome still occupies a position near the equator. In early telophase (fig. 8), the sex-chromosome has not yet reached the pole while the autosomes have clustered at the pole. The sex-chromosome occurs as a dis tinct darkly staining body outside the assemblage of the autosomes. An examination of the metaphase plates of second division shows that there are two types of secondary spermatocytes. In some there are 13 dyads while in other there are 13 dyads plus the sex-chromosome (figs. 9 and 10). Conclusions The present study reveals a close resemblance between the spermato genesis of P. perpusilla and that in the species described by Boring ('07). The metaphases of spermatogonial divisions in all the species described by Boring ('07) and also in Pyrilla perpusilla show the presence of a few chromosomes larger than the others. Secondly, the species described by Boring and the one described in this paper show the peculiar behaviour of the sex-chromosome occupying a position outside the group of autosomal bivalents in metaphase I, and its special quality of lagging behind the rest of the autosomes. But unlike, Boring's species there is no rn-chromosome in Pyrilla perpusilla. The above study throws interesting light on the taxonomy of Indian species of Pyrilla. Three species of Pyrilla have been described from India, P. perpusilla Wlk, P. pusana Dist and P. aberrans Kirby and were con sidered morphologically distinct by Distant ('06, '16), LeFroy ('09) and Quadri and Aziz ('50). Recent breeding experiments by Mukerji and Prased ('54) have shown that these three should be considered as varieties of a single species. My collection of animals coming from three different localities would lead me to the same conclusion. There were no cytological differences among them and it is perhaps correct to regard them as belonging to a single species. 228 S. R. V. Rao Cytologia 20 Summary 1. The diploid number in the male species is 27 (26 autosomes plus X-chromosome). 2. The X-chromosome is always outside the group of autosomes. A distinct tendency for lagging in anaphase I is noticed in the X-chromosome. 3. The presence of large autosomes (macrochromosomes) is recorded. 4. A brief discussion on the systamatics of Pyrilla is given. Acknowledgement The work was done under the guidence and encouragement of Prof. M. A. Moghe, Professor and Head of the Department of Zoology, Birla College of Science, Pilani, to whom I am indebted. I am also indebted to Prof. B. R. Seshachar, Professor and Head of the Department of Zoology, Central College, Bangalore, for help at different stages of my work. My thanks are also due to Dr. M. Puttarudraiah (Government Entomologist, Department of Agriculture, Bangalore) and Mr. B. R. Subba Rao (Division of Entomology, Indian Agricultural Research Institute, New Delhi), for their kind help in the collection of material. References Boring, A. M. 1907. A study of spermatogenesis in the Membracidae, Jassidae, Cercopidae, Fulgoridae with special reference to the behaviour of the odd chromosome. Jour. Exp. Zool. 4: 469-512. Distant, W. L. 1906. Fauna of British India, Rhynchota, 3. - 1916. Fauna of British India, Rhynchota, 6. LeFroy, H. M. 1909. Indian Insect life. Thacker, Spink, Co., London. Makino, S. 1951. An atlas of chromosome number in animals. Iowa Coll. Press. Mukerji, S and Prased, V. G. 1954. The present systematic position of the sugarcane leaf hopper-Pyrilla perpu-silla Wlk. Curr. Sci. 23: 193-194. Quadri, M. A. H, and Aziz, A. 1950. Biology, life-history and external and internal anatomy of Pyrilla perpu.silla Walker. Monographs. On Indian Insect types. (Aligaran, Muslim University Publication-Zoological series). Rao, S. R. V. 1955. Studies on the spermatogenesis of Indian Homoptera. I. Meiosis in two species of Eurybraehis (Fulgoridae). Chromosoma, 7: 170-180..
