Cyclohexanone Oxime 20X29.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Cyclohexanone Oxime 20X29.Indd Proprietary process technology CYCLOHEXANONE OXIME AMMOXINATION OF CYCLOHEXANONE WITH TITANIUM SILICATE (TS-1) PROPIETARY CATALYST Versalis proprietary process technologies available for licensing II 1 Our company Our commitment to excellence, in quality of our Versalis – the petrochemical subsidiary of Eni – is products and services, makes our company an active a dynamic player in its industry sector facing the partner for the growth of customers involved in multifold market needs through different skills. petrochemical business. With a history as European manufacturer with more Through engineering services, technical assistance, than 50 years of operating experience, Versalis stands marketing support and continuous innovation, our as a complete, reliable and now global supplier in the knowledge is the key strength to customize any new basic chemicals, intermediates, plastics and elastomers project throughout all phases. market with a widespread sales network. Customers can rely on this strong service-oriented Relying on continuous development in its production outlook and benefit from a product portfolio that plants as well as in its products, strengthening the strikes a perfect balance of processability and management of the knowledge gained through its long mechanical properties, performance and eco- industrial experience, Versalis has become a worldwide friendliness. licensor of its proprietary technologies and proprietary catalysts. The strong integration between R&D, Technology and Engineering departments, as well as a deep market expertise, are the key strengths for finding answers to customers requirements. Introduction to Versalis Titanium Silicalite (TS-1) Cyclohexanone Oxime process proprietary catalyst Versalis is in the position to offer the most advanced Versalis can always provide appropriate solutions to Titanium Silicalite (TS-1) catalyst, one of the most Wastes and emissions process and technology to produce Cyclohexanone different client’s needs thanks to its capabilities and important innovation in heterogeneous catalysis over The process produces very small amount of wastes; Oxime, the key intermediate for the production of experience in the following fields: the last decades, is a high performances composite waste water has low salt content; oil drains are low and Caprolactam and then of Nylon 6. The process material specifically designed for industrial oxidation discontinues. Solid wastes consist in small quantity of is based on the reaction of cyclohexanone and Research and operation reactions with hydrogen peroxide. TS-1 is the result spent catalyst to be washed with demineralised water ammonia in presence of dilute hydrogen peroxide as Versalis background and expertise comes from of long-term research within eni group associated and dumped at an adequate location. oxidizing agent (so-called ammoximation reaction) manufacturing experience and constant lab & pilot with direct Versalis’ experience in industrial oxidation Vent-gas from the units are sent to a proper waste and uses proprietary Titanium Silicalite catalyst (TS-1), plant testing. Since the early stages of development, reactions. gas treatment sections in order to lower all the plant a high performances composite material specifically our Cyclohexanone Oxime proprietary process emissions to a practically negligible amount. designed for industrial oxidation reactions. The technology has gained benefit from a deep The unique performances of the catalyst are due to ammoximation process is a straightforward one-step cooperation between leading scientists in the TS-1 the specific features of isolated Ti active sites, able to Industrial applications oxime production process wherein no hydroxylamine catalyst field and technicians involved in industrial efficiently promote activity and selectivity in oxidation A demonstration plant (12 KTA capacity) was built at 2 formation step is required and no ammonium sulphate production at Versalis (former EniChem). reactions with hydrogen peroxide. Versalis’ Porto Marghera site (former EniChem) and 3 is co-produced. started up in 1994. Process design The technology is now fully proven at industrial scale, Main features of the innovative Versalis Process design is flexible and able to face different with a 70 KTA capacity unit on stream since 2001 and Cyclohexanone Oxime process are: conditions and constraints. Any project is individually a 100 KTA capacity unit on stream since 2014, whose lower capital expenditure due to the elimination of evaluated to offer the best solution, tailored to specific produced cyclohexanone oxime has been feeding the hydroxylamine formation step; customers needs. Thermal and fluodynamic analysis since then to downstream Caprolactam units. elimination of the ammonium sulphate formation, (CFD) are extensively applied to the design of key Product