KR0000223 KAERI/AR-541/99

1999. 6. 30

31/ 40 Please be aware that all of the Missing Pages in this document were originally blank pages "-& A^ uft : 1999. 4. 1-1999. 6. 30)

1999Vl 6^ 30°^ 7K

1.

*l-cl-. M-ii 4^-^11 °1-S- ^-°>^ polymer^

^ sa 71 ^-i

71 # 7)1

2. ^^ 71*13 7fl'g:-i- fl* ^^^ Cfl«l", ^^i, 7l<3<>1lAi 471 polymer^

71 TiJI&ofl H Af^-^^ qj ^-^-£3}-^ Pfl

- i - 7^

7)

polymer

o]

. 7)%°) ifl-g- ^

7>.

q. q-ii ^-tj-^^ tfl^l t ^r 5U 5}. AflTfl q^ ^-^-7fl Aj^j- ^ol *-q. q. ^i q^ -g-^(^, Aflei-^, clay) 2) 71^ 7

q. q. 3)

q.

- 11 1) ^-ifl q-t -ij-^fl 71 # ^^

2) sj^cf. aem ^vfl 71 o

3) -f El

4) *MN 71^ 7fl^ A^51 «mS«l Jl 71^ Ufi, ^-^Tfl 7l ^ 7fl

- Ill - i } ix TT.} xi all 1 % *m 1 *ll 1 ^ ^^71^^ *-£. 1 *11 2 ^ "S^M^s] ^-S.^ 2 1. 71^3 ^^ 2 2. ^-3)^ #^ 4 *tf 3 *l

A 2 ^ ^-tflil ^71^^^ 8 *11 1 ^ 17]-^^^^ ^t^t^il 8

i -7II0 _Q 2. ^ 7l^^3§- ^-^ 11 3. ^-4] 7)£Q% ^-^ 12 #Jl^-^ 17 *11 2 ^ iTjif^^^ ul-^^.^-^ 19 1. 7D.2. 19 2. ^ 7]^^^ ^-^ 22 3. ^ 7l^^J§- ^-^ 23

7K -B-71

- v - 7\. ^-m ^•^jL-^-tt'a 43 45 46 47 3. 5f3 7l#^% £*| 48 7>. 7l^7fl^ ^# S ^ 48 M-. i^t "ST1^ 49 m 56 61 64 4 ^ -fi-7]--fi-7l M-t^-^-^fl 65 1. 7flA 65 7\. ^^ ^n-^ ^r^^^l^ #eH7fl M-^^-t^fl 65 4. u\7}±r q%5L&z\A H±£r®4 67 2. ^-ifl 7)^^^- ^-^ 68 7\. ^TJ^I^^ -^^efl^^i ilic^^-^l 68 q-. c]-7]^ -Ji^ui^l-Tfl q-t^-Tfl 68 3. ^s] 7l#^J§- ^-^ 69 69 70 L 1-^ 74

5 ^ Sol-gel-t- o]-8-^- M-ic-J*-^ 75

7\. Sol-gel ^1^71^ 75 <4. Sol-gel process^ ^«fl ^l2i^^ i^ 78 cf. -g-S. 80 e}-. ^-^ 81 2. ^ 71^^^ ^-^ 84 3. ^ 7]^^^- ^^ 87 7\. 7]#7H«^ ^^ gj ^^ 87 M-. ni^-s] *fl#7fl

- vi 91 93 95 1. 7fl -8- 95 7>. uL^-^V ^ **!•& 0I-8-* £W ^ 95 4. ^AA^M % ZW? q-i^M 100 103 104 2. ^ 7l^^3§- $*\ 105 7\. -&AA$tA gJ ^-^7]^ q-ic^-^-^fl 105 106 107 3. ^ 7l^^3§- £.3 109 7K ^d4^>^l Si ^r7lif M-^^-^-^fl 109 111 114 -7D.gJ 110 7^ M-t^-^^fl ^-^-8- -g-#M*l]2: 119 1. 7l| A 119 7\. 14^4^-^-8- ^^i^l^ ^-£i4 120

uf. 4ii§-^^S»o^ 121 cf. ^-§-^-°> 131 2 ^-tfl7l^^J§- ^-^ 135 3 ^-5]7l#^3§- ^-^ 136 7\. A^c Q^AQ «* 137 138 145 146 1. 7fl.fi. 146 2. ^-vfljz] ^^71^^*^ 149 7\. inl^ ^e^-^i ^.^ ^lS^^ 150 M-. ^-^71^^^ ^-^ 161

- vii - 162 163 JL^-^1 201 9 ^ M-^4^^-8- ^Wl" 204

206 ^A^ 208 2. ^ 71^ ^% 215 7h ^i'S -i^cW^-i- 215 M-. ^"^ ^W^" 217 c}. f-S-^-^-i—i-eiH uft^-^-^ ^2: 7]<£ 219 3. ^ 71^ ^% 221 A. %<& ^4v5l-^# 221 ^. %^ ^^^^-# 223 4. Al# ti* 225 3.%r*6. 228

3 % 7]^7m^\ &% &^ 230 4 1 ^ 7|| ja. 230 ^ 2 ^ ^1^- ^TJ 231 1. 4A&[ 7l^7Ht ^^g 231 2. q-t4^-^i]£] AI^J-^^4 ^nj- 233 3. ^A 239 ^13^ vfl-?-*^ ^^ 241 1. ^ Nanocomposite ^^ ?]^ ^-^ 241 2. *Hlsl 71-8-^ 243 3. ^r-S.^1^ fl-iL 244

- viii - 4. ^3M#£] #-#3 £-*J 245 *H 4 ^ a|-3- 3L4 247 1. M-ta.71 Ail5}°} -g-iJ- *}-§- ^-©l: 247 7\. ^"^^1^^^ 248 Lf. ^-^A]^^^ 250 4. ^±EL7}2\ ^-^ ^.^•sj aj-g- ^-o): 253 #JL£-$I 254 4 ^ ^-g- 255 A 1 ^ 4^1 i# «ll^ 255 ^ 2 *i JL 7]^ M-M-^-^^1 7flU: if-S. 258 ^13^ €-0]:^ 7l^7fl^-3f^l(RFP, Road Map ^ 5l#£) 259

31Q 321 325 328 339 MOU 344

- IX - a

3. 2-1-1. Clay/ M-^^-^^(NCH-5)^ ?]A^ #^ 13 S. 2-1-2. -¥-7l«y^V £# JL£*> M-ii-^^ SHMUfr ^^ 16 S. 2-2-1. ^1^^J£ 2% od4 g-tfTflsi «g*K>- ^3 20 S. 2-3-1. ^e^^fi] ^Eflt £it<^ ^^ 40 a 2-3-2. Elastomer M-ii^^-i -f-^ ^1 A^^ $# 41 jt 2-3-3. -¥-7l•§•*> ^s|-8- JL^-4 ^flS.Si #^ HlJE. 67 a 2-5-1. Sol-gel proccesss) ^^ ^ Sl^f 76 a 2-5-2. Sol-gel process -§-£ 83 a 2-5-3. Sol-gel^l- *# ^-2- ^v^ ty^ 84 a 2-5-4. ^ sol-gel ^^ -tVHl^ Sol-gel 7l^7fl^ ^-^ 90 a 2-5-8. «S£-°1M 7fl^^ Sol-gel-t- °l-§-t> ^-^-^ ^3§- 91 a 2-5-9. -8-^3 Sol-gel 7l^7fl^ -i-^ 92

- xi - 3 2-6-1 W^ Ji^l-^S. q-t^-^ll alia 96 3 2-6-2. JL^-4 ^ #21$ 98 3 2-6-3. #*}3}-^r ^ *>SIN.S. 102 S. 2-6-4. *1-8-31*115.3 .2.^ ^ 113 3 2-7-1. M-ii^2:^ #*1^ ^ ^ a]-g- ^-S-°> 134 a 2-8-1. &*]%*} ^l2:Hov^ 150 3 2-8-2. 7l^-av-g-oil o]$ iol^^ ^ofl 152 JE 2-8-3. ^-8-^3 ^-^-fi} ^el 153 3. 2-8-4. q-in ^7]£] ^VsJ-o]-^^ ^yq 181 & 2-8-5. q-t^-^j-^H ^Si-cif^oj oj-g- % /i]^- ^ 182 £ 2-9-1. -t^-i-« -^7lJl^-^^o] ^^V^^-i-o,! cfl^V <^^^^ — 211 3. 2-9-2. Nylon 6/Montmorillonite ^-^^1^ #el^ ^-^ 212 S. 2-9-3. PP/Talc, PP/Montmorilonite ^31 s) ?\A^ ^^ 212 3. 2-9-4. teM-°l^ ^^l-S-fi -i-^S.?! 216 a 2-9-5. ^-ifl ^sq^l^ #Q7}<£- ^r^ 216 S. 2-9-6. >*fl7fls] ttflSM-ol^ ^AV^^- 222 S 2-9-7. ^-^ ^sq-ole. %-g- ^^71^ ^^ 223 3 2-9-8. ^^^ ^^-5}-^-# q^^-^-^s] X\% ^^(oj|#) 227 5 3-2-1. ^-^Sf ^ ^7>i>y M-i^j-^flsl Q% 233 S. 3-2-2. q^4^U^ ^-6>^ ^1^ 234 3. 3-3-1. Nano composited2:-g- a 3-3-2. ^e'dS.s) ^-8-SI-^^l-S-S) Al^-fl-i 245 S. 3-3-3. -^71/^-71 a 3-4-1. ^5.-8- ^i ^ef^i ^fl- 248 D a 3-4-2. ^-vfl J4?]42|^^ ?i c]- 250 3. 3-4-3. -MlTfl s|-?l^^^i. U^t ^ ?inc]- 251 i 3-4-4. ^^.^-^ ^y-Ml^^i ^I'tJ:?!1* 251 3. 3-4-5. Di^-si ^-o>^ 4o]^)g}Hi^ ^A-S-^ 251 i 3-4-6. «a^-fil ul-'y^^^i ^r^-S-^ 252

- xn - 2-1-1. WQA €•# aLg-*]-^*] 4^4^11 « 1^ 9 2-1-2. NCH M-^^fls] 4# ^$£-?l timing belt cover 13 3% 2-1-3. clay/Poly( e-Caprolactone) M-i^-^sJ ^?1 -f-Jif^- — 13 3% 2-1-4. Toyota ^SH s1*M ai#€ clays] ^s] 7}^ 14 3% 2-2-1. #^-3«y ^r^ti*}- ^i^-^fl^ yl^ 20 2-2-2. ^-°g 26 2-2-4. JI€-^1—ael^oiE. t\°}!Le]^ ^i 27 2-2-5. M ^^-^ OMTS(4%)/EPON-828/NMA^ TEM 4*1 ~ 29 2-2-6. *!##£/jz.l-el£. vs. ^-^^JiL-ff^Sl ^^^^^r 30 2-2-7. MMT5] ^«H1 n}3. 6]^-7^£ ^ £t^i5] ^^- 30 2-2-8. ^^°11 ^Sb ^5]?11O1E.

