United States Patent (19) (11) Patent Number: 4,996,263 Pyke Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11) Patent Number: 4,996,263 Pyke Et Al United States Patent (19) (11) Patent Number: 4,996,263 Pyke et al. 45) Date of Patent: Feb. 26, 1991 (54) HIGH MODULUS RUBBER COMPOSITION FOREIGN PATENT DOCUMENTS (75) Inventors: James B. Pyke, Akron; Richard G. 6049018 3/1985 Japan ................................... 52.5/181 Bauer, Kent; Martin P. Cohen; 6286.048 4/1987 Japan. Pawan K. Handa, both of Akron, all 6356514 3/1988 Japan ................................... 52.5/178 of Ohio OTHER PUBLICATIONS 73) Assignee: The Goodyear Tire & Rubber Fourth International Conference on Reactive Process Company, Akron, Ohio ing of Polymers, Oct. 29-31, 1986, Gardner Student Center, University of Akron (see especially Hoshino on (21) Appl. No.: 253,839 pp. 22-27). Primary Examiner-Ana L. Carrillo (22 Filed: Oct. 6, 1988 Attorney, Agent, or Firm-Alvin T. Rockhill 51 Int. Cl. .............................................. C08 L 77/00 57 ABSTRACT 52) U.S. Cl. .................................... 525/178; 525/183; It is desirable to increase the modulus of rubbers utilized 525/184; 525/179 in a wide variety of applications. This invention dis 58) Field of Search ................ 525/178, 181, 183, 184 closes a technique for modifying rubbers to improve their modulus without sacrificing other properties. The (56) References Cited subject invention more specifically relates to a process U.S. PATENT DOCUMENTS for preparing a rubber composition having a high mod ulus which comprises reacting maleic anhydride with at 4,535,119 5/1984 Tanibuchi et al. least one polydiene rubber and at least one nylon. 4,567,238 1/1986 Sasaki et al. ........................ 52.5/183 4,708,987 11/1987 Hergenrother et al. ... 525/184 4,777,211 10/1988 Lavengood et al. ................. 525/66 15 Claims, No Drawings 4,996,263 1. 2 carbon atoms. Some representative examples of suitable HIGH MODULUS RUBBER COMPOSITION diene monomers include 1,3-butadiene, isoprene, 2,3- dimethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3,4- BACKGROUND OF THE INVENTION dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene, phe It is sometimes desirable to increase the modulus of 5 nyl-1,3-butadiene and the like. The polydiene rubber rubber compounds. For instance, it is generally desir can also contain various vinyl aromatic monomers, such able to increase the modulus of rubber compounds as styrene, 1-vinylnaphthalene, 2-vinylnaphthalene, which are utilized in tire tread base compositions and in a-methylstyrene, 4-phenylstyrene, 3-methylstyrene, tire wire coat compounds. A higher degree of stiffness and the like. Some representative examples of polydiene in such rubber compositions is conventionally attained 10 rubbers that can be modified by utilizing the procedure by incorporating larger amounts of fillers, such as car of this invention include polybutadiene, styrene-butadi bon black, into the rubber compounds and/or by in ene rubber (SBR), synthetic polyisoprene, natural rub creasing the state of cure of such compounds. Unfortu ber, isoprene-butadiene rubber, isoprene-butadiene-sty nately, both of these techniques lead to undesirable rene rubber, nitrile rubber, carboxylated nitrile rubber, results. For instance, the incorporation of additional 15 and EPDM rubber. The technique of this invention is carbon black into rubber compounds typically leads to particularly well suited for utilization in modifying nat high levels of hysteresis. Accordingly, the utilization of ural rubber, synthetic polyisoprene, and cis-1,4- such compounds in tires results in excessive heat build polybutadiene. up and poor cut growth characteristics. The utilization Virtually any type of nylon can be utilized in prepar of high amounts of sulfur to attain a high state of cure 20 ing the rubber compositions of this invention. These typically leads to poor aging resistance. Furthermore, it nylons are polyamides which can be prepared by react is highly impractical to reach high levels of stiffness by ing diamines