MCCA Magazine - IRRADIUM

Total Page:16

File Type:pdf, Size:1020Kb

MCCA Magazine - IRRADIUM MCCA Magazine - IRRADIUM Foreword MCAA News Interviews Research 3 The Marie Curie Alumni 5 Snežana Krstić – MCAA Chair 11 Horizon 2020 – A Association (MCAA) has ‘societal challenge’ in the been running for one year! 6 Axelle Viré – Vice-Chair of the spotlight – Climate Action, MCAA, Chair of the BeNeLux Environment, Resource Chapter Efficiency and Raw Materials 7 Wuraola Akande – Ordinary Board member, Chair of the Events Communication Working Group, African Chapter 13 Progress at Lima United Nations Climate Conference, 9 Riccardo Biondi – Chair of Next Stop Paris the MCAA Austrian Chapter 10 Shikar Aggarwal – MCAA Northern Italy Chapter Alumni Funding 15 Two voices 21 The benefits of Co-funding – Beatriu de Pinós Programme 20 Opportunities after a Marie Curie Fellowship and the coordination of a Marie Curie project – Why not a Nobel Prize? Projects Action 23 Discover a Marie Curie 27 Looking forward to being project – FlowAirS awarded a Marie Skłodowska- Curie Action 24 An interview with Francesco Sanna – Marie Curie Fellow working on the FlowAirS project 25 An interview with Dr. Joachim Golliard – Francesco Sanna’s supervisor 26 An interview with Dr Yves Aurégan – Coordinator of the FlowAirS project IRRADIUM — MCAA Magazine February 2015 1 MCCA Magazine - IRRADIUM Foreword Dear MCAA Members, We are pleased to present the very first issue of the • Progress at the Lima United Nations Climate Marie Curie Alumni Magazine – IRRADIUM. Conference, Next stop Paris. Presents what was at stake in Lima, and how the results set the The name of the magazine, IRRADIUM, is a nod to scene for climate change talks in Paris. Marie Skłodowska-Curie’s great discovery (Radium) with a suggestion of irrigation and radiation – rather • “Two voices” – Gender issues in research. fitting terms for a publication that we hope will sow Two members of the MCAA, Gianna Avellis and new ideas through the sharing of information … we Antonia Hadjimichael, discuss the state of play hope that you like it! for gender issues in research and how concerns could be tackled. The aim of the MCAA magazine is to provide an over- view of the purpose, activities and achievements of • Opportunities after a Marie Curie Fellowship the MCAA. To make navigation user-friendly, it has and the coordination of a Marie Curie project been divided into seven themes: – Why not a Nobel Prize? A look at success of Stefan Hell and Edvard I. Moser, awarded Nobel • MCAA prizes in chemistry and in medicine. What are the secrets behind their success? • Actions: • The benefits of Co-funding – Beatriu de Pinós • Projects Programme. An Alumnus, Ferran Macia, ex- plains the advantages for a researcher of diversi- • Funding fying funding sources. • Events • Discover a Marie Curie project – FlowAirS. This project aims to reduce noise pollution. Learn • Research more about it by reading interviews with Frances- co Sanna, Marie Curie Fellow; Yves Aurégan, the • Alumni coordinator of the project; and Joachim Golliard, Sanna’s supervisor. Here is an overview of this first issue: • Looking forward to being awarded a Marie • The MCAA has been up and running for one Skłodowska-Curie Action. The Alumnus Chris- year! We have created a timeline which sums up tos Apostolakis presents the project he hopes will the key developments over the MCAA’s first year. be funded as an MSCA under Horizon 2020. You’ll also find interviews with Board members and Chairs of Chapters and/or Working Group: Snežana Krstić, Axelle Viré, Wuraola Akande, Riccardo Biondi and Shikar Aggarwal. • Horizon 2020 – A ‘societal challenge’ in the Yours, spotlight – Climate Action, Environment, Re- source Efficiency and Raw Materials. An intro- The MCAA team duction to the European Commission’s tools in the fight against climate change. IRRADIUM — MCAA Magazine February 2015 2 MCCA Magazine - IRRADIUM MCAA News section The Marie Curie Alumni Association (MCAA) has been running for one year! The MCAA Board was officially elected during August 2014: Creation of new Working Groups the first MCAA General Assembly, which took and Chapters place on 23 November 2013 in Brussels, Bel- gium. Below is an overview of what has hap- As of August 2014, the MCAA has new Working pened in your association since then. Check out Groups and Chapters, as follows. the timeline! Seven Working Groups: February 2014: The MCAA is a legal entity • Grants and Awards (chaired by Anett Kiss) In