Recommended publications
  • Biodiversity of Insects Associated with Rice ( Oryza Sativa L.) Crop Agroecosystem in the Punjab, Pakistan
    Biodiversity of insects associated with rice ( Oryza sativa L.) crop agroecosystem in the Punjab, Pakistan By MUHAMMAD ASGHAR M.Sc. (Hons.) Agricultural Entomology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Agricultural Entomology FACULTY OF AGRICULTURE UNIVERSITY OF AGRICULTURE, FAISALABAD PAKISTAN 2010 1 To The Controller of Examinations, University of Agriculture, Faisalabad. We, the Supervisory Committee, certify that the contents and form of thesis submitted by Mr. Muhammad Asghar, Regd. 92-ag-1261 have been found satisfactory and recommend that it be processed for evaluation by the External Examiner (s) for the award of degree. SUPERVISORY COMMITTEE 1. CHAIRMAN: ………………………………………………. (DR. ANJUM SUHAIL) 2. MEMBER ………………………………………………. (DR. MUHAMMAD AFZAL) 3. MEMBER ……………………………………………….. (DR. MUHAMMAD ASLAM KHAN) 2 DEDICATED To My Affectionate Parents Loving Brothers, Sisters and Wife 3 ACKNOWLEDGEMENTS All praises are for “Almighty Allah” who is the creator of this multifaceted and beautiful universe. I consider it as my foremost duty to acknowledge the omnipresent kindness and love of Almighty Allah who made it possible for me to complete the writing of this thesis. I think it is also my supreme obligation to express the gratitude and respect to Holy Prophet Hazrat Muhammad (SAW) who is forever a torch of guidance and knowledge for humanity as a whole. How honourable it is to offer my cordial gratitude to my worthy supervisor and supervisory committee, Prof. Dr. Anjum Suhail; Dr. Muhammad Afzal, Department of Agri. Entomology and Prof. Dr. Muhammad Aslam Khan, Department of Plant Pathology, University of Agriculture, Faisalabad, for their constant interest, valuable suggestions, inspirational guidance and encouragement throughout the course of my studies.
    [Show full text]
  • Pyrilla Perpusilla): Distribution, Life Cycle, Nature of Damage and Control Measures
    Pest of Sugarcane (Pyrilla perpusilla): Distribution, Life cycle, Nature of damage and Control measures Distribution Pyrilla perpusilla commonly known as Sugarcane plant hopper is mainly found is Asian countries like Afghanistan, Bangladesh, Burma, Cambodia, India, Indonesia, Nepal, Pakistan, South China, Sri Lanka, Thailand, and Vietnam. The original host of P. perpusilla is not known but it has been recorded feeding and reproducing on a wide range of species of Gramineae, Leguminae and Moraceae families. Identification of Pyrilla perpusilla Adult Pyrilla perpusilla is a pale tawny-yellow, soft-bodied insect with head prominently drawn forward to form a snout. The wingspan of males is 16 - 18 mm and 19 - 21 mm for females. Females have cretaceous threads called anal pads, arranged as bundles on terminal segment. The fore wings are semi-opaque in nature, with yellow-brown color. The fore wings are lightly covered with minute black spots. Both adults and nymphs are very active and suck sap from the leaves of sugarcane. On the slightest disturbance, they jump from leaf to leaf. Lifecycle or Pyrilla perpusilla Egg: Females lay eggs on the lower, shady and concealed side of the leaves near the midrib. Eggs are laid in clusters of 30-40 in number in rows of 4-5. They are covered by pale waxy material. Eggs are oval-shaped, pale whitish to bluish green when laid and turn brown just before hatching. A female lays 600 - 800 eggs in her lifetime. Nymph: Nymph passes through five nymphal instar stages to reach adult stage. The following table gives
    [Show full text]
  • 1. Maize Shootfly: Atherigona Orientalis (Muscidae: Diptera)
