Pan-Genome Analysis of the Emerging Foodborne Pathogen Cronobacter Spp

Total Page:16

File Type:pdf, Size:1020Kb

Pan-Genome Analysis of the Emerging Foodborne Pathogen Cronobacter Spp Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation Grim, C. J., Kotewicz, M. L., Power, K. A., Gopinath, G., Franco, A. A., Jarvis, K. G., Yan, Q. Q., Jackson, S. A., Sathyamoorthy, V., Hu, L., Pagotto, F., Iversen, C., Lehner, A., Stephan, R., Fanning, S., & Tall, B. D. (2013). Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics, 14, [366]. https://doi.org/10.1186/1471- 2164-14-366 Published in: BMC Genomics Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2013 Grim et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 Grim et al. BMC Genomics 2013, 14:366 http://www.biomedcentral.com/1471-2164/14/366 RESEARCH ARTICLE Open Access Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species- level bidirectional divergence driven by niche adaptation Christopher J Grim1,2, Michael L Kotewicz1, Karen A Power3, Gopal Gopinath1, Augusto A Franco1, Karen G Jarvis1, Qiong Q Yan3, Scott A Jackson1, Venugopal Sathyamoorthy1, Lan Hu1,2, Franco Pagotto4, Carol Iversen5, Angelika Lehner6, Roger Stephan6, Séamus Fanning3 and Ben D Tall1* Abstract Background: Members of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes. Results: We identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element. Conclusions: Cronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub- Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits. Background Although E. sakazakii was synonymous with the original Cronobacter is a newly described genus that includes op- single species epithet, Iversen et al. [1], using a poly- portunistic pathogens formerly classified as Enterobacter phasic approach based on extensive genotypic and sakazakii [1]. E. sakazakii was first described by Farmer phenotypic criteria, reclassified strains of this diverse et al. [2], using DNA-DNA hybridization studies and species within the novel genus, Cronobacter. Originally, phenotyping to reclassify a group of yellow-pigmented the genus contained six recognized species, C. sakazakii Enterobacter cloacae isolates attributed to cases of neo- (Csak, biogroups 1–4, 7, 8, 11, and 13), C. malonaticus natal meningitis [3] into 15 phenotypically distinct (Cmal, biogroups 5, 9, and 14), C. muytjensii (Cmuy, biogroups. A 16th biogroup was later described [4]. biogroup 15), C. turicensis (Ctur, biogroup 16), C. dublinensis, subsp. dublinensis, lausannensis, and lactaridi (biogroups 12, Cdubdub, 10, Cdublau and 6, * Correspondence: [email protected] 1CFSAN, FDA, Laurel, USA Cdublact, respectively) and C. genomospecies 1. Joseph Full list of author information is available at the end of the article © 2013 Grim et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Grim et al. BMC Genomics 2013, 14:366 Page 2 of 16 http://www.biomedcentral.com/1471-2164/14/366 et al. [5] have updated this taxonomy by designating with meningitis [21] was sequenced [22]. In this paper, we members assigned to the genomospecies group 1 as C. describe the genomes of the type strains of Cronobacter universalis (Cuni, biotype 16c) and identifying a new dublinensis subsp. dublinensis, Cronobacter dublinensis species, C. condimenti, based on a single known strain subsp. lactaridi, Cronobacter dublinensis subsp. lausan- using a seven gene multi-locus sequence typing (MLST) nensis, Cronobacter malonaticus, Cronobacter muytjensii, scheme. and Cronobacter universalis. Comparative genomics was Cronobacter have been primarily associated with infec- performed on these six genomes, as well as two previously tions in infants, but recent reports have highlighted the published, closed genomes of Cronobacter. We identified risk posed to immune compromised adults, particularly and characterized the features associated with the core and the elderly [6,7]. Cronobacter have been recovered from a pan genome of this bacterial genus in an attempt to under- wide variety of foods, including powdered infant formula stand the evolution of these organisms and the genetic (PIF), follow-on formulas, weaning foods, milk and sodium content of each