February 2014, the MCAA was established as a • Events and Networking (chaired by Francesco non-profit organisation (an AISBL – Association In- Sanna) ternationale Sans But Lucratif – under Belgian Law. The head office is registered as Avenue des Arts 24 in • Communication (chaired by Wuraola Akande) Brussels, Belgium. • Policy on Successful Researchers (chaired by April 2014: Definition of Association articles and Marco Masia) constitution of the association • Information and Data access (chaired by Mauricio A first version of the Association articles was pre- Manfrini) sented at the first General Assembly on 23 Novem- ber 2013. Following this, the articles were further • Internal Governance and Chapter Management revised with the support of Belgian lawyers, and in Team (chaired by Kiran Kumar Chereddy) cooperation between the European Commission and the MCAA Board Members. On 17 January 2014, the • Gender Equality for Mobile Researchers in Sci- deed of constitution was signed. Following these legal ence (GEMS) (chaired by Giovanna Avellis) formalities, the royal decree recognising the MCAA was signed on 7 February. On 7 April, the associa- Thirteen Chapters: tion’s charter was published in the Moniteur Belge. • Austrian Chapter (chaired by Riccardo Biondi) June 2014: the MCAA attended ESOF 2014 in Copenhagen • BeNeLux Chapter (chaired by Axelle Viré) Snežana Krstić (Chair of the MCAA), Roy Someshwar • Croatian Chapter (chaired by Robert Vianello) (Treasurer), Anett Kiss (Grants and Awards Working Group Lead) and Maria-Antonietta Buccheri (Secre- • Israeli Chapter (chaired by Sharon Snitzman) tary) represented the Marie Curie Alumni Association at ESOF 2014, in Copenhagen, Denmark. Members • Balears Chapter (chaired by David Sanchez)Pars of the association organised activities during this six- & Île-de-France chapter (Chaired by Andrea Re- day event, such as a poster session, the “We built smini) bridges” promotional event and an MCAA internal meeting. An MCAA stand displaying leaflets and post- • Sicily Chapter (chaired by Luigi Caranti) cards was also available for the entire duration of the event, from 21 to 26 June. You can read more about • United Kingdom Chapter (chaired by Enrique this in the special coverage of the MCAA at ESOF Jose Gallego Colon) 2014 in the fifth MCAA newsletter. IRRADIUM — MCAA Magazine February 2015 3 MCCA Magazine - IRRADIUM MCAA News section The Marie Curie Alumni Association (MCAA) has been running for one year! • Northern Italy Chapter (Chair to be elected) Throughout 2014: Contacts with several external organisations • Spain/Portugal Chapter (Chair to be elected) The MCAA has established contacts with external • African Chapter (Chair to be elected) organisations to explore possible cooperation and synergies: • Nordic Chapter (Chair to be elected) • Science Europe: • Argentina Chapter (Chair to be elected) • European Association of Research and technolo- gy Organisations (EARTO) October 2014: The MCAA has a logo! • European Cooperation in Science and Technolo- gy (COST) A variant of the Marie Curie Programme was set up as the MCAA official logo: • European Science Foundation (ESF) • League of European Research Universities (LERU) • Erasmus Student Network (ESN) The MCAA is currently working on several follow-up actions with these organisations, including coopera- tion in research, reciprocal dissemination of informa- The Office for Harmonisation in the Internal Market tion or joint promotion through websites and social (OHIM) issued the registration certificate in October media platforms. 2014. As you can see, 2014 has been fruitful for the MCAA, November/December 2014: the MCAA communi- but much more is coming... stay tuned! cation Working Group (CWG) launched a video competition Until 17 November, members had the opportunity to vote for the video they considered to best illustrate excellence achieved by Marie Curie Alumni. The win- ner is the producer of the “GNSS Meteorology: Ex- plained” video, which received the largest number of votes from Alumni and the Jury combined. The sec- ond prize goes to the producer of “Getting Students Engaged in Science!”. IRRADIUM — MCAA Magazine February 2015 4 MCCA Magazine - IRRADIUM Interview Snežana Krstić MCAA Chair 1. Ms Krstić, you were elected Chair of the Asso- ciation on 23 November 2013. How would you describe your first year? The first year is always the most difficult and de- manding period for any association, especially for the Board and Executive Committee. We were faced with a huge amount of administrative work. I approached my first year with much enthusiasm and hard work, and then joy after every success that the association achieved. Besides the administrative work, I invested much energy in other activities for the benefit of our members, and contributed to the visibility and rep- utation of the association. I delivered presentations at several events and organised MCAA sessions at ESOF, giving our members an opportunity to present Snežana Krstić their work and achievements. 2. How did you organise your work and collabo- 4. What activities are foreseen for the MCAA for ration with
