Is Cronobacter Sakazakii Infection Possible in an Exclusively Breastfed Premature Neonate in the Neonatal Intensive Care Unit?

Total Page:16

File Type:pdf, Size:1020Kb

Is Cronobacter Sakazakii Infection Possible in an Exclusively Breastfed Premature Neonate in the Neonatal Intensive Care Unit? Journal of Perinatology (2014) 34, 408–409 & 2014 Nature America, Inc. All rights reserved 0743-8346/14 www.nature.com/jp PERINATAL/NEONATAL CASE PRESENTATION Is Cronobacter sakazakii infection possible in an exclusively breastfed premature neonate in the neonatal intensive care unit? S Ravisankar1, SS Syed2, P Garg1 and J Higginson1 Cronobacter species are Gram-negative rods that may cause life-threatening infections in neonates and infants. They belong to the family of Enterobacteriaceae. The first case was published in 1961 in England and about 150 cases have been reported thus far in the literature. The worst form of infection results in meningitis, leaving survivors with devastating neurological sequelae. We present the case of a premature neonate who was exclusively gavage fed with non-fortified breast milk and developed culture positive sepsis for Cronobacter sakazakii with clinical signs of meningitis at 18 days of life. She had a very traumatic course and survived the illness, but questions remain as to how she obtained this infection and her future neurodevelopmental outcomes. Journal of Perinatology (2014) 34, 408–409; doi:10.1038/jp.2014.14 Keywords: Cronobacter sakazakii; Enterobacter sakazakii; premature neonate; breast milk INTRODUCTION added for suspected meningitis. The workup was consistent with Urmenyi, et al.1 described the first two neonatal cases in 1958 in sepsis and cerebrospinal fluid (CSF) showed leukocytosis, increased England. They were born at 38 and 32 weeks gestation, developed protein and low glucose. Her blood culture grew Enterobacter meningitis and died shortly later. Autopsies from both patients species at 18 h, which was later classified as Cronobacter sakazakii revealed similar findings—swollen cerebral hemispheres with the pan sensitive to all antibiotics on the testing panel. Head US showed white matter transformed into a soft hemorrhagic mass. The abnormal brain with a hemorrhagic infarct in the right periven- organism was identified as pigmented Cloaca or Aerobacter cloacae, tricular white matter. Two weeks later magnetic resonance imaging a Gram-negative non-encapsulated rod of the coli aerogenous group. (MRI) of the brain revealed extensive signal abnormalities in the By 1980, a new name, Enterobacter sakazakii, was proposed based on cerebral hemispheres consistent with severe meningoencephalitis, the differences between E. sakazakii and E. cloacae in DNA–DNA with an area in the right cerebral hemisphere showing fluid hybridization, biochemical reaction and production of yellow worrisome for a brain abscess versus cystic encephalomalacia pigment.2 In 2007, Iversen et al.3 reclassified these bacteria into a (Figure 1). Antibiotic therapy was switched to meropenem for new genus called Cronobacter. Currently seven species4 have been 28 days and gentamicin for 21 days per Infectious Diseases. identified, including C. sakazakii, C. malonaticus, C. turicensis, Head computerized tomography (Figure 2) 2 weeks later showed C. muytjensii, C. dublinensis, C. condiment and C. universalis. extensive edematous changes in the right cerebral hemisphere with a cystic-appearing lesion occupying most of the area. During the acute phase of illness, she required extensive hemodynamic and CASE ventilatory support. The family was fully aware of the patient’s condition and possible outcomes. The baby survived and was We present a 27-week premature neonate born by spontaneous discharged with outpatient palliative care. However, she was vaginal delivery to a 28-year-old G2 P2 mother. Pregnancy was readmitted 3 weeks later due to massive increase in head complicated by history of gonococcal and chlamydial infections and circumference and a ventriculoperitoneal shunt was placed. onset of premature labor. The mother received two doses of betamethasone and three doses of ampicillin before delivery. The neonate was assigned Apgar scores of 5, 6 and 7 at 1, 5 and 10 min, respectively and placed on continuous positive airway pressure DISCUSSION (CPAP) on admission. Birth weight was 1.140 kg, which was Cronobacter sakazakii is a motile peritrichous Gram-negative rod.5 appropriate for gestational age and