2-5-2. ^-# ^^-Afol^o^ ^5}-ai--g- gj ge13j- 77 2-5-3. JL£-*> sol-gel «>-§- 78 2-5-4. ^^^#^^1^ ^t 79 2-5-5. ^Hl§ ^^-AfojH^ ^S|-aV-§- ^ 71^^ 81 2-6-1. JL^-4 ^^ ^^1^-i- °l-8-# -n-71 ^-^^ ^|i 7l# 97 2-6-2. *12E^ ^*11!- ^1-g-t} aL*^ 4^-^11^ cf^tb -8-8- — 99 2-6-3. ^^r ^£^-& 5J^ 4^^1 ^12: 99 2-6-4. PFTSf Mechanical Mixing^ s>\z\q 43,^ ^7%°) Graphite ^£oll 4€- ^ii£ »1JH. 101 2-6-5. €-S-S- 3-7\^ ^* Hybrid ^fi.fi) ^^- 113

- xiii - 2-6-6. Nano-templated film°11 ^11+ nanoporous organo-silicate^]

2-6-7. M-^^-^-^Hl *}•%•# Star shaped PCL -fMji£-*r 115 2-7-1. i4^^^1-^S.-7l-iEiHlo]l^l-g- Jf-g- 119 2-7-2. ^-# i4^°d^^ -i-^^ T1^ 126 2-7-3. ^ M-ii'a^r^ 53-^^4 ^^*l-€ WS] -§-^^2: 126 2-7-4. M-ii«a^l-i: ^^S}-^7l ^^V ^^l£ 127 2-7-5. ^^AS. 3.1%$. 3.it£.4\ M-i^l^^ 128 2-7-6. 4e]-^/^# ^-^-^ 132 2-9-1. ^^ Silicate ^2: 207 2-9-2. *#*}•«•!—1-eH q-i ^-^-^fl ^|a ^^ 209 2-9-3. Models for the interlayer structure of organic solvent/octylam -ine magadiite 220

xiv - 71

71

°J:O>JiaL, 71

- 1 - o]

1.

°lefl 3 at} 7}^ ^ 54^ 04 7] 5acf.

o\) ZL ^

stiffness,

9X7]

LH.71]

o]

_ o _ HM 4-8-

SHI,

Safe ^^r 713:^^ tfl-S-6.S-¥-El ^"^^ 3:71 ^TflS. 1-^*^ 71

^7i-S|fe M-2n ^-^ fSf-71- 7^ ^^4^-711

safe

TiO2»

^•#4 Sodium

i*(10g/h, Fe 71^)

WC/Co

montmorillonite

- 3 - KIST

2.

Business Communication

5 oil- $£-3. 30%^] °1=. , 21-Ml 71 ofl^.

oil 7}^ 3.7fl

238^

- 4 _ 71^) tfl*l|

*>•§•*> 4^, barrier film, *flfi

7}

noil

71 ?V 71^0)1 *>J1, A] 71^-

- 5 " ojofl

7B^o(| t

71

- 6 - 21-Ml71

1)

(Compounding 14.

^( clay)

2) 71^ 7 7\. 71 71 ?V,

3) 7\. JL *1\ 7fl«-|- q. ^-g-si- a^r -8-^fl-l- Jfl^- 7l# 7fl

- 7 - Elastomer scaled S-^l, 57H

(1) 7^£4 (2) , (3) f (4) , (5) J *H|r|| -8-71,

Elastomers ^ -71— , sol-gel

^11 1

1. 7l|

scales.

200nm^l montmorillonitefe Van der Waals ^.S. tl*H

(intercalant)!- compounding ;*H ^^^2: 4°H tf^l^l-b ^^^ ^-^-i- -^*>^ compounding^ JL-g-^} nfl^^^oj ^^.s. -g-o]*l->fl ^H M-ic scale S. ^ej, ^-iVAl^ ^ 514. ^l^^t 71^1-^^ -g-^fl* 4-g-«Kr solution- drying1^, monomer intercalation-polymerization1^, polymer intercalation- compounding ^ -f-°l Xlfe^l, intercalation-polymerization^^f intercalation- compounding^ AA 80^, •§• «1*$ *R ^^°1H 1997 Vl ^^r Toyota Central R&D Lab.°H*l ^ -f-tl: compounding^^ *3s]ai sac]-, 2-1-1

Scheme for Nanocomposite -Synthesis

In Intercalant - Water Solution

Thickness, ca.lnm Na-MMT Length, 30~1000nm

Drying

Solution of Polymer and Drying Direct Polymer Intercalation and Compounding / Organophilic -MMT

Polymerization after Swelling in Monomer

Distance between clay-sheets depends only on the volume fraction of clay.

2-1-1. 4

- 9 - - # ^ safe- 71 sheet ^^1 -^7 &^s\^y] ^-7l^ A ^(Intercalated Nanocomposites) *^ ^S. 71 Tfl^, «g*j ^^ ^ O.S., 1987^ °^^- Toyota ^^^l 100A 7}^}ol ^7>*>^ w>^(exfoliation)

1993^ S'Stfl «g^^ol #el^E]^l -g-g-^11- 31^ intercalation^ l3L, 1997«d *a-& Toyota

-g-g-

^1fe poly(ethylene oxide)! •§• ^-^^•o.S.-Mj battery-g- i^ ^^-, IBM -i-^S: -fi-7l chromophore

^^ kaolinite group (

V2O5, M(M=Mn, Cd)PS3, M0S2 f-^1 71 # 7fl^-ofl i^o] nj.^^] J7 °>^ 71^3 3:71 ^^SH- ^«flA^^. ^.4 a-ifi 3 71^-1-

- 10 - , §- 71

71HV, «|^7l^

-g-tb

8iafi^ ^ 30~40wt.%

10wt% oi

^ compounding 4-8-^7] Kfl^-ofl ^^^ ^OJHJE. "fl-9- -n-el^H, molding ^ tooUng

ES #4^4 ^^1¥°1 A^slfe- l-el^S-l^l E.%$ ^ PET ^ ^-^8: -S-S §-iL5L51 -§-§- 7>^^©1 7l

2. ^"ifl 71

•§•

clay Toyota Central R&D Lab.^Ai *kS.s\z\ ^ifl ^^r -^-S)-^^^^ °H

- 11 - 3. ^q 71

Q4 clay-! °1-§-?!: M-t^-^-^s] 3-f «J£ Toyota Central R&D Lab.°l

clay £•# 20H1 oltf3 tt id^-fl- 7Wi sa^-^ 1987\! 100A

2-1-2^ Toyota ^^^H-ofl ^*H 7fl^^l clay/Nylon ^l timing belt covert $]& A>^|O!JL g. 2-1-l^r clay/Nylon . ^.*] 4.2wt% 7V ^ 100% q- (S 2-1-1S1 NCH-5). n.% 2-1-3-B- Dl^- S^I^^ Gianellis clay/poly( £-caprolactone) q-ii^-^-^l-t 7fl^*H ^ .5. ^ 5 vol.%^ clay ^7}-ofl $]t\a] 400% JL4# ^^cf. O1TT clay nltn^s] ^17} aspect ratio 200-300 sheets

>^t!r ^^^ °l-8-€ ^ SI71 1993^ ia-itfl ^^-^°1 #sl^ 1997\i °i£ Toyota

Toyota < ^ clay ^?}^.