Recommended publications
  • News Release Emmanuelle Charpentier Inducted Into the Hall
    News Release Your Contact [email protected] Phone: +49 6151 72-9591 October 22, 2020 Emmanuelle Charpentier Inducted into the Hall of Fame of German Research • Microbiologist, geneticist, infection biologist and Nobel Prize winner Charpentier recognized • Curious Mind Award for young scientists presented to Siegfried Rasthofer and Björn Eskofier Darmstadt, Germany, October 22, 2020– Merck KGaA, Darmstadt, Germany, a leading science and technology company, and manager magazin today inducted Emmanuelle Charpentier (51), Founding Director of the Max Planck Unit for the Science of Pathogens in Berlin, Germany, into the Hall of Fame of German Research. In addition, the two hosts presented the Curious Mind Researcher Award at the same event. Siegfried Rasthofer (32), a computer scientist, received the prize worth € 7,500 in the “Digitalization & Robotics” category. Björn Eskofier (40), an electrical engineer, was also recognized with € 7,500 for his work in the “Life Science” category. In a video message, German Federal Chancellor Angela Merkel said: “It is a privilege to now be able to induct a renowned scientist and designated Nobel laureate into the Hall of Fame of German Research. The Curious Mind Researcher Award also demonstrates that Germany is a research location that offers superb framework conditions for cutting-edge research,” she added and congratulated the prizewinners. “Many scientists are making extraordinary accomplishments – particularly here in Germany as well. This is evident not only in the fight against Covid-19. Thanks to Page 1 of 3 Frankfurter Strasse 250 Head of Media Relations -6328 64293 Darmstadt · Germany Spokesperson: -9591 / -8908 / -45946 / -55707 Hotline +49 6151 72-5000 www.emdgroup.com News Release their passion and perseverance, they are creating the preconditions for the advancement of society.
    [Show full text]
  • No. 46 October 8, 2014 (Sel) Nobel Prize Winner at the Max Planck
    No. 46 October 8, 2014 (Sel) Nobel Prize winner at the Max Planck Institute for Biophysical Chemistry in Göttingen and the German Cancer Research Center: Nobel Prize in Chemistry awarded to Stefan Hell For the second time a researcher at the DKFZ has been awarded the highest distinction in science: Professor Stefan Hell, director of the Max-Planck Institute for Biophysical Chemistry in Göttingen and department head at the DKFZ, has been awarded this year´s Nobel Prize in Chemistry for his pioneering work in the field of ultra high resolution fluorescence microscopy. This follows the 2008 Nobel Prize in Medicine for Harald zur Hausen. “Stefan Hell is an absolutely exceptional scientist,” says Professor Otmar D. Wiestler, Chairman of the Management Board and Scientific Director of the German Cancer Research Center (DKFZ). “We are delighted and very proud to have a second Nobel Prize winner from the DKFZ, following Harald zur Hausen, within just a couple of years.” The highest distinction in science rewards many years of tireless research work during which Stefan Hell achieved a ten- fold increase in the resolution of light microscopy, making it possible for scientists to obtain images of structures ten times smaller than anyone had previously thought possible. “He has taken microscopy to a completely new dimension,” Wiestler says. “During my PhD thesis work, I already suspected that the matter of light microscopy had not yet been entirely thought through,” Stefan Hell remembers. At that time light microscopy was believed to have reached its limits, at a barrier of 200 nanometers, as defined by Ernst Abbe in his famous diffraction law of 1873: For two dots to be distinguished in the focal plane of the objective, they have to be separated by a distance equal to at least half the wavelength of visible light.
