FDM Nylon 12
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Textile Printing
TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 ISP 1004 TEXTILE PRINTING This report is sponsored by the Importer Support Program and written to address the technical needs of product sourcers. © 2003 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. INTRODUCTION The desire of adding color and design to textile materials is almost as old as mankind. Early civilizations used color and design to distinguish themselves and to set themselves apart from others. Textile printing is the most important and versatile of the techniques used to add design, color, and specialty to textile fabrics. It can be thought of as the coloring technique that combines art, engineering, and dyeing technology to produce textile product images that had previously only existed in the imagination of the textile designer. Textile printing can realistically be considered localized dyeing. In ancient times, man sought these designs and images mainly for clothing or apparel, but in today’s marketplace, textile printing is important for upholstery, domestics (sheets, towels, draperies), floor coverings, and numerous other uses. The exact origin of textile printing is difficult to determine. However, a number of early civilizations developed various techniques for imparting color and design to textile garments. Batik is a modern art form for developing unique dyed patterns on textile fabrics very similar to textile printing. Batik is characterized by unique patterns and color combinations as well as the appearance of fracture lines due to the cracking of the wax during the dyeing process. Batik is derived from the Japanese term, “Ambatik,” which means “dabbing,” “writing,” or “drawing.” In Egypt, records from 23-79 AD describe a hot wax technique similar to batik. -
The Pennsylvania State University the Graduate School AN
The Pennsylvania State University The Graduate School AN EXAMINATION OF ANALYTICAL METHODS TOWARDS THE COMPLETE ANALYSIS OF CONTAMINANTS OF EMERGING CONCERN IN WASTEWATER AND WASTEWATER IMPACTED SURFACE WATER, SOILS, AND CROPS. A Dissertation in Chemistry by Kyra A. Murrell © 2020 Kyra A. Murrell Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2020 The dissertation of Kyra A. Murrell was reviewed and approved by the following: Frank L. Dorman Associate Professor of Biochemistry and Molecular Biology Dissertation Co-Advisor Co-Chair of Committee Miriam Freedman Associate Professor of Chemistry, Meteorology and Atmospheric Science Dissertation Co-Adviser Co-Chair of Committee Paul Cremer J. Lloyd Huck Professor of Chemistry and of Biochemistry and Molecular Biology Christine Keating Distinguished Professor of Chemistry Jack Watson Professor of Soil Science, Soil Physics, Biogeochemistry Philip Bevilacqua Distinguished Professor of Chemistry and Biochemistry and Molecular Biology Department Head, Chemistry iii ABSTRACT The presence of contaminants of emerging concern (CECs) in the environment is a growing field of research for analytical environmental scientists. CECs are a class of anthropogenic pollutants not regulated by governmental agencies, and their potential deleterious environmental and human impacts are largely unknown. One of the main sources of CEC entry into the aquatic environment is wastewater treatment plant (WWTP) effluent as the treated water is often released into bodies of water, such as river and streams. Because most WWTPs were not designed to remove organic micropollutants, many CECs are poorly removed in traditional WWTPs and persist in the treated effluent waters. As a model system for study, the University Park WWTP treats the wastewater from the Penn State main campus. -
PEP Review 2015-06 Polyamide (Nylon) 6 and 66 Process Summary
IHS CHEMICAL PEP Review 2015-06 Polyamide (Nylon) 6 and 66 Process Summary July 2015 ihs.com PEP Review Process Economics Program Dipti Dave Senior Analyst II IHS CHEMICAL | Process Economics Program Review 2015-06 PEP Review 2015-06 Polyamide (Nylon) 6 and 66 Process Summary Dipti Dave, Senior Analyst II Abstra ct Polyamide 6 and 66 (or Nylon 6 and 66) are the most common types of polyamide available commercially. The total volume for the Nylon 6 and 66 polymerization market is 7.2 million tons in 2014, up from 6.4 million tons in 2010. Nylon 6 and 66 polymerization produces either chips or resin in uniform pellets. The chips or resin are further processed into two major applications: fibers or engineering thermoplastics (ETP). The fibers may also be directly produced from the molten state of the polymer, bypassing chip/resin production. The majority of the Nylon chip or resin production accounts for 92% of total polymerization, while fiber production (directly from melting) accounts for 8% market share. Demand is expected to grow at an average annual growth rate (AAGR) of 2.4% for Nylon 6 ETP and fiber. The AAGR for Nylon 66 ETP and fiber demand is 2.6%. Capacity additions have been taking place mostly in China. The Nylon processes have been reviewed by IHS Chemical Process Economics Program (PEP) since its inception in 1962. In this process summary, we review the key features for Nylon 6 and 66 production processes, and discuss recent technology developments and update the process economics for the following Nylon 6 and 66 stand-alone and integrated processes presented: 1. -