species. caseinate powders, rice seed, dried herbs, teas, and spices, spiced meats, dried flour or meal (corn, soy, potato, wheat, Results and rice), dried infant and adult cereals, dried vegetables, General features of sequenced Cronobacter genomes grains, tofu, powdered ice tea, mixed salad vegetables, Whole genome sequencing of six species type strains of tomato harvesting bins, chocolate, candied cough drops, Cronobacter was performed (Table 1). Each genome ana- and pastas [8-12]. Nevertheless, PIF remains epidemio- lyzed in this study contained a single chromosome and a logically linked to outbreaks of neonatal and infantile large repFIB plasmid, similar to Csak BAA-894 (pESA3) meningitis, and Cronobacter are routinely isolated from and Ctur z30232 (pCTU1), except the genome of C. household PIF preparation equipment, including blenders muytjensii ATCC 51329. Previously, Franco and Hu and spoons. Although PIF is regarded as an important et al. [23] reported that only 75% of strains of C. source of this pathogen, the main reservoir for Cronobacter muytjensii harbored this plasmid, while the incidence of seems to be the environment [13]. this plasmid in other Cronobacter spp. is 99%. The G + Cronobacter are capable of surviving and persisting in C% content of each genome ranged from 55 to 57% low-water environments [8], owing to their distribution (Table 1). Each of the six draft genomes contained seven in dry food goods. Although the exact genetic determin- ribosomal RNA operons, as inferred from comparative ant remains to be identified, Breeuwer et al. reported genomics with Csak BAA-894 and Ctur z3032 (Table 1). that intracellular accumulation of trehalose, among other features, prevents protein denaturation and membrane fu- Whole genome phylogeny and Cronobacter taxonomy sion and these may contribute to the desiccation-resistant To confirm the taxonomic standing of Cronobacter properties of the bacterium [14,15]. The expression of an genus novum and species [1], genome scale analyses exopolysaccharide composed of cellulose may also be re- based on nucleotide sequence were performed. Average quired [16]. Thermoresistance of Cronobacter has also nucleotide identity (ANI) has emerged as one of the pre- been reported [14,17]. Proteins unique to thermotolerant dominant genomics alternatives to DNA-DNA hybridi- Cronobacter strains have been identified by liquid chroma- zation. The pairwise ANI values between all Cronobacter tography and mass
Recommended publications
  • Identification and Virulence of Enterobacter Sakazakii
    Industr & ial od M o i F c r Rajani et al., J Food Ind Microbiol 2016, 2:1 f o o b l i Journal of o a l n DOI: 10.4172/2572-4134.1000108 o r g u y o J ISSN: 2572-4134 Food & Industrial Microbiology Research Article Open Access Identification and Virulence of Enterobacter sakazakii Rajani CSR, Chaudhary A, Swarna A and Puniya AK* Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India Abstract Enterobacter sakazakii (formerly known as Cronobacter sakazakii) is an opportunistic pathogen that causes necrotizing enterocolitis, bacteremia and meningitis, especially in neonates. This study was an attempt to isolate E. sakazakii from different food and environmental sources so as to establish its presence and possible source of transmission. For this, 93 samples (i.e., 37 from dairy and 56 from non-dairy) were collected using standard procedures of sampling. Out of these samples, 45 isolates (i.e., 14 from dairy and 31 from other samples) were taken further on the basis of growth on tryptic soy agar. On further screening on the basis of Gram staining, catalase and oxidase test, only 27 isolates were observed to be positive. The positive isolates were also subjected to PCR based identification using species specific primers. Overall, 11 isolates confirmed E.as sakazakii were also tested for virulent characteristics (i.e., hemolytic activity, haemagglutination test and DNase production) and all the isolates were found to be positive showing a potential threat of infection through food commodities. Keywords: Enterobacter sakazakii; Cronobacter; Virulence lactoferrin showed some effect by reducing the viability of C.