    Lecture No 4 PESTS OF MAIZE AND WHEAT I. PEST OF MAIZE More than 130 insects have been recorded causing damage to maize in India. Among these, about half a dozen pests are of economic importance. Shoot fly, borers, shoot bug and aphid, polyphagous pest like cornworm cause considerable yield reduction in maize. Major pests 1. Maize shootfly Atherigona orientalis Muscidae Diptera 2. Stem borer Chilo partellus Crambidae Lepidoptera 3. Pink stem borer Sesamia inferens Noctuidae Lepidoptera 4. Cornworm/ Earworm Helicoverpa armigera Noctuidae Lepidoptera 5. Web worm Cryptoblabes gnidiella Pyraustidae Lepidoptera 6. Aphid Rhopalosiphum maidis Aphididae Hemiptera 7. Shoot bug Peregrinus maidis Delphacidae Hemiptera Minor Pests 8. Climbing Mythimna separata Noctuidae Lepidoptera cut worm 9. Ash weevil Myllocerus sp., Curculionidae Coleoptera 10. Phadka grasshopper Hieroglyphus Acrididae Orthoptera nigrorepletus 11. Leafhopper Pyrilla perpusilla Lophopidae Hemiptera Major pests 1. Maize shootfly: Atherigona orientalis (Muscidae: Diptera) Distribution and status Uttar Pradesh, Andhra Pradesh, Tamil Nadu, Maharashtra, Karnataka. Host range: Maize, sorghum, ragi and bajra Damage symptoms The maggot feeds on the young growing shoots resulting in “dead hearts”. Bionomics: Small grey coloured fly. Management • Grow resistant cultivars like DMR 5, NCD, VC 80 • Furrow application of phorate granules 10 G 10 kg/ha (or) lindane 6 G 25 kg per ha 2. Stem borer: Chilo partellus (Crambidae: Lepidoptera) Distribution and status India, Pakistan, Sri Lanka, Indonesia, Iraq, Japan, Uganda, Taiwan, Sudan, Nepal, Bangladesh and Thailand. Host range: Jowar, bajra, sugarcane and rice Damage symptoms It infests the crop a month after sowing and upto emergence of cobs. Central shoot withering leading to “dead heart” is the typical damage symptom.
    [Show full text]
  • Integrated Pest Management Package for Leafhoppers and Planthoppers (Insecta: Hemiptera) in Paddy Fields
    Journal of Agricultural Science and Engineering Vol. 6, No. 3, 2020, pp. 26-37 http://www.aiscience.org/journal/jase ISSN: 2381-6821 (Print); ISSN: 2381-6848 (Online) Integrated Pest Management Package for Leafhoppers and Planthoppers (Insecta: Hemiptera) in Paddy Fields Muhammad Sarwar * National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan Abstract The aim of the present article is to shed light on the current status, species composition, abundance, habitat affinities, distribution patterns of leafhoppers and planthoppers along with their integrated pest management (IPM) in the rice growing regions. Leafhoppers and planthoppers such as white rice leafhopper ( Cofana spectra Distant), brown planthopper (Nilaparvata lugens Stal), whitebacked planthopper [ Sogatella furcifera (Horvath)], green planthoppers [Nephotettix nigropictus (Stal)] and Nephotettix virescens (Distant), and lophopid leafhopper (Pyrilla perpusilla Walker) are sap feeders from the xylem and phloem tissues of the plant. Both adults plus nymphs of leafhoppers and planthoppers have piercing mouthparts that they insert into the leaf blades and leaf sheaths of rice plants to suck sap, and egg laying by hoppers blocks the water and food channels inside the plant. Severely damaged plants become dry and take on the brownish appearance as these have been damaged by fire, hence termed as hopper burn and at this level, crop loss may be 100%. The Integrated Pest Management (IPM) philosophies are growing a healthy crop by conserving of natural
    [Show full text]
  • Pyrilla the Sugarcane Leafhopper, Pyrilla Perpusilla Walker