with dicarboxylic acids. The diamines and increased state of cure alone. For these reasons, it is not dicarboxylic acids which are utilized in preparing such possible to attain the desired degree of stiffness in tire nylons will generally contain from about 2 to about 12 tread base compounds by simply adding higher levels of 25 carbon atoms. Nylons can also be prepared by addition fillers or curatives. polymerization. Nylon which is prepared by reacting SUMMARY OF THE INVENTION hexamethylene diamine with adipic acid (hexanedioic The subject invention discloses a technique for modi acid) can be utilized in the process of this invention. It fying a rubber so as to greatly increase its modulus. This 30 is generally referred to as nylon-6,6 because it is derived results in the rubber being better suited for applications from a diamine which contains 6 carbon atoms and a where a high degree of stiffness is desirable. However, dicarboxylic acid which contains 6 carbon atoms. Ny this modification procedure does not generally sacrifice lon-6,6 typically has a number average molecular other desirable characteristics of the rubber. For in weight of 12,000 to 20,000, is exceptionally strong, abra stance, the rubber compositions of this invention have 35 sion resistant, and available from a wide variety of an increased modulus but do not have an increased SOCS degree of hysteresis. The nylons which are preferred for utilization in the The rubber compositions of this invention are pre process of this invention have melting points which are pared by grafting nylon onto the rubber. This is done by within the range of about 150 C. to about 255 C. Some reacting maleic anhydride with the rubber and at least representative examples of such preferred nylons in one nylon. This procedure grafts polymer chains which clude nylon-6,6, nylon-6, nylon-7, nylon-8, nylon-9, are comprised of nylon onto the polymer chains of the nylon-10, nylon-11, nylon-12 and nylon-6,12. The most rubber. preferred nylons have melting points which are within The subject invention specifically discloses a process the range of about 175' C. to about 210 C. Some repre for preparing a rubber composition having a high mod sentative examples of such highly preferred nylons in ulus which comprises reacting maleic anhydride with at clude nylon-8, nylon-9, nylon-10, nylon-11 and nylon least one polydiene rubber and at least one nylon. In 12. most cases from about 2 phr to about 55 phr of nylon Polycapryllactam, which is generally referred to as will be utilized in the modification procedure. It is gen nylon-8, is generally prepared by polymerizing capryl erally preferred to react the rubber with the maleic 50 lactam. This polymerization takes place readily in the anhydride at a temperature which is within the range of melt with a small amount of amino acid initiator. Ca about 180 C. to about 200 C. to form a rubber/maleic prylactam is prepared by dimerization of butadiene to anhydride adduct and to subsequently react the rub cyclooctadiene, which is hydrogenated to cycloctane, ber/maleic anhydride adduct with the nylon at a tem oxidized to cycloctanone, converted to the oxime with perature which is at least as high as the melting point of 55 hydroxylamine, and subjected to the Beckmann rear the nylon. rangement. Nylon-8 has a melting point of 200 C. Poly(co-aminoundecanoic acid), known as nylon-11, DETALED DESCRIPTION OF THE can be prepared by the melt polymerization of co INVENTION aminoundecanoic acid under an inert gas atmosphere at The process of this invention can be utilized to mod 60 a temperature of about 215 C. Nylon-11 has a melting ify virtually any type of rubbery elastomer which con point of 190° C. tains double bonds. The rubbers which are modified in Nylon-12 or poly(a)-dodecanolactam) is normally accordance with this invention typically contain repeat prepared by the polymerization of co-dodecanolactam at units which are derived from diene monomers, such as a high temperature of at least about 300° C. utilizing an conjugated diene monomers and/or nonconjugated 65 acid