quality still one heavy drawback in the traditional equipment such as ammoximation reactor, its feed technologies; distributors, agitator and filtering system. unrivalled level of plant safety due to the very mild Cyclohexanone Oxime (dry basis) 99.8% wt typical reaction conditions and proprietary reactor design; Mechanical design unique selectivity to Cyclohexanone Oxime in the Versalis Engineering Dept. has been working in close reaction stage, what it keeps easier the purification coordination with the Process Dept. since a long time. stages and lower the raw material and utilities This fact has allowed to develop unique and well Main process parameters consumption; sound engineering solutions for critical equipment, higher plant reliability and stability, as well as stable that guarantee the best results in terms of mechanical Material Balance MT per MT Cy-one Oxime cyclohexanone oxime quality over time, coupled reliability and process performances. with the high catalyst lifetime which makes Cyclohexanone (as 100%) 0.875 the catalyst cost negligible on the total cost of production; Ammonia (as 100%) 0.165 low environmental impact due to elimination of the ammonia burning step necessary for Hydrogen Peroxide (as 100%) 0.345 hydroxylamine production. Utilities Consumption MT per MT Cy-one Oxime Low pressure steam consumption 2.5 Process description Cyclohexanone, ammonia and hydrogen peroxide are agent to recover anhydrous raw oxime. Waste water, fed to the reactor where the ammoximation reaction with traces of toluene and oxime coming out from the takes place in presence of Titanium Silicalite (TS-1) bottom of the oxime extraction column, is sent to a proprietary catalyst and tertiary-butanol (TBA) as toluene stripping column where organic compounds solvent. are recovered from water. fig. 1 Waste water is then sent to an oxidative treatment The reaction takes place in liquid phase and is section where residual organics are oxidised in exothermic (some of the reaction heat is recovered to presence of hydrogen peroxide. Anhydrous raw oxime heat up reagents). with toluene is sent to oxime washing unit and then to The catalyst acts by form of solid microspheres the oxime/toluene distillation column. dispersed in the reaction media. The reactor is a refrigerated continuous stirred tank reactor (CSTR Toluene is recovered as top product of the oxime/ 4 reactor type) equipped with filters that allow the liquid toluene distillation column and is recycled back to Cyclohexanone recycle 5 reaction product to leave the reactor and retains the the oxime extraction column. A small portion of the solid catalyst inside. recycle toluene is sent to the toluene purification A discontinuous make-up of fresh catalyst takes place column in order to purge out some minor by-products. TBA + Ammonia recycle from the catalyst feed unit and an amount of spent Raw anhydrous oxime is recovered as bottom product catalyst is purged from the bottom of the reactor, in a from oxime/toluene distillation column and is sent to definite volume of slurry. Gas vent coming from the the cyclohexanone recovery column where pure oxime OFF-GAS NaOH ammoximation reactor is sent to a washing column is recovered as bottom product while unconverted TREATMENT Demi water Oxime Steam and then to a dedicated catalytic treatment section. cyclohexanone is recycled back to the reactor. washing unit Oxime product Oxime/toluene Cyclohexanone The liquid reactor effluent consists mainly of oxime, Process is provided with an adequate vent gas distillation column recovery column tertiary-butanol, water, unconverted cyclohexanone treatment section in order to lower all the plant Cyclohexanone and ammonia. The liquid reactor effluent is sent to emission to a practically negligible amount. Ammonia the TBA recovery column where TBA and ammonia Hydrogen Peroxide TBA make-up Oxime/water are recovered as top product and recycled back to the Process is also provided with a specific system of Catalyst make-up separator reactor. on-line analyzers and safety interlocks which provide, together with proprietary design of the reactors and Ammoximation TBA recovery The raw oxime product coming from the bottom of the unique performances of the TS-1 catalyst, an unrivalled Reactor column TBA recovery column is sent to a liquid-liquid oxime level of plant safety and reliability. extraction column where toluene is used as extracting Toulene make-up WASTE WATER TREATMENT By-products purge Oxime Toluene Toluene extraction stripping purification column column column Proprietary process technologies portfolio Biotech PROESA® 2G Ethanol and Cellulosic Sugars Phenol and derivatives Cumene (with PBE-1 zeolite based proprietary catalyst)*
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • New Synthesis Routes for Production of Ε-Caprolactam by Beckmann