- 12 - 2-1-2. NCH timing belt cover

S. 2-1-1. clay/Nylon M-ii^-^-^(NCH-5)2] 7] 313 #^ Specimen Charpy Impact Tensile Strength Tensile Modulus Montmorillonite Strength (MPa) (GPa) (wt%) (KJ/m2) NCH-5 107 2.1 2.8 (4.2) NCC-5 61 1.0 2.2 (5.0) 69 1.1 2.3 (0)

O PU 10 -5 o CU 5 OB - - -•_>

06 - - 'meabi i 0) 0.4 - - D-. - 02

Relat h on 0.00 0.01 0.02 0.03 0.04 0.0S0.06 Volume Fraction Silicate

2-1-3. clay/Poly( £-Caprolactone)

- 13 - 5] ofl mechanism^ 5U*l- Toyota

2-1-4. Toyota

ji ^o.^, o] S] ollE ^^ < ^5. Okada ^W Kamigaito ^41- Toyota Central R&D Lab.^] clay 4^4^"^ ^^^ 57fl (The Univ. of Akron, Case Western

- 14 - Reserve Univ., The Ohio State Univ., The Univ. of Toledo, The Univ. of Cincinnati)^ 30*3^1 jffi^l-S. 6\^6\^. EPIC q-ii-^-^fl ^£^-§-(1999^ ^), 80>dtfl-^Ei o]3f>6\# u]^- -^ ^ -g-^- ^mo\)A] Michigan ^ Pinavaia SL^-ty a'ficfls] Giannelis ji^-i- ^0.3. *]-b

mechanism fl-^1 ^^^^ jaSftjl, °H1 ^°d^^ ^ clay , IR, NMR, TEM E. van Oort ^ ifl«l-Sl Skipper

°l*m- #7] ^*f^ EPIC M-i^^^^l ?iiAl-B-^ ^Iwi"?! Mattice

Case Western Reserve ^2] Mann Lando H^r -§-^r Interface Force Microscopy -g-^Mtl-l: °l-§-«H clay °\\ 4€- M-ic^-^^s] Dynamics-!- 3TT

«fl^. clay «-tV q-^^-f-^o] 7l7fl^ &$ o^^ -.o] EPIC Ishida, White, Leonov, Sancaktar fl H t^\s, Hudson, Qutubuddin, Brittain clay ^j-^. 1-3] 4-^^4 !-5H^El ^la ^ #A^^, Simha, Kollen, Nazarenko S^r f-S- ^#£^^11 £ S!S ^^-^3. -8-S.S. clay

7fliJ-:£ %1-al S^JL Sifecfl, ^e Timcf ^.Ef<4cfl?l-^ DeteUier i, isflo] ^•ofl'M-b poly(ethylene oxide)# ^9* Battery-§- *H3^t|) Jl^]^«ll^ 7fl#6l| ^*># Stucky JH^r, ^^4^ Anderson nfltj-o] Ogawa H^ ^^r -B-7] chromophore 2*} «1-S3 ^^ it^S.fil -§-§-7m ^ -R-71 LEDCLight Emitting Diode) ixr/flti 1HV ^l^f10]^-. ^-^ Toyota CRDL^ Inagaki Kuroda in.^r!-^ hexadecyltrimethyl- ammonium

15 - chloride^. kanemite-f- calcination^^ 40A porei: ^ nanoporous

S. 2-1-2. -¥-7l«y*r $1*1 4-8- *£*r Toyota Nakakute, Original technology developer; no Central Nylon 6 Aichi, Japan current uses of nanocomposites R&D Lab Nylon 6 First Toyota licensee and developer Ube Ube City, Japan of Nylon 6 compounds for use in Industries Nylon 12 timing belt cover Nanocor was created by Amcol Focus on, but Arlington Internationa] to develop not limited to, Nanocor Heights, nanocomposite technology using its Nylon, IL own patents and nonexclusive polyester, PP Toyota license Participant with Magna Dow International in study of Midland, MI Not specified Chemical nanocomposites use in vehicle manufacture ICI Middlesborough, Commercializing clear barrier film Polyester Polyester England using nanocomposite coating Evaluating nanocomposites for Ford Motor Dearborn, MI Polypropylene interior and exterior automotive applications Allied Morristown, NJ Nylon 6 Holds patents on nanocomposites Signal Nylon 6, 66, Company has developed technology Solutia Inc. St. Luis, MO and and is eyeing automotive copolymers applications Holds patent that is apparently DuPont Wilmington, DE Fluoropolymers aimed at using nanocomposites as coatings Industrial Conducting Searching for compounds with Technology polymers, Taipei, Taiwan improved antistatic, gas barrier, Research polystyrene, and mechanical proterties Institute and polyester

- 16 - 1. U.S. patent 4889885 2. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, Vol. 30, 6333-6338 (1997) 3. T. J. Pinavaia Science, Vol. 220, No. 4595, 365-371 (1983) 4. P. B. Massersmith and E. P. Gianellis, Chem. Mater., Vol. 5, 1064-1066 (1993). 5. P. B. Massersmith and E. P. Gianellis, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 33, 1047-1057 (1995) 6. P. B. Massersmith and E. P. Gianellis, Chem. Mater., 6, 1719-1725 (1994) 7. T. Lan, P. D. Kaviratana, and T. J. Pinavaia, Chem. Mater., Vol. 7, 2144-2150 (1995) 8. M. S. Wang and T. J. Pinavaia, Chem. Mater., Vol. 6, 468-474, (1994) 9. T. Lan, P. D. Kaviratana, and T. J. Pinavaia, J. Phys. Chem. Solids,, Vol. 57, 1005-1010 (1996) 10. H. Shi, T. Lan, and T. J. Pinavaia, Chem. Mater, Vol. 8, 1584-1587 (1996) 11 A. Blumstein, J. Polym. Sci.: Part A, Vol. 3, 2653-2664 (1965). 12. C. W. Francis, Soil Science, Vol 115, No. 1, 40-54 (1973) 13. C. Kato, K. Kuroda, and H. Takahara, Clays and Clay Minerals, Vol 29, No. 4, 294-298 (1981) 14. R. Blumstein, A. Blumstein, and K. K. Parikh, Applied Polymer Symposium No. 25, 81-88 (1974) 15. Y. Sugahara, S. Satokawa, K. Kuroda, and C. Kato, Clays and Clay Minerals, Vol 36, No. 4, 343-348 (1988) 16. Y. Sugahara, S. Satokawa, K. Kuroda, and C. Kato, Clays and Clay Minerals, Vol 38, No. 2, 137-143 (1990) 17. E. Hackett, E. Manias, and E. P. Gianellis, J. of Chem. Phys, Vol. 108, No. 17, 7410-7415 (1998) 18. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Macromolecules, Vol. 28, 8080-8085 (1995)

- 17 - 19. N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, and A. Okada, J. of Appl. Polym. Sci., Vol. 67, 87-92 (1998) 20. M. Kato, A. Usuki, and A. Okada, J. of Appl. Polym. Sci., Vol. 66, 1781-1785 (1997) 21. Y. Lyatskaya and A. C. Balazs, Macromolecules, Vol. 31, 6676-6680 (1998) 22. S. Karaboni, B. Smith, W. Heidug, J. Urai, and E. van Oort, Science, Vol. 271, 1102-1104 (1996) 23. E. S. Boek, P. V. Convey, and N. T. Skipper, J. Am. Chem. Soc., Vol. 117, 12608-12617 (1995) 24. N. T. Skipper, K. Refson, and J. D. C. McConnell, J. Chem. Phys, Vol. 94, No. 11, 7434-7445 (1991) 26. M. Ogawa, Japanese R&D Trend Analysis Advanced Materials-Phase VIII KRI Report No. 4 , p. 109, 1997 27. S. Inagaki et al., J. Chem. Soc. Commun, p. 980, 1993 28. M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids", Clarendon Press, Oxford, 1987. 29. Modern Plastics, Feb. pp. 28-29, 1998 30. Science, 265, pp. 370-373, 1994

- 18 - v)H 7-l-^-i-^, #3., montmorillonite, bentonite, hectorite, saponite ^ %£.%& ^ -g^r^M ££ -r- lnm°lH lOOnm 37l$] ^-^-TflS-Ai, ^-^ 100

(host-guest chemistry)-!- <>]•%•&

°1 ej-el (exfoliated) M-t^-^^^^fe- ^ 10A

«r, ya*tad-/3o\ r,

TiBl ^ ^S^^-i- ^Ki^l-^ 3. 2-2-14

- 19 - d = [(4^/2 / 3V)1/3 - 2] x

layered clay monomer

Conventional Intercalated composite Nanocomposite

Exfoliated Nanocomposite

2-2-1. H}.

2-2-1. 2% 71 el °d*m 7ie^(nm 400 1,600 1 4 16 100

3. 2-2-

^ a711

- 20 - , In-situ^, l-^ A?\ s.^ #^-3 M-^4^1)

disulfuric molybdenum^-

-7lMMT(organo-montmorillonite)-M-^

- 5^41^ ^Hl«l •a^-^ sol-gel process^] in-situ filler in-situ ^^-^^1 5U4. In-situ

bis-acetylacetonatopalladium(II) ^^1^1 J)L 14O1C°1H 7>

J(flushing)^ AS ^lS^V ^^€4. OH °d^3 aj^o] nflJjL ^^r 30-40

. 71 Til a}

71 Tfl a}

- 21 - 4

4BM

6|l

Ml crackle] $o-}z}^ oi

2.

H

BPA741 o|i^-Al^xHi 7|^^^1 MMT(montmoriUonite)#

h Na+-MMT1

Na+-MMT1- f-°fl -°l| Dicyanodiamine £^ DCMU[3-(3,4-dichlorophenyl) -1,1-dimethyl-urea] ^ BPAt- -?-7l-«

- 22 - ^ TGA 12 250t

3.

Edison Polymer Innovation A]- 7}

60-80% ^ PP, PS ^ . NISTS] ^^H]^(siliconeH

PP

Zeon

H), ^.q. -^-4=^17]

- 23 - NBR

1990H1 'MF

70nm

SI-711 2-2-2).

^3? (CTBN)

%^> * • • —* —7 * 0m**Ai 4=x —• c • • • • • 881(280 ?ti(2fe'SI) as> 2^^i

3 5} HI

a)3ISBN (b)Ub

2-2-2.

NBR Epoxy-7l-5TNBR i, epoxy

- 24 - 7}. -fM

M-^^-MMT

^(smectite) Tflt^ ^#

XI4. ^^ ^EflolH ^"^^^ MMTfe Na^M- Ca2^

^1 'intercalated' ^£ £^ -8-713S4H ^S-w 0]^.^ #ifl ^o] ^ z]-

2-2-34

- 25 - : L

2-2-3.

u Vl o ?H <£-§- 33

S14. °17)>H ^-

-^*}c}^ 510)4. oi^

•§• ^l-fr£.(translational degree of freedom)^ JL^-xf A>^ (conformational)

, P Gi MMT£l PSl- -8-

o]#2] GianneUs7]- X- 2-2-4

- 26 - 2-2-4.