catalyst, c)-dodecanolactam is prepared by trimeri diene monomers. Such conjugated and nonconjugated zation of butadiene to cyclododecatriene, the subse diene monomers typically contain from 4 to about 12 quent hydrogenation to cyclododecane, followed by carbon atoms and preferably contain from 4 to about 8 oxidation to cyclododecanone, which is converted to 4,996,263 3 the oxime with hydroxylamine, with the oxime being rearranged by Beckmann rearrangement to yield the H ad-dodecanolactam. Nylon-12 has a melting point of 179' C. and is very highly preferred for use as the nylon R--CH=CH-R in the process of this invention. The nylons used in the process of this invention will typically have number average molecular weight which is within the range of about 8,000 to about 40,000. Such nylons will more typically have number average molec ular weights which are within the range of about 10,000 O to about 25,000. The nylon utilized can be capped or wherein two nylon chains are grafted onto the rubber can have free primary amine end groups. However, by only one maleic anhydride molecule. nylons having free amine end groups are believed to The modification procedure of this invention can be react more quickly with maleic anhydride and are ac carried out utilizing several satisfactory techniques. For cordingly preferred. 15 instance, the maleic anhydride, nylon, and polydiene The modified rubber compositions of this invention rubber can be simultaneously mixed together and are prepared by simply reacting the maleic anhydride heated to graft the nylon onto the rubber. In another with the polydiene rubber and the nylon. This can be scenario, the maleic anhydride can be reacted with the accomplished by simply mixing the maleic anhydride rubber to produce a rubber/maleic anhydride adduct homogeneously throughout a blend of the polydiene 20 and the rubber/maleic anhydride adduct can then be rubber and the nylon and heating the maleic anhy subsequently reacted with the nylon to produce the dride/nylon/polydiene rubber blend.
Recommended publications
  • The Influence of Electron Beam Irradiation on the Property Behaviour of Medical Grade Poly (Ether-Block-Amide) (PEBA)
    Australian Journal of Basic and Applied Sciences, 7(5): 174-181, 2013 ISSN 1991-8178 The Influence Of Electron Beam Irradiation On The Property Behaviour Of Medical Grade Poly (Ether-Block-Amide) (PEBA) 1Kieran A. Murray, 1James E.Kennedy, 2Brian McEvoy, 2Olivier Vrain, 2Damien Ryan, 2Richard Cowman and 1Clement L. Higginbotham 1Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland 2 Synergy Health Applied Sterilisation Technologies, IDA Business & Technology Park, Sragh, Tullamore, Co. Offaly, Ireland Abstract: The aim of this paper is to investigate the potential effects of electron beam, ranging between 5 and 200kGy for unstabilised Poly (ether-block-amide) (Pebax) material. The Pebax samples were subjected to a wide range of extensive characterisation techniques in order to identify any modifications to the material properties. The results demonstrated that a series of changes occurred and some of these included a reduction in the mechanical properties and melting strength, an increase in the molecular weight and viscosity and alterations to surface characteristics of the material. Overall, this study provided evidence that electron beam irradiation lead to the development of simultaneous crosslinking and chain scission in the Pebax material, where crosslinking/branching became the dominating factor above 10kGy. Key words: Electron beam irradiation,Poly(ether-block-amide), Thermal, mechanical, structural and surface properties, Temperature ramp, Degradation INTRODUCTION Poly (ether-block-amide) (Pebax) is a copolymer which consists of linear chains of rigid polyamide blocks covalently linked to flexible polyether blocks via ester groups (Joseph and Flesher, 1986). The polyamide crystalline region provides the mechanical strength while the polyether amorphous region offers high permeability as a result of the high chain mobility of the ether linkage (Joseph and Flesher, 1986; Liu, 2008).