    [Show full text]
  • CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction
    Diversity and virulence of the genus Cronobacter revealed by multilocus sequence typing (MLST) and comparative genomic analysis Susan Manju Joseph A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2013 Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Susan Manju Joseph ACKNOWLEDGEMENTS I would like to express my immense gratitude to my supervisor Prof. Stephen Forsythe for having offered me the opportunity to work on this very exciting project and for having been a motivating and inspiring mentor as well as friend through every stage of this PhD. His constant encouragement and availability for frequent meetings have played a very key role in the progress of this research project. I would also like to thank my co-supervisors, Dr. Alan McNally and Prof. Graham Ball for all the useful advice, guidance and participation they provided during the course of this PhD study.
    [Show full text]
  • Taqman® Cronobacter Sakazakii Detection
    Applied Biosystems Food Pathogen Detection System TaqMan ® Cronobacter sakazakii Detection Kit Simple, reliable, and rapid detection TaqMan® Pathogen Detection Kits • Cronobacter sakazakii • Salmonella enterica • Campylobacter jejuni • E. coli O157:H7 • Listeria monocytogenes • Pseudomonas aeruginosa • Staphylococcus aureus An Infant Formula Contaminant Real-Time PCR Delivers Detect E. sakazakii Faster Cronobacter sakazakii is a pathogen The TaqMan Cronobacter sakazakii A number of tests are currently mostly associated with powdered Detection Kit uses proven real-time available that identify Cronobacter infant formula, causing seizures, brain PCR technology designed to provide: sakazakii based on phenotypic and abscesses, developmental delay, and biochemical methods. However, • Highly selective identification of even death in infants with premature because of isolates that may escape Cronobacter sakazakii in a wide variety infants and newborns at greatest risk. identification with these methods, faster, of food and finished product samples It is therefore extremely important more reliable methods are needed. that infant formula be tested prior to • Verified performance The TaqMan® Cronobacter sakazakii release to the marketplace. It is currently Detection Kit offers such an alternative. • Ready-to-use convenience unknown how many organisms will cause infection, thus a highly specific • Reduced risk of contamination product testing method is necessary to determine the presence of Cronobacter sakazakii. Rely on Applied Biosystems Use a Complete
    [Show full text]
  • Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species Where C. Sakazakii Homologs Follow Sequence Type Lineages
    microorganisms Article Prevalence, Distribution, and Phylogeny of Type Two Toxin-Antitoxin Genes Possessed by Cronobacter Species where C. sakazakii Homologs Follow Sequence Type Lineages Samantha Finkelstein, Flavia Negrete, Hyein Jang, Jayanthi Gangiredla, Mark Mammel, Isha R. Patel, Hannah R. Chase, JungHa Woo, YouYoung Lee, Caroline Z. Wang, Leah Weinstein, Ben D. Tall * and Gopal R. Gopinath Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, 8301 MuirKirk Rd, Laurel, MD 20708, USA; sfi[email protected] (S.F.); [email protected] (F.N.); [email protected] (H.J.); [email protected] (J.G.); [email protected] (M.M.); [email protected] (I.R.P.); [email protected] (H.R.C.); [email protected] (J.W.); [email protected] (Y.L.); [email protected] (C.Z.W.); [email protected] (L.W.); [email protected] (G.R.G.) * Correspondence: [email protected] Received: 4 October 2019; Accepted: 9 November 2019; Published: 12 November 2019 Abstract: Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin–antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella.