admission clinical exam was It is an emerging opportunistic human pathogen and the normal. She remained stable with negative initial head ultrasound etiological agent of life-threatening bacterial infections in infants (US), negative blood cultures at 48 h and was weaned off CPAP to and premature neonates, with those weighing less than 2.5 kg room air on day of life 11. She was supported with total parenteral being most susceptible.6 Meningitis, necrotizing enterocolitis and nutrition and trophic feeds with breast milk were started on day of sepsis are the most commonly reported consequences of the life 9. She suddenly deteriorated on day of life 18 with increasing infection.6 Since the index case in 1958, about 150 cases have lethargy, new onset of apneas, bulging anterior fontanel and been reported in the literature in neonates and infants.7 The abdominal distension. Full septic workup was initiated and she was natural environment of Cronobacter is not known, but it has been started on intravenous nafcillin and gentamicin. She was intubated isolated from many sources6—infant formula, cheese, cereal, due to worsening acidosis and apneas. The following morning, she meats and so on. Consumption of contaminated powdered infant started seizing and a lumbar puncture was done. Cefotaxime was formula has been epidemiologically linked to several clinical cases 1Department of Pediatrics, East Carolina University, Greenville, NC, USA and 2Department of Pediatrics, East Carolina University, Vidant Medical Center, Greenville, NC, USA. Correspondence: Dr SS Syed, Department of Pediatrics, East Carolina University, Vidant Medical Center, Medical Annex – Suite 229, Greenville, NC 27834, USA. E-mail: [email protected] Received 17 July 2013; revised 18 October 2013; accepted 6 January 2014 C. sakazakii infection in a breastfed neonate S Ravisankar et al 409 this population concluded that C. sakazakii infection is very rare and is outside of epidemic proportions.9 Review of the literature reveals that no exclusively breastfed infants have been reported to have C. sakazakii infections. We present the case of a 27-week premature infant who was gavage fed breast milk without fortification and suddenly deterio- rated to develop sepsis and meningitis evidenced by the positive blood culture and extensive caseation of the brain parenchyma as seen on MRI. Although most neonates will have positive CSF cultures, our patient had two negative CSF cultures (including an anterior fontanel aspirate) despite significant pleocytosis. Despite initiating early appropriate antibiotic therapy, our neonate suffered extensive residual damages from the infection. Though rare, it is well understood that C. sakazakii meningitis results in severe encepha- lomalacia resulting in ventriculitis, hydrocephalus, seizure disorders, sensorineural hearing loss, cerebral palsy and global development delays amongst survivors and has a high mortality rate of 40 to 80%.10 Recent literature reveals evidence of stored breast milk being contaminated11 and the possibility of colonization of feeding tubes12 by forming biofilms with C. sakazakii. In our patient, we tested the mother’s breast milk and it was negative for any con- tamination or infection. Therefore C. sakazakii should also be considered in premature neonates who are exclusively breastfed. Figure 1. Brain magnetic resonance imaging showing extensive CONCLUSION signal abnormalities at the cerebral hemispheres, right greater than The source of contamination for the onset of infection in this left. Right cerebral hemispheres having a large area measuring 3 premature neonate who was exclusively breastfed remains unknown, 3.3 Â 7.5 Â 4.8 cm with central signal characteristics suggestive of thus warranting more research to understand its environment and fluid is worrisome for brain abscess versus cystic encephalomalacia. mode of transmission of this infection which is devastating in premature infants. CONFLICT OF INTEREST The authors declare no conflict of interest. REFERENCES 1 Urmenyi AM, Franklin AW. Neonatal death from pigmented coliform infection. Lancet 1961; 1: 313–315. 2 Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 2012; 113:1–15. 3 Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 2007; 7: 64. 4 Cetinkaya E, Joseph S, Ayhan K, Forsythe S. Comparison of methods for the microbilogical identification and profiling of Cronobacter species from ingredients used in the preparation of infant formula. Mol Cell Probes 2013; 27: 60–64. 5 Nazarowec-White M, Farber JM. Enterobacter sakazakii: a review. Int J Food Microbiol 1997; 34: 103–113. 6 Hunter CJ, Bean JF. Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J Perinatol 2013; 33: 581–585. 7 Friedemann M. Epidemiology of invasive