    [Show full text]
  • The Dynisco Extrusion Processors Handbook 2Nd Edition
    The Dynisco Extrusion Processors Handbook 2nd edition Written by: John Goff and Tony Whelan Edited by: Don DeLaney Acknowledgements We would like to thank the following people for their contributions to this latest edition of the DYNISCO Extrusion Processors Handbook. First of all, we would like to thank John Goff and Tony Whelan who have contributed new material that has been included in this new addition of their original book. In addition, we would like to thank John Herrmann, Jim Reilly, and Joan DeCoste of the DYNISCO Companies and Christine Ronaghan and Gabor Nagy of Davis-Standard for their assistance in editing and publication. For the fig- ures included in this edition, we would like to acknowledge the contributions of Davis- Standard, Inc., Krupp Werner and Pfleiderer, Inc., The DYNISCO Companies, Dr. Harold Giles and Eileen Reilly. CONTENTS SECTION 1: INTRODUCTION TO EXTRUSION Single-Screw Extrusion . .1 Twin-Screw Extrusion . .3 Extrusion Processes . .6 Safety . .11 SECTION 2: MATERIALS AND THEIR FLOW PROPERTIES Polymers and Plastics . .15 Thermoplastic Materials . .19 Viscosity and Viscosity Terms . .25 Flow Properties Measurement . .28 Elastic Effects in Polymer Melts . .30 Die Swell . .30 Melt Fracture . .32 Sharkskin . .34 Frozen-In Orientation . .35 Draw Down . .36 SECTION 3: TESTING Testing and Standards . .37 Material Inspection . .40 Density and Dimensions . .42 Tensile Strength . .44 Flexural Properties . .46 Impact Strength . .47 Hardness and Softness . .48 Thermal Properties . .49 Flammability Testing . .57 Melt Flow Rate . .59 Melt Viscosity . .62 Measurement of Elastic Effects . .64 Chemical Resistance . .66 Electrical Properties . .66 Optical Properties . .68 Material Identification . .70 SECTION 4: THE SCREW AND BARREL SYSTEM Materials Handling .
    [Show full text]
  • THE EFFECTS of SEVERAL PAPER CHARACTERISTICS and APPLICATION METHODS on the SUBLIMATION RATE of CYCLODODECANE by Kelli A. Piot
    THE EFFECTS OF SEVERAL PAPER CHARACTERISTICS AND APPLICATION METHODS ON THE SUBLIMATION RATE OF CYCLODODECANE by Kelli A. Piotrowski A thesis submitted to the Department of Art In conformity with the requirements for the degree of Master of Art Conservation Queen’s University Kingston, Ontario, Canada (September, 2013) Copyright © Kelli Piotrowski, 2013 ABSTRACT Cyclododecane (CDD) is a waxy, solid cyclic hydrocarbon (C12H24) that sublimes at room temperature and possesses strong hydrophobicity. In paper conservation CDD is used principally as a temporary fixative of water-soluble media during aqueous treatments. Hydrophobicity, ease of reversibility, low toxicity, and absence of residues are reasons often cited for its use over alternative materials although the latter two claims continue to be debated in the literature. The sublimation rate has important implications for treatment planning as well as health and safety considerations given the dearth of reliable information on its toxicity and exposure limits. This study examined how the rate of sublimation is affected by fiber type, sizing, and surface finish as well as delivery in the molten phase and as a saturated solution in low boiling petroleum ether. The effect of warming the paper prior to application was also evaluated. Sublimation was monitored using gravimetric analysis after which samples were tested for residues with gas chromatography-flame ionization detection (GC-FID) to confirm complete sublimation. Water absorbency tests were conducted to determine whether this property is fully reestablished. Results suggested that the sublimation rate of CDD is affected minimally by all of the paper characteristics and application methods examined in this study. The main factors influencing the rate appear to be the thickness and mass of the CDD over a given surface area as well as temperature and ventilation.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,951,941 Wang Et Al