    [Show full text]
  • Infant and New Mother
    Infant and New Mother Product Category: Infant and New Mother EleCare® Similac Expert Care® 24 Cal With Iron EleCare® (for Infants) Similac Expert Care® Alimentum® Similac Expert Care® for Diarrhea Similac Expert Care® NeoSure® Metabolic Similac For Spit-Up® Calcilo XD® Similac Go & Grow® Milk-Based Formula Cyclinex®-1 Similac Go & Grow® Soy-Based Formula Glutarex®-1 Similac Sensitive® Hominex®-1 Similac Total Comfort™ I-Valex®-1 Similac® 10-pct Glucose Water Ketonex®-1 Similac® 5-pct Glucose Water Phenex™-1 Similac® Advance® Pro-Phree® Similac® Advance® Organic Propimex®-1 Similac® For Supplementation ProViMin® Similac® Human Milk Fortifier RCF® Similac® Human Milk Fortifier Concentrated Liquid Tyrex®-1 Similac® Nipples Similac® PM 60/40 Pedialyte® Similac® Prenatal & Breastfeeding Dietary Supplement Pedialyte AdvancedCare™ Pedialyte® Liters Similac® Simply Smart™ Similac® Soy Isomil® Similac® Similac® Sterilized Water Similac® Volu-Feed® Bottles & Caps Liquid Protein Fortifier For more information, contact your Abbott Nutrition Representative or visit www.abbottnutrition.com Abbott Nutrition Abbott Laboratories © 2013 Abbott Laboratories Inc. Columbus, OH 43219-3034 Updated 11/18/2013 1-800-227-5767 EleCare® Product Category: EleCare® EleCare® (for Infants) For more information, contact your Abbott Nutrition Representative or visit www.abbottnutrition.com Abbott Nutrition Abbott Laboratories © 2013 Abbott Laboratories Inc. Columbus, OH 43219-3034 Updated 11/18/2013 1-800-227-5767 EleCare® (for Infants) Nutritionally Complete Amino Acid-Based Infant Formula with Iron Product Information: EleCare® (for Infants) For more information, contact your Abbott Nutrition Representative or visit www.abbottnutrition.com Abbott Nutrition Abbott Laboratories © 2013 Abbott Laboratories Inc. Columbus, OH 43219-3034 Updated 1/1/0001 1-800-227-5767 1 of 5 EleCare® (for Infants) Nutritionally Complete Amino Acid-Based Infant Formula with Iron l EleCare is a nutritionally complete amino-acid based formula for infants who cannot tolerate intact or hydrolyzed protein.
    [Show full text]
  • Biocontrol of Cronobacter Spp. Using Bacteriophage in Infant Formula
    i Biocontrol of Cronobacter spp. using Bacteriophage in Infant Formula by Reza Abbasifar A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Doctor of Philosophy in Food Science Guelph, Ontario, Canada © Reza Abbasifar, May, 2013 ii ABSTRACT Biocontrol of Cronobacter spp. using Bacteriophage in Infant Formula Reza Abbasifar Advisor: Dr. Mansel W. Griffiths University of Guelph, 2013 Co-Advisor: Dr. Parviz M. Sabour The purpose of this research was to explore the potential application of lytic phages to control Cronobacter spp. in infant formula. More than two hundred and fifty phages were isolated from various environmental samples against different strains of Cronobacter spp. Selected phages were characterized by morphology, host range, and cross infectivity. The genomes of five novel Cronobacter phages [vB_CsaM_GAP31 (GAP31), vB_CsaM_GAP32 (GAP32), vB_CsaP_GAP52 (GAP52), vB_CsaM_GAP161 (GAP161), vB_CsaP_GAP227 (GAP227)] were sequenced. Phage GAP32 possess the second largest phage genome sequenced to date, and it is proposed that GAP32 belongs to a new genus of “Gap32likeviruses”. Phages GAP52 and GAP227 are the first C. sakazakii podoviruses whose genomes have been sequenced. None of the sequenced genomes showed homology to virulent or lysogenic genes. In addition, in vivo administration of phage GAP161 in the hemolymph of Galleria mellonella larvae showed no negative effects on the wellbeing of the larvae and could effectively prevent Cronobacter infection in the larvae. A cocktail of five phages was highly effective for biocontrol of three Cronobacter sakazakii strains present as a mixed culture in both broth media and contaminated reconstituted infant formula. This phage cocktail could be iii potentially used to control C.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Phage S144, a New Polyvalent Phage Infecting Salmonella Spp. and Cronobacter Sakazakii