    New synthesis routes for production of ε-caprolactam by Beckmann rearrangement of cyclohexanone oxime and ammoximation of cyclohexanone over different metal incorporated molecular sieves and oxide catalysts Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Anilkumar Mettu aus Guntur/Indien Berichter: Universitätprofessor Dr. Wolfgang F. Hölderich Universitätprofessor Dr. Carsten Bolm Tag der mündlichen Prüfung: 29.01.2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Dedicated to my Parents This work reported here has been carried out at the Institute for Chemical Technolgy and Heterogeneous Catalysis der Fakultät für Mathematik, Informatik und Naturwissenschaften in the University of Technology, RWTH Aachen under supervision of Prof. Dr. Wolfgang F. Hölderich between June 2005 and August 2008. ACKNOWLEDGEMENTS I would like to express my deepest sence of gratitude to my supervisor Prof. Dr. rer. nat. W. F. Hölderich for giving me the opportunity to do my doctoral study in his group. His guidance and teaching classes have allowed me to grow and learn my subject during my Ph.d. He has provided many opportunities for me to increase my abilities as a researcher and responsibilities as a team member. I am grateful for the financial support of this work from Sumitomo Chemicals Co., Ltd, Niihama, Japan (Part One) and Uhde Inventa-Fischer GmBH, Berlin (Part Two). Our collaborators at Sumitomo Chemicals Co., Ltd (Dr. C. Stoecker) and Uhde Inventa- Fischer GmBH (Dr. R. Schaller and Dr. A. Pawelski) provided thoughtful guidance and suggestions for each project.
    [Show full text]
  • United States Patent O Patented Sept
    2,719,] 16 United States Patent O Patented Sept. 27, 1955 i 2 mation of a resinous coating to a substantial degree. The amount of inhibitor employed should give effective‘ 2,719,116 action and will in most instances be small compared with PHOTOCHEMICAL PREPARATION OF OXIIVIES the amount of cyclic, hydro-aromatic compound present in the reactor. In general, the minimum amount of in Bernard B. Brown, Grand Island, N. Y., assignor to 01in hibitor to be employed will be at least about 0.5% by. Mathieson Chemical Corporation, a corporation of Virginia weight based upon the hydro-aromatic compound pres ent in the reactor. The maximum amount of acid to No Drawing. Application March 19, 1954, utilize will also vary with the particular acid selected Serial No. 417,490 10 but ordinarily little advantage will be derived if the amount employed is more than that which is soluble in 9 Claims. (Cl. 204—-158) the reacting mixture. I have found through several reactions conducted in the presence of my inhibitors that it is preferable to This invention relates to improvements in a method employ a saturated solution of the inhibitor in the re for the manufacturing of oximes of cyclic ketones. These acting mixture. A saturated solution of formic acid in oximes are valuable intermediates for the manufacturing cyclohexane will contain from about 0.85 to 1.25% by of superpolyamides. weight depending upon the temperature of the reaction In the copending application of Christoph Grundmann, and the extent of mixing. In some instances when the Serial No.
    [Show full text]
  • The Pennsylvania State University the Graduate School AN
    The Pennsylvania State University The Graduate School AN EXAMINATION OF ANALYTICAL METHODS TOWARDS THE COMPLETE ANALYSIS OF CONTAMINANTS OF EMERGING CONCERN IN WASTEWATER AND WASTEWATER IMPACTED SURFACE WATER, SOILS, AND CROPS. A Dissertation in Chemistry by Kyra A. Murrell © 2020 Kyra A. Murrell Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2020 The dissertation of Kyra A. Murrell was reviewed and approved by the following: Frank L. Dorman Associate Professor of Biochemistry and Molecular Biology Dissertation Co-Advisor Co-Chair of Committee Miriam Freedman Associate Professor of Chemistry, Meteorology and Atmospheric Science Dissertation Co-Adviser Co-Chair of Committee Paul Cremer J. Lloyd Huck Professor of Chemistry and of Biochemistry and Molecular Biology Christine Keating Distinguished Professor of Chemistry Jack Watson Professor of Soil Science, Soil Physics, Biogeochemistry Philip Bevilacqua Distinguished Professor of Chemistry and Biochemistry and Molecular Biology Department Head, Chemistry iii ABSTRACT The presence of contaminants of emerging concern (CECs) in the environment is a growing field of research for analytical environmental scientists. CECs are a class of anthropogenic pollutants not regulated by governmental agencies, and their potential deleterious environmental and human impacts are largely unknown. One of the main sources of CEC entry into the aquatic environment is wastewater treatment plant (WWTP) effluent as the treated water is often released into bodies of water, such as river and streams. Because most WWTPs were not designed to remove organic micropollutants, many CECs are poorly removed in traditional WWTPs and persist in the treated effluent waters. As a model system for study, the University Park WWTP treats the wastewater from the Penn State main campus.