E.Sj^ iflofl 1-AVsJol o^^

MMT7f 7]-^- ftol <£^-£)JL 0J4. 1994^ n]^- + Giannelis BPATll ^^1^41- [H3N(CH2)n-iCOOH] , 2+ + , [H3N(CH2)n-iCH3] (n=6, 12) -§-°-5- ^

2:71

^-e]-^3j-(delamination-polymerization)

27 - + Giannelisi^ BPA31 ofl^l^Mt- (HOCH2CH2)2R'R"N (R'=octadecyl, R"=methyl)5. *\Qtfr MTS(mica-type silicate), # OMTSCorgano MTS)4 ^•^•^ ^ NMA(nadic methyl anhydride), ^^^ ofl^°]-^l, BTFA(boron trifluoromonoethylamine) -§-A 2-2-5^ £ ^-^€

100A «>1^6.

DSC 4 ^-M- 'broadening'

cf

T. J. Pinnavaiafe MMT

H2NCH(CH3)CH2- + [OCH2CH(CH3)]x-NH2, MMT^l H3 (x=7, 11, . 75~125°CS. XRD ^ TEM ^^ =M4

fe MMT ^^^(intercalated)

2-2-6*114 ^ x=7, 11, 17°^ 1.3, 3.0, 3.55. . MMT5] 2-2-7^- MMT

- 28 - tt|-e]- MMT

2-2-84

2-2-5. OMTS(4%)/EPON-828/NMASl TEM

- 29 - 1

Carbon ttumtm of GaHcry Alfcytamraoraum Catiom

• • • • 10 Carbon NuMbct at Oaltary ai CJUO

2-2-6. A vs

C1«> g (wt*i

1 <0 1 « »»

2-2-7. MMT2]

- 30 - strain

2-2-8.

L. A. Berglundfe BPA

XRD

-a>n

-H.71]

BergluncRr r MMT 42%«?] MM-Hr 71 si gl

- 31 - . ^:^*}i MMT

Mullen, Seghi, Lee H^r €-^Sr Advanced Composites ^•0

delamination

- 32 - 1. M. Ogawa, K. Kuroda., Bull. Chem. Soc. Jpn., 70. 2593 (1997) 2. R. A. Vaia, H. Ishii, and E. P. Giannelis., Chem. Mater., 12, 1694 (1993) 3. M. S. Wang, T. J. Pinnavaia., Chem. Mater., 4, 468 (1994) 4. X. Kornmann, L. A. Berglund, and J. Sterte. J. Poly. Eng. and Sci., 8, 1351 (1998) 5. H. Shi, T. Lan, and T. J. Pinnavaia., Chem. Mater., 8, 1584 (1996) 6. D. C. Lee, L. W. Jang., J. Appl. Poly. Sci., 68, 1997 (1998) 7. X. Kornmann, H. Lindberg, and L. A. Berglund., Antec, 1623 (1999) 8. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia., Chem. Mater., 7, 2144 (1995) 9. T. Lan, T. J. Pinnavaia., Chem. Mater., 6, 2216 (1994) 10. P. B. Messersmith, E. P. Giannelis., Chem. Mater., 6, 1719 (1994) 11. R. Degani, CEN, Nov. 23, 18 (1992) 12. R. A. Vaia et al., Chem. Mater., 5, 1694 (1993) 13. A. Okada et al., Mater. Res. Soc. Proc., 171, 45 (1990) 14. M. Kawasumi et al., Macromolecules, 30, 6333 (1997) 15. A. Okda and A. Usuki, Mater. Sci. Eng., C3 109 (1995) 16. -frf^ 51 4°i, Polymer(Korea), 22(2), 328 (1998) 17. Modern Plastics International, Oct, 16 (1998)

- 33 - 3 ^ Elastomer (^TflS)

1. 711-S.

A. 71^5] »j^ \g ^r.fi.ifl-8- (1) -g-4t Elastomer M-ic-^

En|E| ^^ (ji-f- l~100nm

-y-rrii^c-iq-. ^--ib-S-Sl S7l7r lOOnm °}-s}9l

*}•§•*> ^^51 if?) ^71-S.

, -g-g-

A^ (ZL^ 2-3-1),

7fl^s] ji SI4. elastomer^ (Thermoplastic Elastomer : TPE)S

L-T-°fl-& Polybutadiene, Polyisoprene, Poly(butadiene-co-styrene), Poly (butadiene-co-acrylonitrile), Poly (ethylene-co-propylene), Polysulfides, Polyacrylates, poly(isobutylene-co-isoprene), Polyurethane, Fluoroelastomers, Silicon, Plasticized poly (vinyl chloride) ^°1 914. °11- cfl^-^-°l

- 34 - 10MT <>1^^. , 1970Vl °H 14

nano

Elastomer nano block

nano alignment

2-3-1.

(2) 7l^3)- 71

^ Hov^l-Ol Compounding ingredient £ blending 2-3-2*11

- 35 - Control of Chemical Structure • Raw Rubber— !—• Functional Group at Molecular End Functional Reaction Group \ '—•Functional Group inside Rubber Molecules Improvement —•Non-Reaction Type —• Reaction Type Elastomer • • Compoundin g— Ingredient "•Mono-Function -• Multi-Function

-•. Performance—ttgh Performance -•High Performance & High Function

—•Improvement

-•Chemical Modification •Reaction Processing -•Production of Polymeric •Process Substances

• Blend • Compatibilization •Immiscible Partical Compatibilization

2-3-2.

Elastomer ^4t^^ ^71-t 7MJcr 10~400nm ^s] fl in|^[ 7}3Z elastomer-!- til^-*}^ NBR/montmorillonite irii3}-1-l^-^2.:T-/poly(methacrylic acid)-Zn M-t^-^-^, super olefin polymer(SOP), fejiEj^l M-^^ifilo], ^?\i}o]}i_£\E. SBR,

P-S., nanometer ^ -fr—¥-71 ^3:71- 5a 4. (3)

- 36 - in-situ

In-Situ^, Molecular composite 71 #^ ^

371S] a] ^

In-Situ 371S. >fl2: "J^

- 37 - 3.7} s] elastomer-i-

10~400nm elastomerl- ^1^^ ^ SJ^nV, NBRo]

(1) -8-8-$3

i, ^(seal) elastomer -g-g-*H#£1 ^i^ tflA]7>

71 ¥

-8-g-ol 7^«l-ulf Jl^^Ai A}-g- 7r^- biomimetic assembly Jft&

(2) i^fl^ -8-51 a. ^ vulcanization, reinforcing filler ^4 7^*M ^r0!^* ul^:t!: 4°^^ -8-S. o|-g-£|ji o^cf. ^*j iE] ^1-^-El-Cl ofl al-¥-7f E}O] ^ ^^fl3. %

- 38 - .eiHl- f-*fl 7)^s\ carbon black-i- ^ ^21^1- "g*l- foj:^ AJJ^-O] fashion tire -g-g- b.

^Scratch,

-8- 2-3-H

c.

(TDI,

^ ^-°fe CFC , recycUng

-5] -g-g-71-^

- 39 - SL 2-3-1. -gel

TTTr •8-8- silane 4^ -fM«-3.-Sft fluid oil, ^r^^ fluid, rubber, resin^ base polymer, coupling agent rubber compound, Aj ^ ^1 §• resin curable resin, AJ^*11TI-

d. alloy

#/ §o]

super olefin polymer(SOP), HNBR/poly(methacrylic acid)-Zn

4. (1) Elastomer elastomer nj-e} S 2-3-2°l| elastomer Stl o.^, -¥-71 Til £.S ?!««

- 40 - £ 2-3-2. Elastomer

Elastomer •¥•71 Elastomer (—•*• ^ ^y s}- -§•) ol^-A-1 «t*3 < 300 t » loo t: > 200 TC Tg < ^-& - ? His. 0.9-1.2 2,0-4.0 0.9-4.0 1.3-1.7 1.4-2.7 1.0-2.7 7] mXs.

(2) elastomer

-(EPR)

PP7r . SOP^r PP^PDM alloy^l , *fl«-8-3

NBR/montmorilloniteTfl NBR^I oligomerl- montmolrilloniteSl

NBR montmorillonitel- nanometer 3.715.

- 41 - S. 2-3-3.

71 ¥^- 4E}Mlfe °d^^- < 4)2wa*h *^^£ a^I -a-s-a-8-ei ?f^-i-^, ^i-a-fr, ^-^^^ (-&, *, M ^ §•) SnO2, ZnO -§• 4* 5flef°lS^-, ^V^^, Sm-Co, ^-•f-nlu)-, A1N, BN

5>^s.5.t4°is, -a-sj-^zitii^ §^nm

^t> ^-#, ^l^e}°l^, ^^^^-y^f

^-i-Hi-oiE, 4|B].g.eHE.i %^#sflol

acid)-Zn Lf^4^^^ methacrylic acid ^$; poly (methacrylic acid)-Zn-|- HNBR matrix ^

- 42 - 2. y\. 1930V!tfl - 3.^7} •S^^aL-?-^ WAS. id?V 25,000 SBR ^ # ^ >l M 11 *

-¥-EM

SBR, BR, *l"i«l-JL ^r# yl^°l fe^- ?!°M, EPR/EPDMS

1997>d cflu] q 3.5%

1995>d ^-vfl SBR ^^ ^ 27%, 47.5%7f ^^#s^fe ^ ^t-°l *H«Vfe w]^°i «L^ Htf. ^ei -8-^^^-o.S. *H^£]fe SBR grade7l- ^

HIPS-BR, NBR, EPDM IIR, CR, IR, &di5L^

2-3-4.