Recommended publications
  • Is It Essential to Sequence the Entire 16S Rrna Gene for Bacterial
    » INSTRUMENTATION » Is it Essential to Sequence Introduction Bacterial Identification in the biopharmaceutical industry, especially in the Entire 16S rRNA Gene manufacturing facilities, is very important because an occurrence of a problematic microorganism in the final product could be harmful for the end user and detrimental to a company’s finances and reputation. for Bacterial Identification? Environmental Monitoring (EM) programs are the cornerstone of understanding the microbial ecology in a manufacturing facility and have become a regulatory requirement for most manufacturers. The EM program is a biological surveillance system which enables companies to quickly identify organisms which are transient or resident in their facilities before these organisms have an opportunity to contaminate a product. A properly executed EM program provides an early warning of potential contamination problems due to Sunhee Hong, PhD and equipment failure, inadequate cleaning, or deficiencies in staff hygiene Christine E. Farrance, PhD training, for example, so that problems can be corrected to prevent Charles River adulteration of the end product. The Food and Drug Administration (FDA) has published guidelines for the production of sterile drugs by aseptic processing which includes a section on EM programs, and the USP general information chapter “Microbiological Control and Monitoring of Aseptic Processing Environments” also contains detailed information regarding EM programs1. The EM program is only effective if the organisms recovered from the facility are accurately identified, so the information gathered can be used to understand the microbial control through tracking and trending and dictate appropriate remediation activities. There are several different options available for bacterial identification; however, the use of 16S rRNA gene sequences has been considered the most powerful and accurate tool, while conventional phenotypic methods often show major weaknesses2-5.
    [Show full text]
  • CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction
    Diversity and virulence of the genus Cronobacter revealed by multilocus sequence typing (MLST) and comparative genomic analysis Susan Manju Joseph A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2013 Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Susan Manju Joseph ACKNOWLEDGEMENTS I would like to express my immense gratitude to my supervisor Prof. Stephen Forsythe for having offered me the opportunity to work on this very exciting project and for having been a motivating and inspiring mentor as well as friend through every stage of this PhD. His constant encouragement and availability for frequent meetings have played a very key role in the progress of this research project. I would also like to thank my co-supervisors, Dr. Alan McNally and Prof. Graham Ball for all the useful advice, guidance and participation they provided during the course of this PhD study.
    [Show full text]
  • Taqman® Cronobacter Sakazakii Detection
    Applied Biosystems Food Pathogen Detection System TaqMan ® Cronobacter sakazakii Detection Kit Simple, reliable, and rapid detection TaqMan® Pathogen Detection Kits • Cronobacter sakazakii • Salmonella enterica • Campylobacter jejuni • E. coli O157:H7 • Listeria monocytogenes • Pseudomonas aeruginosa • Staphylococcus aureus An Infant Formula Contaminant Real-Time PCR Delivers Detect E. sakazakii Faster Cronobacter sakazakii is a pathogen The TaqMan Cronobacter sakazakii A number of tests are currently mostly associated with powdered Detection Kit uses proven real-time available that identify Cronobacter infant formula, causing seizures, brain PCR technology designed to provide: sakazakii based on phenotypic and abscesses, developmental delay, and biochemical methods. However, • Highly selective identification of even death in infants with premature because of isolates that may escape Cronobacter sakazakii in a wide variety infants and newborns at greatest risk. identification with these methods, faster, of food and finished product samples It is therefore extremely important more reliable methods are needed. that infant formula be tested prior to • Verified performance The TaqMan® Cronobacter sakazakii release to the marketplace. It is currently Detection Kit offers such an alternative. • Ready-to-use convenience unknown how many organisms will cause infection, thus a highly specific • Reduced risk of contamination product testing method is necessary to determine the presence of Cronobacter sakazakii. Rely on Applied Biosystems Use a Complete