    USOO5951941A United States Patent (19) 11 Patent Number: 5,951,941 Wang et al. (45) Date of Patent: Sep. 14, 1999 54) BLOCK COPOLYMER ELASTOMER FOREIGN PATENT DOCUMENTS CATHETER BALLOONS 0 485 903 5/1982 European Pat. Off.. 75 Inventors: Lixiao Wang, Maple Grove; Jianhua O 5. 3. 3.1988/1989 European Pat. Off.. Chen, Brooklyn Park, both of Minn. 420 488 3/1991 European Pat. Off.. O 436 501 7/1991 European Pat. Off.. (73) Assignee: Scimed Life Systems, Inc., Maple O 513 459 A1 11/1992 European Pat. Off.. Grove, Minn. 540858 5/1993 European Pat. Off.. 420 488 7/1993 European Pat. Off.. O 566 755 A1 10/1993 European Pat. Off.. 21 Appl. No.: 09/137,658 531 117 B1 10/1993 European Pat. Off.. 22 Filed: Aug. 21, 1998 566 755 10/1993 European Pat. Off.. 540858 12/1993 European Pat. Off.. Related U.S. Application Data (List continued on next page.) 62 Division of application No. 08/805,899, Feb. 25, 1997, Pat. OTHER PUBLICATIONS No. 5,830,182, which is a continuation of application No. ation08/671,861, of application Jun. 28, No. 1996, 08/397,837, abandoned, Mar. which 2, 1995, is a continu-Pat. No. R 66 Elyst block amide. highinth- prismance TPE, ss 5,556,383, which is a continuation-in-part of application No. Modern Plastics, Sep. 1987, pp. 100,105,110. 08/204,554, Mar. 2, 1994, abandoned. (List continued on next page.) 51) Int. Cl. ........................... B29C 39/02; A61M 29/00 52 U.S. Cl. .............................. 264/523; 604/96; 604/97; Primary Examiner Samuel A.
    [Show full text]
  • FDM Nylon 12
    FREQUENTLY ASKED QUESTIONS FDM Nylon 12 1. What is nylon? Nylons were the first engineering thermoplastics. They have been around for 85 years and are one of the most widely used materials for traditional thermoplastic manufacturing today. Nylons falls into the polyamide (PA) class of materials. This is a material class that includes both natural substances (silk and wool) and synthetic materials (thermoplastics). All nylon materials are polyamides, but all synthetic polyamides aren’t nylons. Since nylon is such a recognizable material name, on our literature and in conversations, we will use it as the preferred term. 2. What nylon material is Stratasys offering? FDM® Nylon 12™ (unfilled) is the first nylon material that can be 3D printed with fused deposition modeling (FDM) technology. It has been highly demanded by our customers and complements our current FDM materials portfolio. Unique part capabilities and properties include: • Snap-fit and press-fit inserts: tough small clips, bosses, posts and holes • High fatigue resistance: parts exposed to repeat loading cycles, stress and vibration • Good impact strength: parts resistant to shock from being dropped or abrupt forces • Moderate temperate resistance: HDT of up to 82°C (after annealing) • Good chemical resistance: resistant to moderate solvents, alcohols and chemicals Application best fits include: • Panels, covers, housings with snap-fit clips, bosses and other small features • Environmental control ducting and venting • Components of products with high vibration, repetitive stress or fatigue • Drill guides, cutting fixtures and prototypes with friction fit press-in inserts • Prototypes and end-use parts requiring tough bosses or threaded inserts THE 3D PRINTING SOLUTIONS COMPANY™ FREQUENTLY ASKED QUESTIONS FDM Nylon 12 Target industries include: • Automotive: interior panels, environmental control ducting • White goods: panels, covers, vibration resistant components • Home appliance and consumer electronics: covers, panels and facades • Aerospace: tooling, manufacturing aids, jigs and fixtures 3.