- 43 - 180 SBR ^•:M-8-*l-*J- 60 ±%] 240 167 BR 40 207 55 LGS}-^ 40 SBR-Latex 34 40 169 EPR 50 HSR 10 20 NBR 16 36 VP-Latex 4

71 si a^

5^0.14 V£ 3000^^51 (id

. (S. 2-3-5)

2-3-5. rfl«l 7l-

- 44 - 71^-S-i 100 0 100 10 *13^- 7fl^ • £^ -2:^71^ 100 40 ^^ -§~§-7l£ 100 60

Shin-Etsu, Witco ,S 67fl ^ SI71 nfl^-ofl,

5L Slfe

-51

-. SOP elastomer

71 L, 7JA

- 45 - «y-¥-

71 ±.£\ iffl

SEM AV^I^-

afl^- 71^

715:71

r 71

2.7] 7} o] ill Tj-f

- 46 - X10,000 t HIT, HD13

2-3-4. SEM : (a)10,000 (b)50,000

7lcfl«>7l

71 ?1 Jf 5~10Vi 711 -g-g- 71 £5] -S^fe <+

71 tfl Si ^, , 71 El-

- 47 - 3. 2-3-6. <3^7]# *l|i7l # 7l¥

•fHM e^i^ll molecular composite -¥-^cl

^ « 7>^

4lHin *^1 i^fl ^12: 5J 7}-^

SBR-Latex -•¥•71 ^?l7i| ^el^^H^, ^>y, i^7l^

3*1-8-, molecular composite, 71 ^^ #.*} 7)^71 £

EPDM- ^-^^ EVA-aerosil blending Polyurethane 71^^

polystyrene blending nylon PET Teflon

3.

molecular

- 48 - "S^, elastomer

:, self-assembly, . HNBR/poly(methacrylic acid)-Zn SPO,

-714

(1) ^ 10%

J?-71711

711^01 ^^ -a-8-3-5) 3. ^^^, -¥-7i

ig-oj-o.3. Goodyear^- ^^1- ^*9*|-J1 9X^-^, Asahi initiator^ multiple chargel- -f-tl: ^4^^-a ^ ^^l- ^1*J Nippon ZeonJ*}- Japan Synthetic Rubber°fl tf ^ living polymer^!

- 49 - end-functionalization^l . 7)t\- functionalized initiator^] polymer ^ q-%-7] silicon coupling^ -§-

nylon/clay ^ 7]-^

± 4 7fl 513-. ^^ 2-3-5°fl^- ^

polymer nanocomposite

polystyrene nanocomposite

2-3-5.

PP polymer alloy^ 7fl^-S.

hysteresis7l- . fi. 2-3-

- 50 (2) NBR/montmorillonite NBR intercalation^- clay^ fe- 5A.2.S. NBR-i- 2-3-64 £°1 NBR clay7]- clayl- 3.9vol%

MBE/-8-* Clay-NHjf

NBR

2-3-6. NBR/montmorillonite

- 51 - s. 2-3-7.

•8-E- alkoxysilane modified rubber, u}^ Goodyear Tire-g- carbonblack ^/ILfe- silica 4tr*fl Self-Assembled 6nm Gold Islands on Diblock uj^ Copolymers (PS-PMMA or PS-PVP diblocks) U. u}^ Ppy/Poly(Styrene-b-(ethylene-alt-propylene)) Connecticut

PS>fl ^^71^-1-^ (TiOa, ZrCh)

Asahi initiator^ multiple charge-1- -f-t!: Tire-§- Chem. PS &*}% -S-i i^ ^^ Nippon iE] ^1-c] <&^°\ end-functionalization°fl Tire-g- Zeon living polymer^] end-functionalization0!] cfl Q JSR Tire-g- ^n1, silicon coupling^, M-ic^-thS}- Tire, Shin-Etsu SBR-§- coupling^ coating, Silicones 5LJL-8- Michelin et jl^ ^" alkoxysilane modified rubber, Tire, Cie. carbonblack D^/Er silica -^^M Degussa q-t^-S-l-^-e-S. ^-^^€ SBR Tire-g-

o|Efle] Univ Nanocomposites based on an organophilic clay Bologna and poly(styrene-b-butadiene)copolymers Industrial Conducting polymers, polystyrene, and polyester, Technology Taiwan Searching for compounds with improved Research antistatic, gas barrier, and mechanical proterties Institute

(3) T^^MMei ji-f (HNBRVpoly(methacrylic acid)-Zn HNBR/poly(methacrylic acid)-Zn t-fic-^-^fl-c- Methacrylic acid^f <£•§- -^-^rt!: :&^'^— £- poly (methacrylic acid)-Zrvi; ^ll^i1?!:^- HNBR matrix nanometer 3.7}S. •§ Zeoforte2}:

- 52 - HNBRSL4 1.5*11

Roll-8-,2. 44 ^ Zeoforte-tr

elastomers!

a 2-3-8. Roll-8-

NBR CSM HNBR Zeoforte OlliEfl^ °NliL B A D D C A B A E E D B —i o E i J E E D C B A MM 5.^ A A D D B A D E A C A A E D C A A D A , B , C , D E :

(4) -^, 4*2]$

Dow Corning, GE, Toshiba Silicone, Shin-Etsu Silicone, Wacker, Bayer, Huels #^£1 Rhone Poulenc % 47fl^- 87fl fl ©I

SI4. fe- 1993V1 Toshiba

- 53 - Dow Corning, Rhone-Poulenc

100%

. a 2-3-9^1

2-3-9.

cd -ff 3 Dow Coining Dow Corning Toray Dow Corning Silicone General Electric General Electric Dow Coming Asia Shin-Etsu Silicones Shin-Etsu Silicones Shin-Etsu Chemical of America of Europe Wacker Silicones Wacker Chemie Wacker Chemical East Asia Rhone-Poulenc Rhone-Poulenc Chemie Rhone-Poulenc Silicone Miles Bayer Bayer ° Huels America Huels Witco Witco Degussa Japan PCR Degussa Chisso

GNP 15~20%s]

-ol 5% ^5.^ ^-31-siai, ^^^ ^-r-^f fluids GNP 2Hfl ^^^ 15% ^-i- -H-^l^t 5JAS. iL°Jcf.

e}-, n ^^-^.t^ 96H1^1 tflsf 15% ^^1 ^^.Ji, 12~13%7f € ^J^-5.

54 - up-stream Sf,

40%, 7\ 20%, 20%, 7]El- ^«a^-<:»>7f 20%^ market sharel- Ji^, Dow Corning^l 35.1%?1 ^ 19^$S. Sl^-^, General Electric^ 14.9% (8^2^^:$), Shin-Etsu 13.4% 25%, 20%, 10%, 10%, 10% SL 2-3-lO^f ^A

2-3-10.

vfl* a^ -8-s. Y. Abe Science Univ of Tokyo organic-inorganic hybrid process Chinese Academy of Q. Zongneng melt intercalation process Sciences silica-siloxane nanocomposite of T.A. Ulibarri Sandia National Lab high strength Institute for New Materials new low friction coatings structure evaluation of PDMS C.W. Frank Stanford Univ nanocomposite by fluorescence

(5) Bayer, BASF, ICI %•<>] J£-f}-*U

. Non-CFC nanometer 3.7] 5]

S. 2-3-114

- 55 - 2-3-11. 01-&- a-c- -§-£ J. Gilberts TNO hard transparent coating J.M. Barrales-Rienda ICTP materials in coating and optical devices C. Damian Lyon, INSA membranes S. Yamasaki hard coating of plastics better heat resistance and M. Furukawa Nagasaki Univ mechanical properties transparent scratch resistant coating, T. Saegusa KRI spacer for LCD

SJ

consortium-i- I O.14 71 . S. 2-3-1241 fe

(1) PIA- NIST ATP (advanced technology program)

•S- t5Ha.B}H^ i4S. windows, -f-^

-B-2] 71 ^floil ^71^ w]-^^- ££s}^ £^7} ^^lsli o|c]-. £?v Edison Polymer Innovation Corporation (EPIC)-§- ^•/$°S- consortium^: ^^*f°i 1999\l^Ei 3^1} 3 millionSt- 4. NIST ^^Ai 10711 consortium^^fe- , , ^•^S. -8-8-7fl^«1-^iHl ^^^-i- ^-Ji 5!14. £# NSF^ 307H Materials Research Science & Engineering Center, MRSEO-S- 'M^^l-jl, nl 4^^# ^"fe 7}^-^ i^°fl ^tb ^T1-!- ^1^ ^°1^. a^ "New Methods and Tools for Nano technology" B}^

- 56 - 2-3-13, 2-3-14^1

2-3-12.

EPIC^f* ^^ 1999\! - 2001, consortium-i- ^Aj 3million$ -f-"?]