Fabricating Carbon Fiber Airframes, Part 2: Finishing
In This Issue Fabricating Carbon Fiber Airframes, Part 2: Finishing Cover Photo: Lift-off shot by Erin Card at NARAM56 in Pueblo, CO Apogee Components, Inc. — Your Source For Rocket Supplies That Will Take You To The “Peak-of-Flight” 3355 Fillmore Ridge Heights Colorado Springs, Colorado 80907-9024 USA www.ApogeeRockets.com e-mail: [email protected] Phone: 719-535-9335 Fax: 719-534-9050 ISSUE 371 AUGUST 12, 2014 Fabricating Carbon Fiber Airframes Part 2: Finishing By Alex Laraway Congratulations! You’ve moved onto what is frankly the most Start by releasing the lip of the mylar from around one side tedious part of fabricating tubing: getting it to look pretty. of the tube. Once you are finished, use a long dowel to be- One of the reasons carbon fiber is so highly valued is its aes- gin breaking the bond between the mylar and the epoxy on thetic characteristics. For this reason, bare carbon fiber is an the inside of the tube. Ram the dowel to the opposite end of attractive option for the finish on high-end sports cars, bikes, the tube and slowly work it around so that the entire mylar motorcycles and, of course, rockets. Getting a smooth gloss layer is broken out from the epoxy. After this step, the mylar “naked” carbon fiber is tiresome at best, especially starting should slide out with ease! with a peel ply texture. The basic idea is to give it a series of epoxy coats and sand each coat down with a different series of sandpaper grits with each epoxy pass. -
The Influence of Electron Beam Irradiation on the Property Behaviour of Medical Grade Poly (Ether-Block-Amide) (PEBA)
Australian Journal of Basic and Applied Sciences, 7(5): 174-181, 2013 ISSN 1991-8178 The Influence Of Electron Beam Irradiation On The Property Behaviour Of Medical Grade Poly (Ether-Block-Amide) (PEBA) 1Kieran A. Murray, 1James E.Kennedy, 2Brian McEvoy, 2Olivier Vrain, 2Damien Ryan, 2Richard Cowman and 1Clement L. Higginbotham 1Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland 2 Synergy Health Applied Sterilisation Technologies, IDA Business & Technology Park, Sragh, Tullamore, Co. Offaly, Ireland Abstract: The aim of this paper is to investigate the potential effects of electron beam, ranging between 5 and 200kGy for unstabilised Poly (ether-block-amide) (Pebax) material. The Pebax samples were subjected to a wide range of extensive characterisation techniques in order to identify any modifications to the material properties. The results demonstrated that a series of changes occurred and some of these included a reduction in the mechanical properties and melting strength, an increase in the molecular weight and viscosity and alterations to surface characteristics of the material. Overall, this study provided evidence that electron beam irradiation lead to the development of simultaneous crosslinking and chain scission in the Pebax material, where crosslinking/branching became the dominating factor above 10kGy. Key words: Electron beam irradiation,Poly(ether-block-amide), Thermal, mechanical, structural and surface properties, Temperature ramp, Degradation INTRODUCTION Poly (ether-block-amide) (Pebax) is a copolymer which consists of linear chains of rigid polyamide blocks covalently linked to flexible polyether blocks via ester groups (Joseph and Flesher, 1986). The polyamide crystalline region provides the mechanical strength while the polyether amorphous region offers high permeability as a result of the high chain mobility of the ether linkage (Joseph and Flesher, 1986; Liu, 2008). -
The Dynisco Extrusion Processors Handbook 2Nd Edition