    [Show full text]
  • Manfred Eigen: the Realization of His Vision of Biophysical Chemistry
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OIST Institutional Repository Manfred Eigen: the realization of his vision of Biophysical Chemistry Author Herbert Jackle, Carmen Rotte, Peter Gruss journal or European Biophysics Journal publication title volume 47 number 4 page range 319-323 year 2017-12-11 Publisher Springer International Publishing Rights (C) 2017 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000696/ doi: info:doi/10.1007/s00249-017-1266-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) European Biophysics Journal (2018) 47:319–323 https://doi.org/10.1007/s00249-017-1266-y REVIEW Manfred Eigen: the realization of his vision of Biophysical Chemistry Herbert Jäckle1 · Carmen Rotte1 · Peter Gruss1,2 Received: 27 August 2017 / Accepted: 11 November 2017 / Published online: 11 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Manfred Eigen turned 90 on May 9th, 2017. He celebrated with a small group of colleagues and friends on behalf of the many inspired by him over his lifetime—whether scientists, artists, or philosophers. A small group of friends, because many—who by their breakthroughs have changed the face of science in diferent research areas—have already died. But it was a special day, devoted to the many genius facets of Manfred Eigen’s oeuvre, and a day to highlight the way in which he continues to exude a great, vital and unbroken passion for science as well as an insatiable curiosity beyond his own scientifc interests.
    [Show full text]
  • Curriculum Vitae Prof. Dr. Stefan W. Hell
    Curriculum Vitae Prof. Dr. Stefan W. Hell Name: Stefan W. Hell Geboren: 1962 Forschungsschwerpunkt: Optische Mikroskopie jenseits der Abbeschen Beugungsgrenze Stefan Hell ist Physiker. Er ist der Entwickler des ersten mikroskopischen Verfahrens, mit dem man mit fokussiertem Licht Auflösungen weit unterhalb der Lichtwellenlänge erzielen kann. 2014 erhielt er „für die Entwicklung der hochaufgelösten Fluoreszenz-Mikroskopie“ gemeinsam mit Eric Betzig und William E. Moerner den Nobelpreis für Chemie. Akademischer und beruflicher Werdegang seit 2004 Honorar-Professor für Experimentalphysik an der Universität Göttingen seit 2003 Leiter der Abteilung „Optische Nanoskopie“ am Deutschen Krebsforschungszentrum, Heidelberg seit 2003 apl. Professor, Fakultät für Physik, Universität Heidelberg seit 2002 Wissenschaftliches Mitglied und Direktor am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Leiter der Abteilung „NanoBiophotonik“ 1997 - 2002 Leiter einer selbständigen Nachwuchsgruppe der MPG am Max-Planck-Institut für biophysikalische Chemie, Göttingen 1996 Habilitation in Physik an der Universität Heidelberg (extern) 1993 - 1996 Projektleiter; Department of Medical Physics, University of Turku/Finnland 1993 - 1994 Scanning Optical Microscopy Group; Dpt. Engineering Science, Oxford, UK 1991 - 1993 Postdoktorand am EMBL, Light Microscopy Group 1990 Freie Erfindertätigkeit 1990 Promotion an der Universität Heidelberg Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 1981 - 1987 Studium der Physik an der Universität Heidelberg Funktionen in wissenschaftlichen Gesellschaften und Gremien seit 2020 Mitglied des Senats der Max-Planck-Gesellschaft seit 2009 Sprecher des CMPB (DFG Research Center Molecular Physiology of the Brain) seit 2007 Kuratoriumsmitglied des X-LAB, Göttingen seit 2007 Kuratoriumsmitglied der Stiftung Zukunfts- und Innovationsfonds Niedersachsen seit 2005 Sekretär der „International Society on Optics Within Life Sciences” (OWLS) seit 2003 Ass.