    IPM Package of Practices for Management of Sugarcane Leaf hopper/ Pyrilla The sugarcane Leafhopper, Pyrilla perpusilla Walker (Lophopidae: Homoptera), commonly known as Indian sugarcane leafhopper, is one of the most destructive pests, and widely distributed in India including in Bihar, Haryana, Uttar Pradesh, Punjab, and Madhya Pradesh than in peninsular India. It is a threat to Indian sugar industry and a serious pest, causing 31.6% reduction in cane yield and 2-3% reduction in sugar recovery if not properly managed. Life cycle of Sugarcane Pyrilla Egg: The female Pyrilla lays eggs during day time, on the abaxial surface of the leaves along the midrib and it prefers a lower, shady and concealed side of leaves near midrib for oviposition. They are deposited in four to five rows (30-40 numbers/cluster) and are covered with a waxy thread-like material secreted by the female. During the winter, eggs are laid on the inside of the base of the leaf sheath, giving some protection from adverse climatic conditions. The females usually lay white to greenish yellow eggs which are 0.9-1.0 mm long and 0.45-0.64 mm wide. The interval between each laying during April-October is 2-6 days, 7-25 days during November-December and 57-126 days during November-January. Twenty to fifty eggs are laid at a time, with a life-time fecundity of 600-800. The incubation period varies with season, ranging from 6 to 30 days. Eggs mass of Pyrilla Nymph: Newly emerged nymphs are 0.8-1.0 mm long and 0.54-0.64 mm wide, milky white in colour and pass through five instars, each occupying 7-41 days with a maximum total nymphal period of 134 days, to become adult.
    [Show full text]
  • Doctor of Philosophy Agricultural Entomology
    INTEGRATED PEST MANAGEMENT OF SUGARCANE PYRILLA, Pyrilla perpusilla WLK. (HOMOPTERA : LOPHOPIDAE) IN PUNJAB, PAKISTAN By Amer Rasul 94-ag-1212 M.Sc. (Hons.) Agri Entomology Thesis submitted in partial fulfillment of requirements for the degree of DOCTOR OF PHILOSOPHY IN AGRICULTURAL ENTOMOLOGY DEPARTMENT OF AGRICULTURAL ENTOMOLOGY UNIVERSITY OF AGRICULTURE, FAISALABAD PAKISTAN 2011 i The Controller of Examinations, University of Agriculture, Faisalabad. We, supervisory committee certify that contents and form of thesis submitted by Mr. Amer Rasul (94-ag-1212) have been found satisfactory and recommend that it may be processed for evaluation by external examiner(s) for the award of degree. SUPERVISORY COMMITTEE CHAIRMAN _______________________________ (DR. MANSOOR UL HASAN) MEMBER _______________________________ (DR. ANJUM SUHAIL) MEMBER _______________________________ (DR. SHAHBAZ TALIB SAHI) ii Dedicated To My Beloved Parents ACKNOWLEDGEMENTS I am indebted to the ALMIGHTY ALLAH, the propitious, the benevolent and the sovereign, whose blessing and glory flourished my thoughts and thrived my ambitions, giving me talented teachers, affectionate parents, sweet sisters and caring brothers. Trampling lips and wet eyes praise the HOLY PROPHET MUHAMMAD (Peace be upon him), for enlightening our conscience with the essence of faith in ALLAH, converging all His kindness and mercy upon him. With profound gratitude and a deep sence of devotion, I wish to thank my worthy supervisor, Dr. Mansoor-ul-Hassan, Professor, Department of Agri. Entomology, University of Agriculture, Faisalabad, for his co-operative/encouraging attitude, utilizing help, keen interest, valuable comments and guidance throughout the course of this study. I do not find appropriate words to express my deep gratitude to my sincere and respectable teachers: Dr.
    [Show full text]
  • Occurrence of Fulgoraecia (= Epiricania) Melanoleuca
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Short Communication Occurrence of Fulgoraecia (= Epiricania) melanoleuca (Lepidoptera: Epipyropidae) as a parasitoid of sugarcane lophopid planthopper Pyrilla perpusilla in Tamil Nadu (India) with brief notes on its life stages H. Sankararaman, G. Naveenadevi & S. Manickavasagam 26 May 2020 | Vol. 12 | No. 8 | Pages: 15927–15931 DOI: 10.11609/jot.5033.12.8.15927-15931 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors.