    [Show full text]
  • PEP Review 2015-06 Polyamide (Nylon) 6 and 66 Process Summary
    IHS CHEMICAL PEP Review 2015-06 Polyamide (Nylon) 6 and 66 Process Summary July 2015 ihs.com PEP Review Process Economics Program Dipti Dave Senior Analyst II IHS CHEMICAL | Process Economics Program Review 2015-06 PEP Review 2015-06 Polyamide (Nylon) 6 and 66 Process Summary Dipti Dave, Senior Analyst II Abstra ct Polyamide 6 and 66 (or Nylon 6 and 66) are the most common types of polyamide available commercially. The total volume for the Nylon 6 and 66 polymerization market is 7.2 million tons in 2014, up from 6.4 million tons in 2010. Nylon 6 and 66 polymerization produces either chips or resin in uniform pellets. The chips or resin are further processed into two major applications: fibers or engineering thermoplastics (ETP). The fibers may also be directly produced from the molten state of the polymer, bypassing chip/resin production. The majority of the Nylon chip or resin production accounts for 92% of total polymerization, while fiber production (directly from melting) accounts for 8% market share. Demand is expected to grow at an average annual growth rate (AAGR) of 2.4% for Nylon 6 ETP and fiber. The AAGR for Nylon 66 ETP and fiber demand is 2.6%. Capacity additions have been taking place mostly in China. The Nylon processes have been reviewed by IHS Chemical Process Economics Program (PEP) since its inception in 1962. In this process summary, we review the key features for Nylon 6 and 66 production processes, and discuss recent technology developments and update the process economics for the following Nylon 6 and 66 stand-alone and integrated processes presented: 1.
    [Show full text]
  • Synthesis and Characterization of In-Situ Nylon-6/Epoxy Blends
    Synthesis and Characterization of in-situ Nylon-6/Epoxy Blends A thesis submitted to the Division of Research and Advanced Studies University of Cincinnati In partial fulfillment of the requirements for the degree of Master of Science 2016 In the Materials Science and Engineering Program, The Department of Mechanical and Materials Engineering By Anushree Deshpande B.E Polymer, University of Pune, 2011 Committee Members: Dr. Jude O. Iroh (Chair) Dr. Relva C. Buchanan Dr. Raj M. Manglik 1 ABSTRACT Epoxy is a thermosetting polymer known for its excellent adhesion, thermal stability, chemical resistance and mechanical properties. However, one of the major drawbacks of epoxies is its inherent brittleness. In order to overcome this drawback, incorporation of a thermoplastic as a second phase has proven to improve the impact strength without affecting the mechanical properties of epoxy. Researchers in the past have studied polyamide/epoxy blends in terms of blend compatibility, thermo-mechanical properties and morphology via solution blending. The current research effort employs in-situ polymerization to synthesize polyamide/epoxy blends. Blends of various compositions were synthesized by introducing Ɛ-Caprolactam (monomer of nylon-6) in the prepolymer of epoxy. All blend fractions were cured by exposing them to the same time and temperature conditions; and characterized using Dynamic Mechanical Analysis (DMA), Fourier Transform Infrared Spectroscopy (FTIR), Brookfield Viscometry, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). DMA results show an overall increase in glass transition temperature and storage modulus in the rubbery region. FTIR results reveal maximum epoxy curing up to 15 wt% monomer loading, beyond which the plateauing of the epoxy conversion is recognized.