    [Show full text]
  • Extruded Nylon Types 66 & 6 (PA66 & PA6)
    Extruded Nylon Types 66 & 6 (PA66 & PA6) Technical Datasheet Hard Wearing Engineering Plastics for many applications Service. Quality. Value. The characteristics of Nylon 66 and Nylon 6 are, with a few exceptions, broadly similar to each other. While Nylon 66 Product Customer is the preferred general-purpose nylon in the UK, and is Attributes Benefits therefore the principal stocked nylon at Smiths Metals, Nylon 6 is used for the same applications throughout Range of grades available. Correct grade selection much of mainland Europe. Both types are covered for each application is in this datasheet but any significant differences are optimised. highlighted. Good mechanical Very good all-round Typical Applications properties. product for diverse Good chemical resistance. engineering applications. Mechanical engineering, automotive and general Good impact strength. machinery construction - E.g. plain bearings, coil bodies, Natural product may be guide & clutch parts, gears, cams, rollers, slide bearings, used in contact with seal rings and guide rails. foodstuffs (subject to Product Description appropriate limits). High-quality general-purpose wear resistant Naturally good damping Reduces machinery noise. engineering nylons; the chemical name is polyamide, and properties. is available in a range of grades and forms to suit many applications. Nylon 66 is harder and stronger than nylon 6 Good sliding properties. Ideal for use in many whereas Nylon 6 absorbs slightly more moisture. High wear resistance. industrial bearing, wear Good abrasion resistance. and gear applications. Technical Description Product sourced from long- Consistent quality ensures Smiths’ range of extruded Nylon includes the following standing manufacturer with uniform machining and grade options – ISO accreditation. performance characteristics.
    [Show full text]
  • Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae
    environments Article Assessing the Conversion of Various Nylon Polymers in the Hydrothermal Liquefaction of Macroalgae Sukanya Hongthong 1,2,*, Hannah S. Leese 2, Michael J. Allen 3,4 and Christopher J. Chuck 2 1 Department of Production Engineering, Chaiyaphum Rajabhat University, Chaiyaphum 36000, Thailand 2 Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; [email protected] (H.S.L.); [email protected] (C.J.C.) 3 Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; [email protected] 4 College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK * Correspondence: [email protected]; Tel.: +66-840029670 Abstract: Marine macroalgae offers a promising third generation feedstock for the production of fuels and chemicals, avoiding competition with conventional agriculture and potentially helping to improve eutrophication in seas and oceans. However, an increasing amount of plastic is distributed into the oceans, and as such contaminating macroalgal beds. One of the major plastic contaminants is nylon 6 derived from discarded fishing gear, though an increasing amount of alternative nylon polymers, derived from fabrics, are also observed. This study aimed to assess the effect of these nylon contaminants on the hydrothermal liquefaction of Fucus serratus. The hydrothermal liquefaction (HTL) of macroalgae was undertaken at 350 ◦C for 10 min, with a range of nylon polymers (nylon 6, nylon 6/6, nylon 12 and nylon 6/12), in the blend of 5, 20 and 50 wt.% nylon to biomass; 17 wt.% biocrude was achieved from a 50% blend of nylon 6 with F.
    [Show full text]
  • Nylon Resins
    Food and Drug Administration, HHS § 177.1500 (a) For the purpose of this section, the National Archives and Records Ad- nitrile rubber modified acrylonitrile- ministration (NARA). For information methyl acrylate copolymers consist of on the availability of this material at basic copolymers produced by the graft NARA, call 202–741–6030, or go to: http:// copolymerization of 73–77 parts by www.archives.gov/federallregister/ weight of acrylonitrile and 23–27 parts codeloflfederallregulations/ by weight of methyl acrylate in the ibrllocations.html.Copies are applicable presence of 8–10 parts by weight of bu- to the basic copolymers in the form of tadiene-acrylonitrile copolymers con- particles of a size that will pass taining approximately 70 percent by through a U.S. standard sieve No. 6 and weight of polymer units derived from that will be held on a U.S. standard butadiene. sieve No. 10: (b) The nitrile rubber modified acry- (i) Extracted copolymer not to ex- lonitrile-methyl acrylate basic copoly- ceed 2.0 parts per million in aqueous mers meet the following specifications extract obtained when a 100-gram sam- and extractives limitations: ple of the basic copolymers is extracted (1) Specifications. (i) Nitrogen content with 250 milliliters of demineralized is in the range 16.5–19 percent as deter- (deionized) water at reflux temperature mined by Kjeldahl analysis. for 2 hours. (ii) Intrinsic viscosity in acetonitrile (ii) Extracted copolymer not to ex- at 25 °C is not less than 0.29 deciliter ceed 0.5 part per million in n-heptane per gram as determined by ASTM extract obtained when a 100-gram sam- method D1243–79, ‘‘Standard Test Meth- ple of the basic copolymers is extracted od for Dilute Solution Viscosity of with 250 milliliters of reagent grade n- Vinyl Chloride Polymers,’’ which is in- heptane at reflux temperature for 2 corporated by reference.