    [Show full text]
  • Microbial Associates of the Asian Citrus Psyllid and Its Two Parasitoids: Symbionts and Pathogens
    MICROBIAL ASSOCIATES OF THE ASIAN CITRUS PSYLLID AND ITS TWO PARASITOIDS: SYMBIONTS AND PATHOGENS By JASON MICHAEL MEYER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 © 2007 Jason Michael Meyer 2 I dedicate this dissertation to my loving wife, Jennifer Lee Meyer. 3 ACKNOWLEDGMENTS Foremost, I thank my advisor and chair of my graduate committee, Dr. Marjorie A. Hoy, for her professional advice, scientific guidance and financial support. I also thank the other members of my graduate committee, Dr. John L. Capinera, Dr. James J. Becnel, and Dr. Eric W. Triplett for their contributions to my research proposal, preparing my qualifying examination and reviewing this dissertation. Additional recognition goes to Dr. Becnel and his laboratory for providing training in electron microscopy and assisting with a class project. I thank Dr. Drion G. Boucias for his instruction and collaboration on projects involving entomopathogenic fungi. Much appreciation is held for Dr. A. Jeyaprakash for his technical advice and assistance with phylogenetics. I acknowledge Lucy Skelley and Reggie Wilcox for their contributions involving insect rearing. Raguwinder Singh is thanked for his efforts during field collection of psyllids. Verena Bläske is acknowledged for her technical assistance with scanning electron microscopy. I thank Vernon Damsteegt for providing psyllids infected with the citrus greening pathogen and Micki Kuhlmann for extracting DNA from these psyllids. I thank Jennifer Zaspel for providing theoretical guidance pertaining to phylogenetic analyses. Heather McAuslane and Karla Addesso are thanked for statistical advice.
    [Show full text]
  • Ajay Kumar Tiwari Editor Advances in Seed Production and Management Advances in Seed Production and Management Ajay Kumar Tiwari Editor
    Ajay Kumar Tiwari Editor Advances in Seed Production and Management Advances in Seed Production and Management Ajay Kumar Tiwari Editor Advances in Seed Production and Management Editor Ajay Kumar Tiwari UP Council of Sugarcane Research Shahjahanpur, Uttar Pradesh, India ISBN 978-981-15-4197-1 ISBN 978-981-15-4198-8 (eBook) https://doi.org/10.1007/978-981-15-4198-8 # Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
    [Show full text]
  • Feeding Efficacy of Pardosa Pseudoannulata (Bosenberg & Strand, 1906) and Neoscona Mukerjei Tikader, 1980, Predominant Spiders of Rajasthan
    Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 5 [3] February 2016: 85-88 ©2016 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal’s URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.533 Universal Impact Factor 0.9804 ORIGINAL ARTICLE OPEN ACCESS Feeding Efficacy of Pardosa pseudoannulata (Bosenberg & Strand, 1906) And Neoscona mukerjei Tikader, 1980, Predominant Spiders of Rajasthan Vinod Kumari, Kailash Saini and N P Singh Department of Zoology, University of Rajasthan,Jaipur-302004 ABSTRACT Spiders keep the pest population under check in the cultivated crops, therefore they can be used as biological control agent. Knowledge of actual diet for a particular species of spider is a primary requisite before the impact of spider predation on arthropod communities can be correctly assessed. So, the present study was conducted on two prominent predatory spider species of Rajasthan, Pardosa pseudoannulata (Bosenberg & Strand, 1906) and Neoscona mukerjei Tikader, 1980, which were recorded throughout the data collection. Their feeding potential against Pyrilla perpusilla and Drosophilla melanogaster was observed under the laboratory conditions at Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India. The overall consumption of P. perpusilla within 24 hours was found to be 5.21±0.38 and 3.97±0.42 by P. psuedoannulata and N. mukerjei, respectively. Whereas the average number of D. melanogaster larvae consumed by P. psuedoannulata and N. mukerjei was recorded to be 4.32±0.28 and 5.10±0.35, respectively in 24 hours. The results of the present study, therefore revealed that P.