The Dynisco Extrusion Processors Handbook 2nd edition Written by: John Goff and Tony Whelan Edited by: Don DeLaney Acknowledgements We would like to thank the following people for their contributions to this latest edition of the DYNISCO Extrusion Processors Handbook. First of all, we would like to thank John Goff and Tony Whelan who have contributed new material that has been included in this new addition of their original book. In addition, we would like to thank John Herrmann, Jim Reilly, and Joan DeCoste of the DYNISCO Companies and Christine Ronaghan and Gabor Nagy of Davis-Standard for their assistance in editing and publication. For the fig- ures included in this edition, we would like to acknowledge the contributions of Davis- Standard, Inc., Krupp Werner and Pfleiderer, Inc., The DYNISCO Companies, Dr. Harold Giles and Eileen Reilly. CONTENTS SECTION 1: INTRODUCTION TO EXTRUSION Single-Screw Extrusion . .1 Twin-Screw Extrusion . .3 Extrusion Processes . .6 Safety . .11 SECTION 2: MATERIALS AND THEIR FLOW PROPERTIES Polymers and Plastics . .15 Thermoplastic Materials . .19 Viscosity and Viscosity Terms . .25 Flow Properties Measurement . .28 Elastic Effects in Polymer Melts . .30 Die Swell . .30 Melt Fracture . .32 Sharkskin . .34 Frozen-In Orientation . .35 Draw Down . .36 SECTION 3: TESTING Testing and Standards . .37 Material Inspection . .40 Density and Dimensions . .42 Tensile Strength . .44 Flexural Properties . .46 Impact Strength . .47 Hardness and Softness . .48 Thermal Properties . .49 Flammability Testing . .57 Melt Flow Rate . .59 Melt Viscosity . .62 Measurement of Elastic Effects . .64 Chemical Resistance . .66 Electrical Properties . .66 Optical Properties . .68 Material Identification . .70 SECTION 4: THE SCREW AND BARREL SYSTEM Materials Handling . -
Synthesis and Characterization of In-Situ Nylon-6/Epoxy Blends
Synthesis and Characterization of in-situ Nylon-6/Epoxy Blends A thesis submitted to the Division of Research and Advanced Studies University of Cincinnati In partial fulfillment of the requirements for the degree of Master of Science 2016 In the Materials Science and Engineering Program, The Department of Mechanical and Materials Engineering By Anushree Deshpande B.E Polymer, University of Pune, 2011 Committee Members: Dr. Jude O. Iroh (Chair) Dr. Relva C. Buchanan Dr. Raj M. Manglik 1 ABSTRACT Epoxy is a thermosetting polymer known for its excellent adhesion, thermal stability, chemical resistance and mechanical properties. However, one of the major drawbacks of epoxies is its inherent brittleness. In order to overcome this drawback, incorporation of a thermoplastic as a second phase has proven to improve the impact strength without affecting the mechanical properties of epoxy. Researchers in the past have studied polyamide/epoxy blends in terms of blend compatibility, thermo-mechanical properties and morphology via solution blending. The current research effort employs in-situ polymerization to synthesize polyamide/epoxy blends. Blends of various compositions were synthesized by introducing Ɛ-Caprolactam (monomer of nylon-6) in the prepolymer of epoxy. All blend fractions were cured by exposing them to the same time and temperature conditions; and characterized using Dynamic Mechanical Analysis (DMA), Fourier Transform Infrared Spectroscopy (FTIR), Brookfield Viscometry, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). DMA results show an overall increase in glass transition temperature and storage modulus in the rubbery region. FTIR results reveal maximum epoxy curing up to 15 wt% monomer loading, beyond which the plateauing of the epoxy conversion is recognized. -
Carpet Recycling
1 TheThe ParticipantParticipant willwill gaingain knowledgeknowledge inin thethe following:following: › Drivers for Carpet Recycling › General Categories of carpet recycling › Differences in Various types of recycling › Market Values of Various Recycled Products › Demand for Recycled materials from Carpet › Understanding Capital needs of Recycling › Present & Anticipated recycling capacities › Present & New Recycling technologies › Challenges & Opportunities 2 3 BroadBroad ListList ofof Drivers:Drivers: › Carpet Manufacturers › LEED building Standards –Need P. Consumer for high value/Specifications › NSF 140 › High value of P.C. content › Platinum Level highly prized: Requires Min. Post consumer content. › Platinum Level requires P.C. Carpet recycling at CARE Goal levels – Escalate every year. › Professional Specifying Commercial Community demands Sustainability › Reward most Sustainable companies with increased business: or NO business › Recycling and P. Consumer recycled content is large factor › Large National Accounts demanding sustainable initiatives: › Wal‐Mart, Home Depot, etc. › Good Old healthy competition. 4 BroadBroad ListList ofof Drivers:Drivers: › Entrepreneurs: › Willing to risk Capital for carpet recycling › They are beginning to see fairly good business model › Beginning to make money from carpet recycling › They are essential link in the value chain of processing › High Oil prices › Keeps Virgin Nylon very expensive › Cost Spread between virgin and P. Consumer is wide › Makes P. Consumer very attractive for cost savings -
Cyclohexanone Oxime 20X29.Indd