NIST ^ windows (ATP) ^^ ^£^1 7fl^-

NIST ^#.2.3. Vi^^l, ^^711^^, 107fl Ol^-o) flAfl-ol ^-O^ 1998^^- (consortium) vfl^SL^ a^^fl.^1 NSF grant "New Methods and Tools for Nanotechnology"

1995^-

- 57 - S. 2-3-13. 3^7]$ alkoxysilane modified rubber Goodyear carbonblack ^/£TT silica ^4 (Tire -§-) General Electric Clay complexes Montmorillorvite Clays, Clay Surface Modifications, Epoxy/Clay Nanocomposites, Nanocor Epoxy/Clay Concentrates, Polymer Grade Clays, ^ *1] Montmorillonitel- M-i'a^ ^4 -8-£S ^4r,

Dow Chemical polymer nanocomposite, polysiloxane nanocomposite DuPont Fluoropolymers Self-assembly of epitaxial nanostructures, Engineering. IBM Synthesis, manufacturing, consolidation, and processing NANOMAT, Inc. of a wide variety of nanocrystalline materials, nanomaterials, and nanotechnologies Argonite, Giant, NPI 71 ^^ ^^S. ^-^^fl ^1^ ^-°H1 ^^

- 58 - S. 2-3-14. *M1 ifl-g- Univ. of Army Ppy/Poly(Styrene-b- Connecticut Research Office (ethylene-alt-propylene)) Self-Assembled 6nm Gold Islands on Diblock Univ. of Copolymers (PS-PMMA/ PS-PVP), NSF Chicago Strong optical nonlinearity via conjugated polymer films. metal and ceramic processing, coatings, Cranfield surface analysis, high temperature materials, Univ. molecular electronics, nanotechnology, polymer processing and composites. Univ. of nano Manipulator developing an improved STM and AFM North Carolina (nM) project NSF Zyvex, Monsanto Synthesis and properties of Washington ONR DURIP carbon and boron nitride nanotubes and Univ. Sun Microsystems nanofibers, fullerenes Du Pont Device and Circuit Simulations - numerical simulation of solid state electron and Wayne optoelectronic devices, materials grows, VLSI State Univ. fabrication technologies. Electron and phonon kinetics in quantum nanostructures. Lawrence Ordered polymer-silica nanocomposites Berkeley Materials Science Division National Lab. PS/TiO2, ZrO2 7l*S3 Univ. of Nanostructured Epoxy Thermosets Minnesota Block copolymers/poly(ethyleneoxide) (PEO), poly(ethylenepropylene) (PEP)

59 - (2) EURAM o.S. 3 71. l^ hybrid . (£• 2-3-15)

2-3-15. ifl-8- Birmingham nanometer-scale structures, University devices, and processes. polymer nanocomposites -S^TT alkoxysilane modified rubber, Michelin et Cie. carbonblack ^/^^ silica -Srthll Max-Planck Institute van der MI -a ^s. Waals-ZEEman

Nanocomposites Based on an Organophilic Clay oiEfle] Univ Bologna and Poly(styrene-b-butadiene) Copolymers Lorand Eotvos nanostructured materials, aluminium alloys University and composites, glasses, ceramics, Hungary Department of polymer systems, lattice defects, General Physics plastic instabilities, and more.

(3) i*i Toyota°iM ass fibers, inorganic materials)7f JL^- ^§H layered silicate clayl- <>]•%• «• nylon/clay hybrid* °1 efl

nano-hybrid^

2-3-16

- 60 - 71711, ^1-^x} -§^1 -g-^-i- 7ltfl*VjL 5(14. ^^fl nylon/clay hybrid^M

(4) a 2-3-174

711 (cermet = ceramic+metaD-S- 1950^31 <>]$• 2-^:

71*113. ^ MMCCmetal matrix composite)

]^ IMC(intermetallic composite), CMC(ceramic matrix composite) CC(carbon-carbon composite)

=L $• -8-8-

- 61 S. 2-3-16.

3} A> «1 JL

Toyota *}•§•*} EPR7^](30%)/ vfl*^^ PP Super 1991 bumper Copolymer7)l(60%)/ Olefin $3. n] so] A}-o-^ si- PE/Talc(10%) Polymer Polystyrene-Clay melt Toyota Hybrids -blending Epoxy ^1/ In-Situ MF 611 7VH NBR(~10%) 1990 620 PVCMJl In-Situ St^l ion Jn-^^r^l 1964 Neosepta Ion m^^ (IPN ^2:) ^^•^ Molecular Dynaron PP/^r^ SBR Composite 1992 alloy ^^

^r^ NBR/ «*£• Zeon 1991 Zeoforte acryl-tl- olQ i^^^7l •a-H- Zeon 7)1^3)- PE f/jnl^ Carbon black polymer Univ. of reinforced rubber Tokyo initiator, Asahi Chem.

YomagatacJ) plastic-rubber Yomagata composite Ruber Co.

- 62 - 2-3-17. manufacturer and exporter of bearings, Cen International clutch facing and discs, flexible copper Trading Co., Ltd. clad laminate, and nanometer material. Conducting polymers, polystyrene, and Industrial Technology polyester, Searching for compounds with Taiwan Research Institute improved antistatic, gas barrier, and mechanical proterties National Chao Tung University in Hsinchu. R&D of semiconductor devices Taiwan National Nano Device and materials. Laboratories (NDL)

- 63 - 1. *M^i, 9810 P101. 2. Proceedings of the International Rubber Conference'99 Seoul. 3. F. Tsutsumi, M. Sakakibara, N. Oshima, paper presented at the meeting of the Rubber Division, ACS, Cincinnati, Ohio (USA), October 18-21, 1988 4. R. H. Norman, Conductive Rubber and Plastics, EPC Ltd., New York 1970, p.223 5. E. P. Giannelis, Adv. Mater., 8, 29 (1996) 6. T. J. Pinnavaia, J. Chem. Mater., 6, 2216 (1994). 7. A. Okada, M. Kawasumi, Polymer Prepr., 28, 447 (1987). 8. V. Hill, M. Stockdale, P. Tandon, B. Nigen, Proceedings of the Eighth International Conference ADDITIVES'99 , 1. 9. M. C. Dejesus, R. A. Weiss, S. F. Hahn, Macromolecules, 31, 2230 (1998). 10. M. Laus, O. Francescangeli, F. Sandrolini, Journal of Materials Research, 12, 3134 (1997). 11. Z. M. Gao, Z. D. Zhao , Y. C. Ou, Z. N. Qi, F. S. Wang, Polymer International, 40, 187 (1996) 12. N. Hasegawa, A. Usuki, Proceedings of the Eighth International Conference ADDITIVES'99, 19990322.

- 64 - 71 ^^ it^l^ol ^^VSlJL SIfe- ^^o]nf. j!7l^ -fr 71-^-71 v+i:^^-^ S] 7fl

74 nflEsli effect)^- °^A

7K

6-8% ^^ i^ ^ }&}sai i}^ 1 ^l l ^°fl^ ^ 40%

-, PC/PBT L7\ tfl-?-^

instrument panel, console, glove box ^ ^1"^ trim^-

1-31-i-efl^ ^4^rS°11 tfl^- ^T1^ 4^^ 13:^*1

- 65 - , A^\%, in-mold lamination %•

SOP(super olefin polymer), primer DPT(directly paintable TPO), *flf-S] s]^ ^ ifl # ?Vfi-^-«l-^ ^*§«r^r MIC(mold-in colored), TPO(thermoplastic polyolefin) •§•

SOPfe 1991 id<^

o)^^-^*]- ^. Pp *}£} bumper fascia^ instrument panel°)1 ^e] AJ-^-S^JI ^[cf. ^ 1^^ E^-'y

0.5% 6|^O|B]I o] H]^^Sll7> °i^^-&

SOPS] S^^ ^J-.^w.o] EPRol

4-§-s]JL 5lfe EMT, PUTJl RIM, R-RIM, Xenoy -Wjl 51 ^r Noryl GTX^l -i-^-i: SOP^ ^ty %v\] S. 2-4-l°fl . SOPt EMT«^] Hi «fl 3IE, 7f^^, 7^ ^-o] ^^4^ cf=. ig 3-JL ^^

- 66 - & 2-4-1. SOP RIM R-RIM EMT Xenoy Noryl g/cm"5 0.97 1.05 1.13 0.97 1.22 1.07 -a* % 500 180 100 500 - 80 MFR g/lOmin 18 - - 9 lmax lmax MPa 1,500 200 500 1,000 1,700 1,980 R-scale 65 20max 20max 35 lOOmin lOOmin t -40 -45 -30 -40 -40max J/m 70 NB NB 70 170 40 (-30TC) xlO"5/1C 6.5 18 5 6.5 7-9 9-10 mm Heat sag 5 20 7.5 9 7.7 0.8 (120*0

^ ZL 1980^^

S)3L $\o]

- 67 - 2.

7\. 3-8- ^3-8 EPR(ethylene propylene rubber)^-

1^.5. cfl^1^-^.

^£7} cfl^a^ofl °1#35E.7>

- 68 - 3.

7\. t5]=i|^(elastomer modified polypropylene, 60%, J!-¥- 30%, ^3 10%5i i^-f- ^ fe PPl" nflS-^iiS.,

EMPP , n ^4 EMPP^I

JLJJL#.S.3. S^^" *r $14. "^ #*fl5. al-?-^Hl hard segment IPN(interpenetrating polymer network)

XI4.

SOP i^7> 91 ^

PP/EPR/PE -b 4-E-^^a- 4#4 ^4. • PE *§&& oii^^ EPR4 f]:W-S"i- ^A3*H EPR ^E.

- 69 - PP1" PP *!- SOP

• EPR^ JL^q PPSf^ ^-g-^o] 3X^ propylene-rich

451-

. 1976^ °fl Eastman Kodak^-H PET 4 HBA1- «S.S.*l-fe- X7G

Zydar(1984) 84 \! °11 Celanese Hoechst^l Vectra, 85^^! Dl^«l A14^1 Novaccurate, 86 Hi ^ Idemitsu^l IdemitsuLCP, 87Hd Toso^ TosoLCP, ICI^l Victrex, Gramont

• 7000 • ^3 4-8"^ ^ ^d47l7l

- 70 - J2- 31JL oii-^ Afl^.^- ^ 7fl£ ^4] 3. iL£ nflid 20-30%3£3 -i- ^ 31-S-.S. -SL^WST Group 97^^ £

30000-50000

200,000-250,000

] 96^ °H £*> 50000^- Tf-H-Sl dimethyl-naphthalene- dicarboxylate (NDC) i

Hoechst-Celanese5f Polyplasticsfe o^^r Fuji City^l ^^V 2800-g-

l£-*l-l- ttW ^«-°14. ^e DuPont^i $2000^-1-

NDC1 p-hydroxy benzoic acidl- , -a-ft-,

7flt

Hoeachst-Celanese^]-5}- Amoco

Hoechst-Celanese, Amoco Polymers, DuPont •%-°}t\.