    [Show full text]
  • Contributions of Civilizations to International Prizes
    CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen
    [Show full text]
  • NOBEL MOLECULAR Frontiers
    NOBEL WORKSHOP & MOLECULAR FRONTIERS SYMPOSIUM Nobel Workshop & Molecular Frontiers Symposium organized by: An Amazing Week at Chalmers May 4th-8th 2015 RunAn Conference Hall, Chalmers University of Technology Chalmersplatsen 1, Gothenburg, Sweden !"#$%&'(") )*!%)!") Welcome!( The!Nobel!Workshop!and!Molecular!Frontiers!Symposium!in!Gothenburg!are!spanning!over! widely!distant!horizons!of!the!molecular!paradigm.!From!addressing!intriguing!questions!of! life! itself,! how! it! once! began! and! how! molecules! like! cogwheels! work! together! in! the! complex! machinery! of! the! cell! E! to! various! practical! applications! of! molecules! in! novel! materials!and!in!energy!research;!from!how!biology!is!exploiting!its!molecules!for!driving!the! various! processes! of! life,! to! how! insight! into! the! fundamentals! of! photophysics! and! photochemistry!of!molecules!may!give!us!clues!about!solar!energy!and!tools!by!which!we! may!tame!it!for!the!benefit!of!all!of!us,!and!our!environment.!! ! ! Science!is!sometimes!artificially!divided!into!“fundamental”!and!”applied”!but!these! terms!are!irrelevant!because!research!is!judged!to!be!groundbreaking!by!the!consequences! it!may!have.!Any!groundbreaking!fundamental!result!has!sooner!or!later!consequences!in! applications,!and!the!limits!are!often!only!drawn!by!our!imagination.!! ! ! Science!is!very!much!a!matter!of!communication:!we!not!only!learn!from!each!other! (facts,!ideas!and!concepts),!we!also!need!interactions!for!inspiration!and!as!testing!ground! for!our!ideas.!A!successful!scientific!communication!(publication!or!lecture)!always!requires!
    [Show full text]
  • Annual Report 2017
    67th Lindau Nobel Laureate Meeting 6th Lindau Meeting on Economic Sciences Annual Report 2017 The Lindau Nobel Laureate Meetings Contents »67 th Lindau Nobel Laureate Meeting (Chemistry) »6th Lindau Meeting on Economic Sciences Over the last 67 years, more than 450 Nobel Laureates have come 67th Lindau Nobel Laureate Meeting (Chemistry) Science as an Insurance Policy Against the Risks of Climate Change 10 The Interdependence of Research and Policymaking 82 to Lindau to meet the next generation of leading scientists. 25–30 June 2017 Keynote by Nobel Laureate Steven Chu Keynote by ECB President Mario Draghi The laureates shape the scientific programme with their topical #LiNo17 preferences. In various session types, they teach and discuss Opening Ceremony 14 Opening Ceremony 86 scientific and societal issues and provide invaluable feedback Scientific Chairpersons to the participating young scientists. – Astrid Gräslund, Professor of Biophysics, Department of New Friends Across Borders 16 An Inspiring Hothouse of Intergenerational 88 Biochemistry and Biophysics, Stockholm University, Sweden By Scientific Chairpersons Astrid Gräslund and Wolfgang Lubitz and Cross-Cultural Exchange Outstanding scientists and economists up to the age of 35 are – Wolfgang Lubitz, Director, Max Planck Institute By Scientific Chairpersons Torsten Persson and Klaus Schmidt invited to take part in the Lindau Meetings. The participants for Chemical Energy Conversion, Germany Nobel Laureates 18 include undergraduates, PhD students as well as post-doctoral Laureates 90 researchers. In order to participate in a meeting, they have to Nominating Institutions 22 pass a multi-step application and selection process. 6th Lindau Meeting on Economic Sciences Nominating Institutions 93 22–26 August 2017 Young Scientists 23 #LiNoEcon Young Economists 103 Scientific Chairpersons SCIENTIFIC PROGRAMME – Martin F.