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Redalyc.Prevalence and Identification by Multiplex Polymerase Chain Reaction Patterns of Cronobacter Spp. Isolated from Plant
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil AKSU, Filiz; SANDIKÇI ALTUNATMAZ, Sema; ISSA, Ghassan; ÖZMEN TOGAY, Sine; AKSU, Harun Prevalence and identification by multiplex polymerase chain reaction patterns of Cronobacter spp. isolated from plant-based foods Ciência e Tecnologia de Alimentos, vol. 36, núm. 4, octubre-diciembre, 2016, pp. 730-736 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395949545024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative a ISSN 0101-2061 Identification of Cronobacter isolated from foodstuff Food Science and Technology DDOI http://dx.doi.org/10.1590/1678-457X.16916 Prevalence and identification by multiplex polymerase chain reaction patterns of Cronobacter spp. isolated from plant-based foods Filiz AKSU1*, Sema SANDIKÇI ALTUNATMAZ1, Ghassan ISSA2, Sine ÖZMEN TOGAY3, Harun AKSU4 Abstract Cronobacter spp. involves a group of opportunistic pathogens that cause meningitis in newborns, immunosuppressed individuals with a mortality rate of 50-80%. Seven species like C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, C. condimenti are included in this genus which has been a subject of research especially in the bacteriologic analysis of baby foods. However, since these species were detected also in prepared foodstuffs. The objective of this study was to assert the presence of Cronobacter spp.
    [Show full text]
  • Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species Where C. Sakazakii Homologs Follow Sequence Type Lineages
    microorganisms Article Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species where C. sakazakii Homologs Follow Sequence Type Lineages Samantha Finkelstein, Flavia Negrete, Hyein Jang, Jayanthi Gangiredla, Mark Mammel, Isha R. Patel, Hannah R. Chase, JungHa Woo, YouYoung Lee, Caroline Z. Wang, Leah Weinstein, Ben D. Tall * and Gopal R. Gopinath Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 MuirKirk Rd, Laurel, MD 20708, USA; sfi[email protected] (S.F.); [email protected] (F.N.); [email protected] (H.J.); [email protected] (J.G.); [email protected] (M.M.); [email protected] (I.R.P.); [email protected] (H.R.C.); [email protected] (J.W.); [email protected] (Y.L.); [email protected] (C.Z.W.); [email protected] (L.W.); [email protected] (G.R.G.) * Correspondence: [email protected] Received: 4 October 2019; Accepted: 9 November 2019; Published: 12 November 2019 Abstract: Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin–antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella.
    [Show full text]
  • Infant and New Mother
    Infant and New Mother Product Category: Infant and New Mother EleCare® Similac Expert Care® 24 Cal With Iron EleCare® (for Infants) Similac Expert Care® Alimentum® Similac Expert Care® for Diarrhea Similac Expert Care® NeoSure® Metabolic Similac For Spit-Up® Calcilo XD® Similac Go & Grow® Milk-Based Formula Cyclinex®-1 Similac Go & Grow® Soy-Based Formula Glutarex®-1 Similac Sensitive® Hominex®-1 Similac Total Comfort™ I-Valex®-1 Similac® 10-pct Glucose Water Ketonex®-1 Similac® 5-pct Glucose Water Phenex™-1 Similac® Advance® Pro-Phree® Similac® Advance® Organic Propimex®-1 Similac® For Supplementation ProViMin® Similac® Human Milk Fortifier RCF® Similac® Human Milk Fortifier Concentrated Liquid Tyrex®-1 Similac® Nipples Similac® PM 60/40 Pedialyte® Similac® Prenatal & Breastfeeding Dietary Supplement Pedialyte AdvancedCare™ Pedialyte® Liters Similac® Simply Smart™ Similac® Soy Isomil® Similac® Similac® Sterilized Water Similac® Volu-Feed® Bottles & Caps Liquid Protein Fortifier For more information, contact your Abbott Nutrition Representative or visit www.abbottnutrition.com Abbott Nutrition Abbott Laboratories © 2013 Abbott Laboratories Inc. Columbus, OH 43219-3034 Updated 11/18/2013 1-800-227-5767 EleCare® Product