    [Show full text]
  • Carpet Recycling
    1 TheThe ParticipantParticipant willwill gaingain knowledgeknowledge inin thethe following:following: › Drivers for Carpet Recycling › General Categories of carpet recycling › Differences in Various types of recycling › Market Values of Various Recycled Products › Demand for Recycled materials from Carpet › Understanding Capital needs of Recycling › Present & Anticipated recycling capacities › Present & New Recycling technologies › Challenges & Opportunities 2 3 BroadBroad ListList ofof Drivers:Drivers: › Carpet Manufacturers › LEED building Standards –Need P. Consumer for high value/Specifications › NSF 140 › High value of P.C. content › Platinum Level highly prized: Requires Min. Post consumer content. › Platinum Level requires P.C. Carpet recycling at CARE Goal levels – Escalate every year. › Professional Specifying Commercial Community demands Sustainability › Reward most Sustainable companies with increased business: or NO business › Recycling and P. Consumer recycled content is large factor › Large National Accounts demanding sustainable initiatives: › Wal‐Mart, Home Depot, etc. › Good Old healthy competition. 4 BroadBroad ListList ofof Drivers:Drivers: › Entrepreneurs: › Willing to risk Capital for carpet recycling › They are beginning to see fairly good business model › Beginning to make money from carpet recycling › They are essential link in the value chain of processing › High Oil prices › Keeps Virgin Nylon very expensive › Cost Spread between virgin and P. Consumer is wide › Makes P. Consumer very attractive for cost savings
    [Show full text]
  • Synergistic Effects of Nano-Silica on Aluminum Diethylphosphinate
    Original Article High Performance Polymers 2016, Vol. 28(2) 140–146 ª The Author(s) 2015 Synergistic effects of nano-silica on Reprints and permission: sagepub.co.uk/journalsPermissions.nav aluminum diethylphosphinate/ DOI: 10.1177/0954008315572493 polyamide 66 system for fire retardancy hip.sagepub.com Zhaoshun Zhan1,2, Bin Li1,2, Miaojun Xu1 and Zhanhu Guo3 Abstract Nano-silica had been used as a synergistic agent for the preparation of aluminum diethylphosphinate (AlPi) flame retardant polyamide 66 (PA66/AlPi) and PA66/AlPi/nano-silica composites through twin-screw extrusion. The limiting oxygen index (LOI), used to characterize the minimum amount of oxygen needed to sustain a candle-like flame, revealed that the PA66/ 10%AlPi/1%nano-silica composites exhibited an excellent flame retardant efficiency with a high LOI value of 32.3%. The vertical flame test (UL-94) revealed that the PA66/10%AlPi/1%nano-silica composites passed the V-0 rating without drop melting. Cone calorimeter test revealed that the heat release rate and total heat rate for the PA66/10%AlPi/1%nano-silica composites were significantly decreased by 51.1 and 16.8%, respectively, compared with those of pure PA66. The thermogravimetric analysis showed that the PA66/10%AlPi/1%nano-silica composites had vast chars of 8.1% even at 800C, indicating that nano-silica could promote the char formation of the PA66 composites. Scanning electron micro- scopy indicated a solid and tough residue of the burned PA66/10%AlPi/1%nano-silica composites as compared with the very loose and brickle residue of the burned pure PA66, indicating that a suitable amount of nano-silica played a synergistic effect in the flame retardancy.
    [Show full text]
  • Nylon 6 and Caprolactam
    PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California Abstract 94025 Process Economics Program Report No. 418 CAPROLACTAM AND NYLON 6 (March 1988) This report reviews the technology for the production of caprolactam and its polymer, nylon 6. A total of three major caprolactam manufacturing and one nylon 6 manufacturing routes are evaluated in detail: l Caprolactam from cyclohexane via cyclohexanone by oxidation, oximation, and Beckmann rearrangement l Caprolactam from phenol via cyclohexanone by hydrogenation, oximation, and Beckmann rearrangement l Caprolactam from toluene via cyclohexanone carboxylic acid by oxidation, hydro- genation , nitrosation, and rearrangement l Nylon 6 from caprolactam by hydrolysis, poly addition, and polycondensation. Economics for three alternative processes using the first route, one process each using the second and third routes, and two alternative processes using the forth route are presented. As of January 1987, the world production capacity for caprolactam was about 7,000 million lblyr (3.157 thousand metric tonslyr) , and that for nylon 6 is more than 4,786 million Ib/yr (2,173 thousand metric tonslyr) . PEP’87 Vu-Ren Chin Report No. 41 B NYLON 6 AND CAPROLACTAM SUPPLEMENT B by YU-REN CHIN with contributions by KUEN-TIAN CHANG REN-BEN CHEN KUN-HO LIU February 1988 A private report by the PROCESS ECONOMICS PROGRAM Menlo Park, California 94025 For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. The CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETBOCHEMICALS Program covers major hydrocarbons and their.derivativeson a worldwide basis.