    [Show full text]
  • Effects of Temperature, Packaging and Electron Beam Irradiation Processing Conditions on the Property Behaviour of Poly (Ether-Block-Amide) Blends
    Materials Science and Engineering C 39 (2014) 380–394 Contents lists available at ScienceDirect Materials Science and Engineering C journal homepage: www.elsevier.com/locate/msec Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends Kieran A. Murray a, James E. Kennedy a, Brian McEvoy b, Olivier Vrain b, Damien Ryan b, Richard Cowman b, Clement L. Higginbotham a,⁎ a Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland b Synergy Health, IDA Business & Technology Park, Sragh, Tullamore, Co. Offaly, Ireland article info abstract Article history: The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant Received 17 December 2013 and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam Received in revised form 6 February 2014 processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, Accepted 7 March 2014 these became more pronounced following irradiation. The effect of varying the temperature, packaging and Available online 16 March 2014 processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing Keywords: Electron beam irradiation exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI Poly (ether-block-amide) and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on Crosslinking and chain scission the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non- Mechanical, thermal, structural and surface vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) properties in contrast to the traditional method.
    [Show full text]
  • Kr0000223 Kaeri/Ar-541/99
    KR0000223 KAERI/AR-541/99 1999. 6. 30 31/ 40 Please be aware that all of the Missing Pages in this document were originally blank pages "-& A^ uft : 1999. 4. 1-1999. 6. 30) 1999Vl 6^ 30°^ 7K 1. *l-cl-. M-ii 4^-^11 °1-S- ^-°>^ polymer^ ^ sa 71 ^-i 71 # 7)1 2. ^^ 71*13 7fl'g:-i- fl* ^^^ Cfl«l", ^^i, 7l<3<>1lAi 471 polymer^ 71 TiJI&ofl H Af^-^^ qj ^-^-£3}-^ Pfl - i - 7^ 7) polymer o] . 7)%°) ifl-g- ^ 7>. q. q-ii ^-tj-^^ tfl^l t ^r 5U 5}. AflTfl q^ ^-^-7fl Aj^j- ^ol *-q. q. ^i q^ -g-^(^, Aflei-^, clay) 2) 71^ 7 q. q. 3) q. - 11 1) ^-ifl q-t -ij-^fl 71 # ^^ 2) sj^cf. aem ^vfl 71 o 3) -f El 4) *MN 71^ 7fl^ A^51 «mS«l Jl 71^ Ufi, ^-^Tfl 7l ^ 7fl - Ill - i } ix TT.} xi all 1 % *m 1 *ll 1 ^ ^^71^^ *-£. 1 *11 2 ^ "S^M^s] ^-S.^ 2 1. 71^3 ^^ 2 2. ^-3)^ #^ 4 *tf 3 *l <?^ 7]S\$\ ^^ 7 A 2 ^ ^-tflil <L>^71^^^ 8 *11 1 ^ 17]-^^^^ ^t^t^il 8 i -7II0 _Q 2. ^ 7l^^3§- ^-^ 11 3. ^-4] 7)£Q% ^-^ 12 #Jl^-^ 17 *11 2 ^ iTjif^^^ ul-^^.^-^ 19 1. 7D.2. 19 2. ^ 7]^^^ ^-^ 22 3. ^ 7l^^J§- ^-^ 23 7K -B-71 <SS.jr o|^-o] ^E ^^ A^OJ 25 27 31 33 34 Q/t 7\. 7l^S] 'g^ ^ ^Avfl-g- 34 M-. -§-JE 38 t-l M.M - AC\ 2. ^-vfl 7)^^ig- £-^ 43 - v - 7\.