Category: EleCare® EleCare® (for Infants) For more information, contact your Abbott Nutrition Representative or visit www.abbottnutrition.com Abbott Nutrition Abbott Laboratories © 2013 Abbott Laboratories Inc. Columbus, OH 43219-3034 Updated 11/18/2013 1-800-227-5767 EleCare® (for Infants) Nutritionally Complete Amino Acid-Based Infant Formula with Iron Product Information: EleCare® (for Infants) For more information, contact your Abbott Nutrition Representative or visit www.abbottnutrition.com Abbott Nutrition Abbott Laboratories © 2013 Abbott Laboratories Inc. Columbus, OH 43219-3034 Updated 1/1/0001 1-800-227-5767 1 of 5 EleCare® (for Infants) Nutritionally Complete Amino Acid-Based Infant Formula with Iron l EleCare is a nutritionally complete amino-acid based formula for infants who cannot tolerate intact or hydrolyzed protein.
    [Show full text]
  • Biocontrol of Cronobacter Spp. Using Bacteriophage in Infant Formula
    i Biocontrol of Cronobacter spp. using Bacteriophage in Infant Formula by Reza Abbasifar A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Food Science Guelph, Ontario, Canada © Reza Abbasifar, May, 2013 ii ABSTRACT Biocontrol of Cronobacter spp. using Bacteriophage in Infant Formula Reza Abbasifar Advisor: Dr. Mansel W. Griffiths University of Guelph, 2013 Co-Advisor: Dr. Parviz M. Sabour The purpose of this research was to explore the potential application of lytic phages to control Cronobacter spp. in infant formula. More than two hundred and fifty phages were isolated from various environmental samples against different strains of Cronobacter spp. Selected phages were characterized by morphology, host range, and cross infectivity. The genomes of five novel Cronobacter phages [vB_CsaM_GAP31 (GAP31), vB_CsaM_GAP32 (GAP32), vB_CsaP_GAP52 (GAP52), vB_CsaM_GAP161 (GAP161), vB_CsaP_GAP227 (GAP227)] were sequenced. Phage GAP32 possess the second largest phage genome sequenced to date, and it is proposed that GAP32 belongs to a new genus of “Gap32likeviruses”. Phages GAP52 and GAP227 are the first C. sakazakii podoviruses whose genomes have been sequenced. None of the sequenced genomes showed homology to virulent or lysogenic genes. In addition, in vivo administration of phage GAP161 in the hemolymph of Galleria mellonella larvae showed no negative effects on the wellbeing of the larvae and could effectively prevent Cronobacter infection in the larvae. A cocktail of five phages was highly effective for biocontrol of three Cronobacter sakazakii strains present as a mixed culture in both broth media and contaminated reconstituted infant formula. This phage cocktail could be iii potentially used to control C.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Evidence for a Direct Link Between the Tol-Pal Protein Complex and Gram Negative Bacteria Cell Division Via an Interaction Between Tolq and the Divisome Protein Ftsn
    EVIDENCE FOR A DIRECT LINK BETWEEN THE TOL-PAL PROTEIN COMPLEX AND GRAM NEGATIVE BACTERIA CELL DIVISION VIA AN INTERACTION BETWEEN TOLQ AND THE DIVISOME PROTEIN FTSN Mary A. Teleha A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2013 Committee: Dr. Ray A. Larsen, Advisor Dr. Roudabeh J. Jamasbi Graduate Faculty Representative Dr. Rex L. Lowe Dr. Adam C. Miller Dr. Vipaporn Phuntumart Dr. Scott O. Rogers ii ABSTRACT Ray Larsen, Advisor The TolQ protein functions to couple cytoplasmic membrane-derived energy to support outer membrane processes in Gram negative bacteria. With other products of the widely-conserved tol-pal gene cluster, TolQ has been linked to the process of bacterial cell division. When present in excess, TolQ disrupts cell division, leading to filamentous growth of Escherichia coli. The potential role of TolQ in Gram negative cell division was investigated by a number of methods, including growth assays and immunoblot, two-hybrid, and mutational analyses. This filamentation phenotype is specific for TolQ over-expression independent of TolA and TolR levels, with the degree of filamentation directly proportional to TolQ levels. Over-expression of E. coli TolQ in closely related species indicates that this property of TolQ is not E. coli specific, as excess TolQ leads to a comparable phenotype in other Gram negatives. Bacterial two-hybrid analysis indicates a potential in vivo interaction between TolQ and the divisome protein FtsN, ostensibly one that competitively diverts FtsN from functioning efficiently during late-stage cell division.