    [Show full text]
  • RAPID MEANS of SCREENING for RESISTANCE to PESTS in a SUGARCANE PLANT BREEDING SELECTION PROGRAMME by Cindy Moon Submitted in Fu
    RAPID MEANS OF SCREENING FOR RESISTANCE TO PESTS IN A SUGARCANE PLANT BREEDING SELECTION PROGRAMME By Cindy Moon Submitted in fulfilment of the requirements for the degree of Master of Science in Plant Pathology School of Agricultural, Earth and Environmental Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg, South Africa July, 2014 DISSERTATION SUMMARY Chilo partellus (Lepidoptera: Crambidae) and Chilo sacchariphagus (Lepidoptera: Crambidae) are two stem borers which pose a threat to the South African sugar industry at present. The reliable supply of good quality insects for host-plant resistant studies is vital. The techniques used at the South African Sugar Research Institute (SASRI) for establishing and maintaining C. partellus colonies were described because these insects are vital in host-plant resistance research. Sugarcane agro- ecosystems in KwaZulu-Natal were surveyed for C. partellus, and species confirmation took place using cytochrome oxidase I subunit barcoding. A neighbor- joining tree showing Chilo phylogeny supported the concept of using C. partellus as a surrogate insect for C. sacchariphagus for host-plant resistant screening studies in South Africa. Artificial diets were developed to optimize insect growth and reproduction and to meet or exceed the nutritional requirements of the target insect. Experiments were conducted to test different diets, with the incorporation of various ingredients, and the use of different inoculation and rearing methods. Vials that were inoculated with two neonate larvae each gave greater mean larval weights and larval survival percentages compared to the multicell trays and plastic jars. An improved artificial diet for rearing C. partellus was established incorporating non-fat milk powder (2.35% m/v) and whole egg powder (1.75% m/v).
    [Show full text]
  • Influence of Weather Factors on Fluctuation of Pyrilla Perpusilla Walker Population in Sugarcane
    Int.J.Curr.Microbiol.App.Sci (2018) Special Issue-7: 153-157 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-7 pp. 153-157 Journal homepage: http://www.ijcmas.com Original Research Article Influence of Weather Factors on Fluctuation of Pyrilla perpusilla Walker Population in Sugarcane Ranju Kumari, Hari Chand* and Sudhir Paswan Department of Entomology and Statistics, Sugarcane Research Institute, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur (Bihar) – 848125, India *Corresponding author ABSTRACT In order to determine the role of weather factors viz., maximum, minimum temperature (0C), relative humidity (%) at 07 hrs. and 14 hrs. and rainfall (mm) in fluctuating Pyrilla perpusilla Walker population, a field experiment was conducted at Pusa Farm, Sugarcane Research Institute, Dr. Rajendra Prasad Central Agricultural University, Pusa – 848125 Samastipur (Bihar). The experiment was during cropping season of 2016-17 with midlate variety BO 91 planted in the month of February, 2016 in 0.5 hectare. The severe occurrence of egg, nymph and adult population of pyrilla were observed in August, 2016 and their peak K e yw or ds being 6.6 egg masses, 5.3 nymphs and 21adults/leaf of sugarcane when corresponding 0 Weather weather parameters viz. maximum and minimum temperature ( C), relative humidity (%) at factors, 07 hrs. and 14 hrs. and rainfall (mm) were 34, 24.2, 85, 65 and 3.4, respectively. It indicates Fluctuation, from the results that the temperature (maximum and minimum) showed significant positive Pyrilla correlation with population of egg masses, nymphs and adults, while relative humidity showed (07 hrs.) negative correlation but statistically was non-significant with egg masses pe rpusilla and Sugarcane and nymphs except adults.
    [Show full text]