    [Show full text]
  • Polyamide 12 Materials Study of Morpho-Structural Changes During Laser Sintering of 3D Printing
    polymers Article Polyamide 12 Materials Study of Morpho-Structural Changes during Laser Sintering of 3D Printing Gražyna Simha Martynková 1,2,* , Aleš Slíva 3 , Gabriela Kratošová 1 , Karla Cechˇ Barabaszová 1 , So ˇnaŠtudentová 4, Jan Klusák 4 , Silvie Brožová 5, Tomáš Dokoupil 6 and Sylva Holešová 1 1 Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70800 Ostrava, Czech Republic; [email protected] (G.K.); [email protected] (K.C.B.);ˇ [email protected] (S.H.) 2 IT4 Innovations, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70800 Ostrava, Czech Republic 3 Institute of Transport, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70800 Ostrava, Czech Republic; [email protected] 4 Department of Chemistry, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70800 Ostrava, Czech Republic; [email protected] (S.Š.); [email protected] (J.K.) 5 Department of Non-Ferrous Metals, Refining and Recycling, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 70800 Ostrava, Czech Republic; [email protected] 6 One3D s.r.o., Jižní 1443/29, 78985 Mohelnice, Czech Republic; [email protected] * Correspondence: [email protected] Abstract: The polyamide (PA)-12 material used for additive manufacturing was studied in aspects of morphology and their structural properties for basic stages received during 3D laser printing. Citation: Simha Martynková, G.; Samples were real, big-scale production powders. The structure of polymer was evaluated from Slíva, A.; Kratošová, G.; Cechˇ the crystallinity point of view using XRD, FTIR, and DSC methods and from the surface properties Barabaszová, K.; Študentová, S.; using specific surface evaluation and porosity.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,883,917 B1 Davies Et Al
    US008883917B1 (12) United States Patent (10) Patent No.: US 8,883,917 B1 Davies et al. (45) Date of Patent: Nov. 11, 2014 (54) NYLON POLYMERS HAVING ALOW Yang et al., “Preparation of polyamide 6/silica nanocomposites from COEFFICIENT OF FRCTION AND METHOD silica Surface intitiated ring-opening anionic polymerization'. FOR THE MANUFACTURE THEREOF eXPRESS Polymer Letters vol. 1, No. 7 (2007) 433-442. Janicek, “Polymer/Silica Nanocomposite System”. Bachelor Thesis, (75) Inventors: Jack D. Davies, Houma, LA (US); 2007, Tomas Bata University including technical information in Gregory J. Biederman, Manchester, NH Appedix 3 regarding Aerosil 200, R972, and R9200 (Degussa), data (US); Christopher A. Coco, Salem, NH from Sigma-Aldrich regarding Aerosil and Cab-O-Sil, Cab-O-Sil (US) LM-150, M-5, EH-5, TS-610, TS-530 (Cabot), and HDK Pyrogenic Silica (Wacker Silicones); total 108 pages. (73) Assignee: Nylon Corporation of America, Inc., Khan et al., “Rheology of Fumed Silica Dispersion for Fiber-Optic Manchester, NH (US) Cables'. Polymer Engineering and Science, Dec. 1991, vol. 31, No. 24; pp. 1701-1707. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 * cited by examiner U.S.C. 154(b) by 219 days. (21) Appl. No.: 13/608,168 Primary Examiner — Edward Cain (74) Attorney, Agent, or Firm — Renner Kenner Greive (22) Filed: Sep. 10, 2012 Bobak Taylor & Weber (51) Int. Cl. COSL 77/00 (2006.01) (57) ABSTRACT (52) U.S. Cl. USPC ........................................... 524/845; 524/492 A method for the preparation of a polyamide-based compo (58) Field of Classification Search sition provides for the substantially uniform dispersion of CPC .........
    [Show full text]