Polyplastics^ ^ti: 2800-g-

- 71 - Toray^i «£# 1000 PET o)

(1)

-^ A] °}5L nflid 20-30%^

(2)

Af-g-O] 7}±5- }- ^-i-^r Hoechst-Celanes4uJ:0]

Hoechst-Celanese^ Superex -

_ no — PET PET ^f-Ji4 100

#^8r PET

(3)

5112.

0 Kevlar AJ^-7^ $io-100/lb lJi Vectran ^-frfil ^-f $30-300/lb l Kevalr ^-frsl ^^.^ 50,000 ^/\l^S-5.

- 73 - 1. D. Acierno and A. Colloyer, " Rheology and Processing of Liquid Crystal Polymers", Chapman and Hall, 1996 2. F.P LaMantia, "Thermotropic Liquid Crystal Polymer Blends'Technomic, 1993 3. G. Kiss, Polymer Engineering and Science, 27(6),410-423,1987

74 - 5 ^ Sol-Gel-i-

1. 7fl iL

7\. Sol-gel Sol-gel process^ 5-7}*} °}^ -fM^ $ ^ q&g aj-^-g-

a.71-1- nm

Sol-gel process^ -fi-21 5J

i, 1930^^011 monolitic inorganic gel<>l 3--&£\ ^<&o] 71 ¥

Sol-gel process^ -g-«I| l-fl ofl^

7>

Sol-gel process^] #3£ ^7^1 W^ ^^ ^fe 3-f,

. O)

i 2-5-l°fl^ sol-gel process-^ %% *£

- 75 - S. 2-5-1. Sol-gel proccess^

1) -8-71-^71 *tf*HS.S| V$o) 7\^ 2) -fM, qjS\&7\ £tf ^4 ^ 7}^ 3) ^^Sf 5J ^•^•2l8iol -afl- i^^ glass 42, 7}±r 1 4) ji-& -g-sUSH ^Ifl- Aj|e}-nj ^fls. ^i^. 7}^

2 c^sfl, glass, -MlefoLl, nanocomposite, -B-^-^l ^Q4 3 'U^M, od^rLV 2:^ ^^°1 &^r ^1^^ ^BS. ^|2: 7^ -§-°JHH #^, 4# ^*§# n%-

4 ^#,

4 sol-gel proccess^.

^13 2-5-H Sol-gel process?^ Sol-gel nano proccess- Ml.M.^.3.7]- colloidal suspension (soD^f gellation

^ 53^.5. Tetramethoxysilane (TMOS), Tetraethoxysilane(TEOS) aluminates, titanates, borates -^£ ^-«1 4-8-€4. ^# ^•^•-*>>°lHl ^r^l-^-g-^r H^ 2-5-24 ^-4. Sol-gel process^^ q^.fi-S. Af^-s]fe OMOSIL

7} 7^1^ . OMOSIL

- 76 - USE

as

I Silsesquioxane \j\x il.sijXIl

|Multiphasic

2-5-1. Sol-gel nano process-^ Qg.

Hydrolysis = M-OH + ROH Esterification

Alcohol Condensation w M-OH + RO- M = 4 ..""'• " • = M-O-M = + ROH Alcoholysis

Water Condensation =M-OH + HO-M =M-O-M Hydrolysis

2-5-2.

- 77 - sol-gel process^ ^- -8-8-€

JL SI4. ^^lofl #oj*|-fe- Jl^-xj-ir ^r^-^-g-i ^-^^ ^r Sl*r alkoxy hydroxy terminated ^r^l, silylalkoxy ^r^l •§• ^^ sol-gel process0!] 2-5-3),

H* + Si(OR)4

2-5-3. ui^-^1- sol-gel «V-g-

>4. Sol-gel process^ (1) S^^-y Sol-gel

^^ cfl^- cf. nm

. Sol-gel processl- 71

Si4.

- 78 - (2) # ?Mlc OMOSIL-i-

71 Til 2-5-45)-

OR "Si—OR OR

2-5-4.

#7lfi] Sol-gel process^ elastomer^ cf. OMOSIL3

71 £ ^^13 (3) ^^7]^ Sol-gel 71 ^# SOl-gel >BSfe 7| *)n sol-gel sol-gel Si4.

3. ^l^tVcf. ^1^-^^ OMOSIL 4*fl# (RO)iMR'm ^^ (RO)iM(R'J-R"-M(RO)i(R'n)A R' S-& R"-§- 7l^7lS. 4^1^ Jf Sol-gel

- 79 - (RO)nSiR'M-n) Hi^r (RO)mSi(R'(3-m))-R"- Si(ROUR'<3-m)HM R'°l 7l^7l-y 3-f cf-g-4 ^ sol-gel 2-5-5

sol-gel process7l- 9X°-^, °1^ i^ 7]^s] %HV4 c-j-i-^ ^7l^S.^ofl 4

sol-gel process-fe -fr-¥-7l fe sol ^ gel ^Efll-

sol-gel chemistryl-

7j-E.7fl5L,

2-5-2

Hybrid Hybrid

Hybrid Hybrid i Hybrid i^fl Hybrid ±A 14ii Hybrid i^fl Hybrid i^fl

- 80 - Hybrid

1 hydrolysis R'O- -Si OR1 HO Si OH + 3R'0H OH" or H+ OR' EGM. MeOH. I PA . . OH Par t i a I Condensati on 1 I 0 0 I I -0—Si 0 -Si 0—Si R 0 (oeI at ion) Glass R\R Si 0—Si- -0—Si 0—H 0

-M- -

2-5-5. >gel€-

Sol-gel process^ -7)

7] sol-gel nano process-c- 1) nanometer ^°1H ^ud^ 2) nanometer ^l^f 3.7)$] characterization°1 3) nanometer ^^ energy £^ 3XA

- 81 - o.S. sol-gel processl- -f-^H £ 2-5-3«fl

—¥-71 cf^ ^^-i: A^«|-^ ^-^m^fe -fi-^71

~§- °)-%-*\^ sol-gel

71] #°^ ^r SU^.

M.S$°- sol-gel 71-^g-A] base polymer^- silane couping agent

- 82 - 3. 2-5-2. Sol-gel process ±^

SBR, -¥• 71^^171), OMOSIL, iJH-E. sol-gel -£r?|- Polyimid-silica sol-gel ^ ^

?&•%• OMOSIL, sol-gel -If-tf ^^M, ^^-^1, ^^^1 polymer-^-^^Sl-# a^ Barrier ^Ai li"-!, ai ^#, i^ OMOSIL, sol-gel 4^- PO, OMOSIL, sol-gel 4tt

#£!• -fr7ii, ^7l^Aj)) ^-a! 7i^ %?m OMOSIL sol-gel 71*^ 2)#

^7l^£^ Hybrid >4ii^4 4^^|

3*1, ^ •3=3*1, ?l7]S|-«)-4:Xl- >flA^ PEO -8-E^I )

SJS.7171

- 83 - 3. 2-5-3. Sol-gelS}-!-

(-^7IJKU.}) sol-gel S]-

< 300 r » ioo r > 200 t Tg -ioo~2oo t: > 200 V ? 0.9-1.2 2.0-4.0 0.9-4.0 1.2-1.5 1.4-2.7 1.0-3.0 ?] Jim 7j-s.

;*} 7| ^ ^ ^ ******

•8-°l

2.

^ 71 7} sol-gel

GE

-I-

, ^cfl, sol-gel

sol-gel

- 84 - 30^^^1 ^^1 sol-gel 2-5-4

2-5-4. ^-ifl sol-gel ^l-i- a^ ^ sol-gel ^S. ^ i«l^ ^^?H-^^il ^"# 1H^1-O|;£

PC board 5<

super capacitior

«fi*l ^^ ##

^^"^ <&*}, 7}?, 3.^ 30^7fl

1, crosslinker, metal oxides, polysiloxane -§-oH, ^f^l-^l ^ crosslinkerfe- 7l^-7Hl nr2r A Ao\ 4S.M- tfl^lS. 10,000~30,000/-g-°14. tfli^o] ^^^efl^fe <^^-^ xi o ofl*, S.*]*}, *}±, ^ i2\ ^i, nl^-^ Allied signal, *]*&£. ^ A|E2 ^.ol

- 85 - 3, sol-gel 500 #°-3. ^Mj €4- ^ 3E5. 5l 512-4, fiber glass coating-§-iL5.5i °.3.

sol-gel ^, oj-2] 7]

sol-gel

, -S—¥-71 §>olti.^H 71

4. sol-gel

71

- 86 - 7)^7}$] Al^, sol-gel process^] silan coupling*^ , 71 ^ 71 # f- -§--8-71^51 7fl ^

2-5-5. ^^H^ «JE31|4| 80% LG3}-*}- ^^4°ls. <^*l-#, PC i^s^ ^Hl^-^f)-7)l PC ^£ H, 7)*s-q

PEO-OMOSIL ol^r ^S.^8 i^B photochromic -OMOSIL Phthalocyanine -OMOSIL PS-OMOSIL/siUca

«4ii €-^ jl-g^ «l-S.S^-§-«>J| ^li-g-

OMOSIL ^i^^l JLejSl-Sl- ^Di^^^n^-t

-^^-ael^ OMOSIL ^^P-^l

3.