    [Show full text]
  • How the Optical Microscope Became a Nanoscope
    THE NOBEL PRIZE IN CHEMISTRY 2014 POPULAR SCIENCE BACKGROUND How the optical microscope became a nanoscope Eric Betzig, Stefan W. Hell and William E. Moerner are awarded the Nobel Prize in Chemistry 2014 for having bypassed a presumed scientifc limitation stipulating that an optical microscope can never yield a resolution better than 0.2 micrometres. Using the fuorescence of molecules, scientists can now monitor the interplay between individual molecules inside cells; they can observe disease-related proteins aggregate and they can track cell division at the nanolevel. Red blood cells, bacteria, yeast cells and spermatozoids. When scientists in the 17th century for the frst time studied living organisms under an optical microscope, a new world opened up before their eyes. This was the birth of microbiology, and ever since, the optical microscope has been one of the most important tools in the life-sciences toolbox. Other microscopy methods, such as electron microscopy, require preparatory measures that eventually kill the cell. Glowing molecules surpassing a physical limitation For a long time, however, optical microscopy was held back by a physical restriction as to what size of structures are possible to resolve. In 1873, the microscopist Ernst Abbe published an equation demonstrating how microscope resolution is limited by, among other things, the wavelength of the light. For the greater part of the 20th century this led scientists to believe that, in optical microscopes, they would never be able to observe things smaller than roughly half the wavelength of light, i.e., 0.2 micrometres (fgure 1). The contours of some of the cells’ organelles, such as the powerhouse mitochondria, were visible.
    [Show full text]
  • Nobel Chemistry Prize: Lithium-Ion Battery Scientists Honoured
    Nobel chemistry prize: Lithium-ion battery scientists honoured https://www.bbc.com/news/science-environment-49962133 Three scientists have been awarded the 2019 Nobel Prize in Chemistry for the development of lithium-ion batteries. John B Goodenough, M Stanley Whittingham and Akira Yoshino share the prize for their work on these rechargeable devices, which are used for portable electronics. (L-R) John B Goodenough, M Stanley Whittingham, Akira Yoshino The trio will share the prize money of nine million kronor (£738,000). At the age of 97, Prof Goodenough is the oldest ever Nobel laureate. Professor of chemistry Olof Ramström said lithium-ion batteries had "enabled the mobile world". The lithium-ion battery is a lightweight, rechargeable and powerful battery that is used in everything from mobile phones to laptops to electric cars. The Nobel Committee said: "Lithium-ion batteries are used globally to power the portable electronics that we use to communicate, work, study, listen to music and search for knowledge." Committee member Sara Snogerup Linse, from Lund University, said: "We have gained access to a technical revolution. The laureates developed lightweight batteries of high enough potential to be useful in many applications." In addition to their use in electric vehicles, the rechargeable devices could also store significant amounts of energy from renewable sources, such as solar and wind power. The foundation of the lithium-ion battery was laid during the oil crisis of the 1970s. M Stanley Whittingham, 77, who was born in Nottingham, UK, worked to develop energy technologies that did not rely on fossil fuels. He discovered an energy-rich material called titanium disulphide, which he used to make a cathode - the positive terminal - in a lithium battery.