    [Show full text]
  • WO 2015/087099 Al 18 June 2015 (18.06.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/087099 Al 18 June 2015 (18.06.2015) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C08L 77/02 (2006.01) C08K 5/3492 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C08L 77/06 (2006.01) C08K 5/5313 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C08K 3/32 (2006.01) C08L 23/08 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/IB20 13/00275 1 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 12 December 2013 (12. 12.2013) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (71) Applicant: ITALMATCH CHEMICALS S.p.A. [IT/IT]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Via Pietro Chiesa, 7/1 3 - Torri Piane, 1- 16149 San Benigno (Genova) (ΓΓ).
    [Show full text]
  • Caprolactam, Supplement A
    Report No. 7-A CAPROLACTAM SUPPLEMENT A by HAROLD C. RIES March 1868 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA I CONTENTS 1 INTRODUCTION . 1 2 SUMMARY.......................... 3 3 INDUSTRY STATUS. 17 4 CAPROLACTAM BY THE PHOTONITROSATION OF CYCLOHEXANE .... 27 Chemistry ......................... 27 Review of Processes .................... 29 Photochemical Lamps ................... 30 PNC Reactors ...................... 33 PNC Processes ...................... 35 Nitrosyl Chloride Production .............. 37 Caprolactam Purification ................ 38 8 Process Description .................... 42 Nitrosyl Chloride Production .............. 44 Photonitrosation of Cyclohexane ............. 45 Rearrangement ...................... 47 Caprolactam Purification ................ 48 Ammonium Sulfate Recovery ................ 49 Process Discussion .................... 68 Costs ........................... 72 Capital Investment ................... 72 Production Costs .................... 81 5 CYCLOHEXANONE FROM CYCLOHEXANE .............. 87 Review of Processes .................... a7 Cyclohexane Oxidation .................. 87 Dehydrogenation of Cyclohexanol ............. 87 Stamicarbon Process ................... 90 Process Description .................... 92 Cyclohexane Oxidation (I.F.P. Process) ......... 92 Cyclohexanone from Mixed Oil .............. 96 costs ........................... 97 E Capital Investment ................... 97 100 8 Production Costs .................... 8 iii CONTENTS
    [Show full text]
  • FDM Nylon 12
    FREQUENTLY ASKED QUESTIONS FDM Nylon 12 1. What is nylon? Nylons were the first engineering thermoplastics. They have been around for 85 years and are one of the most widely used materials for traditional thermoplastic manufacturing today. Nylons falls into the polyamide (PA) class of materials. This is a material class that includes both natural substances (silk and wool) and synthetic materials (thermoplastics). All nylon materials are polyamides, but all synthetic polyamides aren’t nylons. Since nylon is such a recognizable material name, on our literature and in conversations, we will use it as the preferred term. 2. What nylon material is Stratasys offering? FDM® Nylon 12™ (unfilled) is the first nylon material that can be 3D printed with fused deposition modeling (FDM) technology. It has been highly demanded by our customers and complements our current FDM materials portfolio. Unique part capabilities and properties include: • Snap-fit and press-fit inserts: tough small clips, bosses, posts and holes • High fatigue resistance: parts exposed to repeat loading cycles, stress and vibration • Good impact strength: parts resistant to shock from being dropped or abrupt forces • Moderate temperate resistance: HDT of up to 82°C (after annealing) • Good chemical resistance: resistant to moderate solvents, alcohols and chemicals Application best fits include: • Panels, covers, housings with snap-fit clips, bosses and other small features • Environmental control ducting and venting • Components of products with high vibration, repetitive stress or fatigue • Drill guides, cutting fixtures and prototypes with friction fit press-in inserts • Prototypes and end-use parts requiring tough bosses or threaded inserts THE 3D PRINTING SOLUTIONS COMPANY™ FREQUENTLY ASKED QUESTIONS FDM Nylon 12 Target industries include: • Automotive: interior panels, environmental control ducting • White goods: panels, covers, vibration resistant components • Home appliance and consumer electronics: covers, panels and facades • Aerospace: tooling, manufacturing aids, jigs and fixtures 3.
    [Show full text]