Proprietary process technology CYCLOHEXANONE OXIME AMMOXINATION OF CYCLOHEXANONE WITH TITANIUM SILICATE (TS-1) PROPIETARY CATALYST Versalis proprietary process technologies available for licensing II 1 Our company Our commitment to excellence, in quality of our Versalis – the petrochemical subsidiary of Eni – is products and services, makes our company an active a dynamic player in its industry sector facing the partner for the growth of customers involved in multifold market needs through different skills. petrochemical business. With a history as European manufacturer with more Through engineering services, technical assistance, than 50 years of operating experience, Versalis stands marketing support and continuous innovation, our as a complete, reliable and now global supplier in the knowledge is the key strength to customize any new basic chemicals, intermediates, plastics and elastomers project throughout all phases. market with a widespread sales network. Customers can rely on this strong service-oriented Relying on continuous development in its production outlook and benefit from a product portfolio that plants as well as in its products, strengthening the strikes a perfect balance of processability and management of the knowledge gained through its long mechanical properties, performance and eco- industrial experience, Versalis has become a worldwide friendliness. licensor of its proprietary technologies and proprietary catalysts. The strong integration between R&D, Technology and Engineering departments, as well as a deep market -
EFFECTS of BIO-FINISHING on COTTON and COTTON/WOOL BLENDED FABRICS by SHRIDHAR CHIKODI, B.Tech. a THESIS in CLOTHING, TEXTILES
EFFECTS OF BIO-FINISHING ON COTTON AND COTTON/WOOL BLENDED FABRICS by SHRIDHAR CHIKODI, B.Tech. A THESIS IN CLOTHING, TEXTILES, AND MERCHANDISING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted May, 1994 fjC fl£1-1 ;q;:; u goS TJ Jh ~t/'li I qq.lf /V/). I U>p·~ © 1994 Shridhar Chikodi ACKNOWLEDGEMENTS In accomplishing this work, there are many people who have inspired my determination. To begin with, I would like to thank my thesis committee chairman, Dr. Samina Khan, for her invaluable guidance and encouragement throughout this project. I am thankful to Dr. Shelley Harp for the consistent support and attention to detail which was invaluable. I extend my sincere thanks to Dr. R.D. Mehta whose research expertise has been crucial to the success of this project. I am also grateful to Dr. Jerry Mason, for his support throughout my stay at Tech. I am indebted to the personnel at International Center for Textile Research and Development and to Mark Grimson at Scanning Electron Microscopy lab, for their contribution to this research. I would like to express my heartfelt thanks to my parents, for their undying love, faith and immeasurable sacrifices they have made on my behalf. I truly owe them everything. A final acknowledgement I extend to my close friend Janie, for her never-ending encouragement, support, and assistance in the past two years. 11 TABLE OF CONTENTS .. ACKNOWLEDGMENTS . ll LIST OF TABLES . vi LIST OF FIGURES . viii CHAPTERS I . -
Synergistic Effects of Nano-Silica on Aluminum Diethylphosphinate
Original Article High Performance Polymers 2016, Vol. 28(2) 140–146 ª The Author(s) 2015 Synergistic effects of nano-silica on Reprints and permission: sagepub.co.uk/journalsPermissions.nav aluminum diethylphosphinate/ DOI: 10.1177/0954008315572493 polyamide 66 system for fire retardancy hip.sagepub.com Zhaoshun Zhan1,2, Bin Li1,2, Miaojun Xu1 and Zhanhu Guo3 Abstract Nano-silica had been used as a synergistic agent for the preparation of aluminum diethylphosphinate (AlPi) flame retardant polyamide 66 (PA66/AlPi) and PA66/AlPi/nano-silica composites through twin-screw extrusion. The limiting oxygen index (LOI), used to characterize the minimum amount of oxygen needed to sustain a candle-like flame, revealed that the PA66/ 10%AlPi/1%nano-silica composites exhibited an excellent flame retardant efficiency with a high LOI value of 32.3%. The vertical flame test (UL-94) revealed that the PA66/10%AlPi/1%nano-silica composites passed the V-0 rating without drop melting. Cone calorimeter test revealed that the heat release rate and total heat rate for the PA66/10%AlPi/1%nano-silica composites were significantly decreased by 51.1 and 16.8%, respectively, compared with those of pure PA66. The thermogravimetric analysis showed that the PA66/10%AlPi/1%nano-silica composites had vast chars of 8.1% even at 800C, indicating that nano-silica could promote the char formation of the PA66 composites. Scanning electron micro- scopy indicated a solid and tough residue of the burned PA66/10%AlPi/1%nano-silica composites as compared with the very loose and brickle residue of the burned pure PA66, indicating that a suitable amount of nano-silica played a synergistic effect in the flame retardancy.