    [Show full text]
  • Q1. Who Has Been Appointed As the New and Fourth
    Bankersadda.com Current Affairs Quiz for RBI Assistant Mains 2020 Adda247.com Quiz Date: 9th October 2020 Q1. Who has been appointed as the new and fourth Deputy Governor of RBI? (a) Prasanna Kumar Mohanty (b) Sachin Chaturvedi (c) M Rajeshwar Rao (d) Manish Sabharwal (e) Rajat Agrawal Q2. Which day of the year is marked as the Air Force Day in India? (a) 7 Oct (b) 8 Oct (c) 9 Oct (d) 10 Oct (e) 11 Oct Q3. Who have won the 2020 Nobel Prize in Chemistry? (a) George P. Smith and Sir Gregory P. Winter (b) Frances H. Arnold and M. Stanley Whittingham (c) John B. Goodenough and Akira Yoshino (d) Emmanuelle Charpentier and Jennifer A. Doudna (e) William E. Moerner and Stefan Hell Q4. Government has recently integrated the API of the PM SVANidhi portal with which bank to enable speedy loan sanctioning and disbursement process? (a) Punjab National Bank (b) HDFC Bank (c) SBI (d) ICICI Bank (e) Axis Bank Q5. The Indian cotton has been given a brand name by the Government of India on the occasion of World Cotton Day. What is the brand name of the product? (a) Kasturi Cotton (b) Kuber Cotton (c) Kesari Cotton (d) Kanak Cotton (e) Kundan Cotton Q6. Which state has launched the „Digital Seva Setu‟ programme to connect each village panchayat of the state through optical fiber network? (a) Maharashtra (b) Gujarat For any Banking/Insurance exam Assistance, Give a Missed call @ 01141183264 Bankersadda.com Current Affairs Quiz for RBI Assistant Mains 2020 Adda247.com (c) Madhya Pradesh (d) Rajasthan (e) Uttar Pradesh Q7.
    [Show full text]
  • Insider View of Cells Scoops Nobel
    NEWS IN FOCUS finer-resolution structure. Moerner went on to show that identical molecules could be made to fluoresce at different times, a discovery that ultimately made Betzig’s vision a reality. It was another decade before Betzig demon- strated his idea in practice. In 2006, working at the Howard Hughes Medical Institute’s Janelia Farm research campus in Ashburn, Virginia, he took a super-resolution picture of a lysosome protein dotted with green fluorescent molecules as labels. The technique can now get down to a resolution of 20 nanometres, says Markus Sauer, who studies super-resolution microscopy at the University of Würzburg, Germany. Meanwhile Stefan Hell, working at the Uni- Chemical visionaries: (from left) Stefan Hell, Eric Betzig and William Moerner. versity of Turku in Finland, had found a way around Abbe’s limit by a different technique, NOBEL PRIZE which also relies on switching fluorescent mol- ecules on and off. In 1994, he proposed using one laser to make a cluster of dye molecules flu- oresce, and a second beam, of a different wave- Insider view of length, to switch some of those fluorophores off. Hell’s trick is to use the second beam to outline the cluster illuminated by the first, so that only the molecules in a very narrow spot cells scoops Nobel fluoresce. The final image remains blurred, as light still cannot beat Abbe’s limit, but it is clear that light can have come only from the narrow Optics pioneers win chemistry prize for defying limits of central spot defined by the second beam, ena- conventional microscopes.
    [Show full text]
  • Nobel Prize in Chemistry 2014 for Stefan Hell
    Nobel Prize in Chemistry 2014 for Stefan Hell Ernst Abbe had been considered an insurmountable hurdle for nearly a century. The same limit by diffraction also ap- plies to fluorescence microscopy which is frequently used in biology and medicine. In this technique, cell molecules are marked with fluorescent dyes and made to glow by using a laser beam with a particular wavelength. If the molecules are less than 200 nanometers apart, however, they also blur into a single, glowing image. For biologists and physicians, this meant a massive restriction because for them, the observa- tion of much smaller structures in living cells is decisive. The 52-year-old physicist Stefan Hell was the first to radically overcome the resolution limit of light microscopes – with an entirely new concept, In the case of the STED microscopy method that he developed, the resolution is no longer re- stricted by the wavelength of light. For the first time, it is now possible to observe intracellular structures in ten times great- er detail compared to conventional fluorescence microscopy. In order to overcome the phenomenon of light diffraction, Hell and his team applied a trick: a second light beam, the STED beam is sent after the beam that excites the fluores- cent molecules. This, however, instantly quenches the mol- ecules and thus keeps them dark. To ensure that the STED beam does not “switch off” all molecules, it is shaped like a circular ring. Thus, only the molecules at the spot periphery FOTO: © MAX-PLANCK-INSTITUT FÜR BIOPHYSIKALISCHE CHEMIE CHEMIE FÜR BIOPHYSIKALISCHE © MAX-PLANCK-INSTITUT FOTO: are switched off, whereas the molecules in the centre can Stefan Hell im Labor continue to fluoresce freely.
    [Show full text]