    International Journal of Molecular Sciences Article Phage S144, a New Polyvalent Phage Infecting Salmonella spp. and Cronobacter sakazakii Michela Gambino 1 , Anders Nørgaard Sørensen 1 , Stephen Ahern 1 , Georgios Smyrlis 1, Yilmaz Emre Gencay 1 , Hanne Hendrix 2, Horst Neve 3 , Jean-Paul Noben 4 , Rob Lavigne 2 and Lone Brøndsted 1,* 1 Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; [email protected] (M.G.); [email protected] (A.N.S.); [email protected] (S.A.); [email protected] (G.S.); [email protected] (Y.E.G.) 2 Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; [email protected] (H.H.); [email protected] (R.L.) 3 Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany; [email protected] 4 Biomedical Research Institute and Transnational University Limburg, Hasselt University, BE3590 Diepenbeek, Belgium; [email protected] * Correspondence: [email protected] Received: 25 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Phages are generally considered species- or even strain-specific, yet polyvalent phages are able to infect bacteria from different genera. Here, we characterize the novel polyvalent phage S144, a member of the Loughboroughvirus genus. By screening 211 Enterobacteriaceae strains, we found that phage S144 forms plaques on specific serovars of Salmonella enterica subsp. enterica and on Cronobacter sakazakii. Analysis of phage resistant mutants suggests that the O-antigen of lipopolysaccharide is the phage receptor in both bacterial genera. The S144 genome consists of 53,628 bp and encodes 80 open reading frames (ORFs), but no tRNA genes.
    [Show full text]
  • Enterobacter Sakazakii)
    International Journal of Food Microbiology 136 (2009) 159–164 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Microarray-based comparative genomic indexing of the Cronobacter genus (Enterobacter sakazakii) B. Healy a, S. Huynh b, N. Mullane a, S. O'Brien a, C. Iversen a, A. Lehner c, R. Stephan c, C.T. Parker b,⁎, S. Fanning a,⁎ a Centres for Food Safety and Food-borne Zoonomics, UCD Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland b Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA c Institute for Food Hygiene and Safety, VetSuisse Faculty, University of Zurich, Zurich CH-, Switzerland article info abstract Keywords: Cronobacter (Enterobacter sakazakii) is a recently defined genus consisting of 6 species. To extend our Microarray understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of Comparative this genus, microarray-based comparative genomic indexing (CGI) was undertaken to determine the Genome presence/absence of genes identified in the former sequenced genome and to compare 276 selected open Cronobacter reading frames within the different Cronobacter strains. Seventy-eight Cronobacter strains (60 C. sakazakii, Enterobacter sakazakii 8 C. malonaticus,5C. dublinensis,2C. muytjensii,1C. turicensis,1C. genomospecies 1, and 1 Cronobacter sp.) representing clinical and environmental isolates from various geographical locations were investigated. Hierarchical clustering of the CGI data showed that the species grouped as clusters. The 5 C. dublinensis and 2 C. muytjensii strains examined formed distinct species clusters.
    [Show full text]
  • Green Feeding – Climate Action from Birth
    Geneva, Nov 6, 2019 Green Feeding – climate action from birth Summary In this advocacy document the authors aim to show how the subject of Green Feeding of infants and young children can support the growing worldwide movement for climate action by school children, parents and the public. At the same time, we aim to further the policy initiatives of Green parties and political parties with green priorities. Part I defines Green Feeding and provides the rationale for the inclusion of Green Feeding in policies and programmes. Part II provides examples of specific actions to be taken at individual, community, regional and country levels, presented as separate modules that can be selected according to priorities1. Part III suggests how these actions can build on the results of national assessments in the World Breastfeeding Trends initiative (WBTi) and provides information on the WBTi participatory process. What is Green Feeding ?2 Green Feeding describes optimal and sustainable breastfeeding and complementary feeding practices for infants and young children aged from 0-36 months. Such optimal infant and young child feeding practices protect the health of infants, young children and their mothers, as well as the environment of our planet – Mother Earth. Often people feel that climate change caused by global warming is such an immense problem that there is nothing that individuals can do about it. But each and every one of us was nurtured as a baby by being fed breastmilk or with a substitute based on cow’s milk. Everyone can thus relate to infant and young child feeding practices - and can learn how to make these practices environmentally friendly.