    [Show full text]
  • Phage S144, a New Polyvalent Phage Infecting Salmonella Spp. and Cronobacter Sakazakii
    International Journal of Molecular Sciences Article Phage S144, a New Polyvalent Phage Infecting Salmonella spp. and Cronobacter sakazakii Michela Gambino 1 , Anders Nørgaard Sørensen 1 , Stephen Ahern 1 , Georgios Smyrlis 1, Yilmaz Emre Gencay 1 , Hanne Hendrix 2, Horst Neve 3 , Jean-Paul Noben 4 , Rob Lavigne 2 and Lone Brøndsted 1,* 1 Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; [email protected] (M.G.); [email protected] (A.N.S.); [email protected] (S.A.); [email protected] (G.S.); [email protected] (Y.E.G.) 2 Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; [email protected] (H.H.); [email protected] (R.L.) 3 Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; [email protected] 4 Biomedical Research Institute and Transnational University Limburg, Hasselt University, BE3590 Diepenbeek, Belgium; [email protected] * Correspondence: [email protected] Received: 25 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Phages are generally considered species- or even strain-specific, yet polyvalent phages are able to infect bacteria from different genera. Here, we characterize the novel polyvalent phage S144, a member of the Loughboroughvirus genus. By screening 211 Enterobacteriaceae strains, we found that phage S144 forms plaques on specific serovars of Salmonella enterica subsp. enterica and on Cronobacter sakazakii. Analysis of phage resistant mutants suggests that the O-antigen of lipopolysaccharide is the phage receptor in both bacterial genera. The S144 genome consists of 53,628 bp and encodes 80 open reading frames (ORFs), but no tRNA genes.
    [Show full text]
  • Enterobacter Sakazakii)
    International Journal of Food Microbiology 136 (2009) 159–164 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Microarray-based comparative genomic indexing of the Cronobacter genus (Enterobacter sakazakii) B. Healy a, S. Huynh b, N. Mullane a, S. O'Brien a, C. Iversen a, A. Lehner c, R. Stephan c, C.T. Parker b,⁎, S. Fanning a,⁎ a Centres for Food Safety and Food-borne Zoonomics, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland b Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA c Institute for Food Hygiene and Safety, VetSuisse Faculty, University of Zurich, Zurich CH-, Switzerland article info abstract Keywords: Cronobacter (Enterobacter sakazakii) is a recently defined genus consisting of 6 species. To extend our Microarray understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of Comparative this genus, microarray-based comparative genomic indexing (CGI) was undertaken to determine the Genome presence/absence of genes identified in the former sequenced genome and to compare 276 selected open Cronobacter reading frames within the different Cronobacter strains. Seventy-eight Cronobacter strains (60 C. sakazakii, Enterobacter sakazakii 8 C. malonaticus,5C. dublinensis,2C. muytjensii,1C. turicensis,1C. genomospecies 1, and 1 Cronobacter sp.) representing clinical and environmental isolates from various geographical locations were investigated. Hierarchical clustering of the CGI data showed that the species grouped as clusters. The 5 C. dublinensis and 2 C. muytjensii strains examined formed distinct species clusters.
    [Show full text]