    [Show full text]
  • Shiga Toxin-Producing Escherichia Coli (STEC) and Food: Attribution, Characterization, and Monitoring
    31 ISSN 1726-5274 Shiga toxin-producing Escherichia coli (STEC) infections are a substantial health issue worldwide. Circa 2010, foodborne STEC caused > 1 million human illnesses, 128 deaths, and ~ 13,000 Disability Adjusted Life Years (DALYs). Targeting interventions to address this hazard relies on identifying those STEC strains of greatest risk to human health and determining the food vehicles for such infections. This report brings together the review and analysis of existing information on the burden, source attribution, hazard characterization and monitoring of STEC. It proposes a set of criteria for categorizing the potential risk of severity of characterisation, and monitoring Shiga toxin-producing illness associated with the presence of a STEC in food, for consideration by risk managers, as part of a risk-based approach to control STEC in foods. It presents the initial results on source attribution of foodborne STEC, highlighting that while ruminants and other land animals are considered the main reservoirs Shiga toxin-producing for STEC, largescale outbreaks have also been linked to other foods, such as fresh produce. It also provides a review of monitoring programmes and meth- odology for STEC, which can serve as a reference for countries planning to Escherichia coli (STEC) develop such programmes. Escherichia coli ( and food: attribution, This work was undertaken in response to a request from the Codex Alimentarius to support the development of international standards on foodborne STEC. The advice herein is useful for both
    [Show full text]
  • Cronobacter: an Emerging Opportunistic Pathogen Associated with Neonatal Meningitis, Sepsis and Necrotizing Enterocolitis
    Journal of Perinatology (2013) 33, 581–585 & 2013 Nature America, Inc. All rights reserved 0743-8346/13 www.nature.com/jp STATE-OF-THE-ART Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis CJ Hunter1,2 and JF Bean1 Members of the genus Cronobacter are an emerging group of opportunist Gram-negative pathogens. This genus was previously thought to be a single species, called Enterobacter sakazakii. Cronobacter spp. typically affect low-birth-weight neonates, causing life-threatening meningitis, sepsis and necrotizing enterocolitis. Outbreaks of disease have been associated with contaminated infant formula, although the primary environmental source remains elusive. Advanced understanding of these bacteria and better classification has been obtained by improved detection techniques and genomic analysis. Research has begun to characterize the virulence factors and pathogenic potential of Cronobacter. Investigations into sterilization techniques and protocols for minimizing the risk of contamination have been reviewed at national and international forums. In this review, we explore the clinical impact of Cronobacter neonatal and pediatric infections, discuss virulence and pathogenesis, and review prevention and treatment strategies. Journal of Perinatology (2013) 33, 581–585; doi:10.1038/jp.2013.26; published online 28 March 2013 Keywords: Cronobacter sakazakii; meningitis; necrotizing enterocolitis; neonatal infections; infant formula INTRODUCTION single clinical setting.10 Cronobacter neonatal infection rates Cronobacter is an emerging genus of opportunistic Gram-negative remain low and are reported in the USA as one Cronobacter pathogens associated with potentially fatal neonatal infections, infection per 100 000 infants, 8.7 per 100 000 low-birth-weight including meningitis, sepsis and necrotizing enterocolitis (NEC).1 neonates, and one Cronobacter infection per 10 660 very low- 13 These infections typically affect our smallest and most vulnerable birth-weight neonates.
    [Show full text]