Sol-geM- 5a4. sol-geH 1997-1998 i 70% 0 -I;

- 87 - •§•&•

tt'fcoz VolX TTifiiR, ^k ^-ts^ll* Mb ft

--b^-b IKE- -g-pr ia-ta tb-^lk 4z 'Inhip [o --blS TTkf^ Iht ^^l^ ^Po loft TT-I*

' ' uoxxg !£

•• lb3"pi866T~A66T PS-JOS -^ir ^l(o-2-t? 1*"^ 'ia]% TT^-§-[o ||o

> ^[0 tb(866T~9

3d ft^^- lopy-k ft-fr ^i SL 2-5-6. Sol-gel "ST1 group ^-e-7lHr H]JL Exxon Chemical, ^y si $'^"'^'';t>l-ol — 13 s]-, PC i^ BASF

General Electric PC3^-HB Oak Ridge Nat'l ceramic powder, Gel casting, H3S)- coating, ceramic ^{S. Lab. dispersant, solvent

TiCh sol-gel 7>^§-

Corning glass TiO2 sol-gel 71-^- H]^lu]o)-rfl«)- TEOS-PDMS Mixed metal Northe Dakota Inorganic/organic (Ti, Zr, Zn) oxide, State Univ. coating oil gellation $• PS nlv|l:iiE}cfl«}- (TiOs, Z1O2) Oil, Formamide U. of California, emulsion, gellation Santa Barbara (TiCh, Z1O2, SiO2)

SOl-gel Sol-gel r Sol-gel coating1^^

sol-gel

. Takiron, Shin-Nakamura Chemical, Sanyo Chemical, Hitachi Chemical, Mitsubishi Heavy Ind, Toray, ShinEtsu ^-°1°1, ^5. 13 Sf, #351-^ 13^- ^^^l^i sol-gel processl- °l-§-^nf. g. 2-5-7^1 ^ <£ £2) a^7l^^H Sol-gel 7l#7fl^- ^-^-i-, a 2-5-8*11 sol-geM:

- 89 - SL 2-5-7. Sol-gel

($.:iL group "11 Takiron Shin-Nakamura Chem n^^rt^r^rt ^y ^-n 4*^ 3r ^J" "S5* PC ^S., B-2B Sanyo Chemical Hitachi Chemical ^?J" ^ 5}" ^ ^ *^ -^ 5i" ^

Mitsubishi D3+silica

JSR polyorganosiloxane 5E.5.-8- Tokuyama Soda Co. CR^] Jt^-^} - alkoxysilane coating Imide type alkoxysilane, coating, xi lil:Al- Asahi Glass ^* metal oxide sols (SiO2. TiO2) alkoxysilane, metal oxide Ito Optical Ind. *** coating (TiCfe, Z1O2, SiO2) Teijin Ltd. alkoxysilane, acrylic polymers 1^3}- coating SnChPc, CdSe *****

v-^SQ^ (Ba, Ti -§-)-n-7] «»

metal alkoxide °l-§- (2005.) LiNbO3 £rui *fl^ Vinyltriethioxysilane-TEOS

- 90 - 8. 2-5-8. Sol-gel-t- ^S 1974 Alumina fiber O 1975 SiC fiber ^^ Carbon O 1982 cfl^ silica glass X 1988 ^-fiber-§- silica foam X 1975 O 1989 £^14*11 si O

1982 In2O3:Sn(ITO) 3.%^ X

1988 Central £4 (200 nm SiO2-TiO2) o 1990 CRT TV-8- ^ S-T^ o 1994 CRT TV-8- #4U

1996 Silica "8*r o

EURAM Hybrid

^^. odj^-nf-o.5.^ Akzo-Nobel Coating(Netherlands), Keeling & Walker LTD. ^-g- 1-

- 91 - 3. 2-5-9. Sol-gel ^-i1 group HlJL Akzo-Nobel Coating, alkyd, TiCb mixing paint -§- (Netherlands) CONDUCTIVE sub-micron size POWDERS & Keeling and Walker powders based on DISPERSIONS, antimony doped tin (iv) anti- static oxide

Eindhoven Univ. of MMA, TiO , SDS in-situ irtJ- Tech (Netherlands) 2 Institute de CeCh, TiCb, TEOS UV *^ 3.1% Ceramica (Spain) Univ. Montpellier Mixted metal oxide, (France) Monolithic gels

- 92 - 1. (a) C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc.: New York (1990). (b)K.S.Mazdiyasni, R.T.Dolloff and J.S.Smith, II, Journal of the American Ceramic Society, 52, 523-526(1969). (c) R.Roy, Journal of the American ceramic Society, 52, 344(1969). (d) S.Sakka, in SPIE Critical Reviews of Optical Science and Technoloty Vol CR 53, Glass Integrated Optics and Optical Fiber Devices, Edited by S.I.Najafi, 1994.p. 114. 2. K. Naka, MfrT (0 *), 48, 244 (1999) 3. M. Shimada, Mfr? (0 #)267 (1999). 4. Y. Imai, Y. Chujo, itm^m (B *) 1. 1(1999). 5. Y. Imanishi, &|g Un (0*) 19(3). 48 (1993). 6. S. Sakka, I1TO (0 *), 46, 18 (1998). 7. ShinEtsu, Silane couping agent catalog. 8. Eunkyoung Kim, Kyong Hee Choi, Suh Bong Rhee, Macromolecules, 31, 5726 (1998). 9. Hee-Jung Kim, Yong Bong Han, Woo Nyon Kim, Eunkyoung Kim, J. of Japan Society of Colour Material, 72, 1, 11 (1999). 10. W.J. Muizebelt, J. C. Hubert, R.A.M. Venderbosch, A.J.H. Lansbergen, R.P. Klaasen, K.H. Zabel, J. Coatings Tech., 70, 53. (1998) 11. S. Sakka, preprint of the 'Interantional Symposium on Sol-gel Processing', May 4, 1998, Cincinnati 12.. C. R. Wold, M.D. Soucek, J. Coatings Tech., 70, 43 (1998). 13.. K. Makita, Y. Akamatsu, S. Yamazaki, Y. Kai, Y. Abe, J. Ceram. Soc(Japan) 105(11). 1012 (1997). 14.. T.Hashimoto, T.Yoko and S.Sakka, Jounal of Ceramic Society of Japan, 101, 64-68 (1993). 15. K.Yagi, S.Shibata, T.Yano, A.Yasumori, M.Yamane and B.Dunn, Journal of Sol-Gel Science and Technology, 4, 67-73 (1995). 16. J.Matsuoka, RMizutani, H.Nasu and K.Kamiya, Journal of Ceramic Society of Japan, 100, 599-601(1992). 17. #Bf^ *M£^, 9607 p. 22

- 93 - 18. CHEMICAL REPORT, 960601 p. 10. 19. ^^<$oi£-({tmXMBm 1998

- 94 - *ll 6

1. 7fl JL

^ cfl, «• ^«fl^fe ^ i^|Sl ^-^^ q-rfl^-^: -fr71-

- j!7l^sl 7)^^-2] 37H metallocene # j!^Sl--317l^ H gj compounding

polymerization filling technology)^: •8- 7>^# 71 ^S.-^ «^| ^.^Sj. 71 7l# ^ ^^ ^^ 71^ -i-ofl 3-g-oj 7f^«l-Cf. ^ 7)^°] «|-a^r fUler^ JL ^

2-6-H

95 - S. 2-6-1 Ceramics Polymers matrix : ^]2f^ nanoparticle TP, TS #Sj-*ll : *\}Q^ whisker •S-^^HMl-, ^4V silicate ^ll^i-g-^ : sintering polymn., sol-gel reaction * ^^7fl^v«l - ol^- 1.169$(97), <££ 1.2^$(96), -fr^ 1.26$(97) * ^31 :

*«}-7)l : ol^- Cornell ^«h all £.4 (Prof. Emmanuel P. Giannelis)

- nl^: 13711 ^Jf7)£ ^-ojSH 7]>i} ^ -8-8-71^ * 7l^^i7fl * Jl^^-4i^ (Jl^^, low * J2.#J£/jllflD]-E.-§- i^fl CTE, low gas permeability, * ul-S:-§- Nanocomposite •8-8- ifl*|-*Hd) - *J-g-f ^ 5J gas turbine-§- - **^«a-8- ^^-¥-^- •-s-^i^is., XWA3., •a-^^ns. * Ceramic/metal nanocomposite - Engineering plastic (•i-4rtllSl|*||£.)Sl ^A^S)- * automotive timing-belt cover (Toyota Motor Com.) * *!-§•*}• -¥-#f- * barrier film for packaging - Reciprocating Engine parts (Ube industry) - Ceramic gas turbine * US companies - Bearing •8-8- ^ -airplane interior - Cutting tool - fuel tank - electrical and eletronic * 3»*KV«a-8- components - CMP slurry - hood structural parts, brakes, tires

capsulation^B. 7] Tfl ^ nfl-o.

- 96 - H)°l Si 4. S. 2-6-241 £• PFT* 4-8-*lM 4W f^3 filler!- ^eHU^! ^°fl aj-fr^ <$ filler7> Af-g-s]^o.iH oi^sj #&

activity^ a>^- #Dflo] ^^ ^Dfls]. SiTT|)^ ulofl n)-Bf 3T11 cf#^ ^ ^ Si4. 6ls1$ PFT 7l^oj| o^^H >H14^ ^•^•^7}- elongation property, tensile strength, impact strengthens "fl-f /?

2-6-1.

PFT 7l^^ , (conducting polymer composite) ^ ^^ ^j-3lHl-§- (electromagnetic interference shielding) 4^*1)^ ^1^41 nfl-f -^--g-§]-7fl ^l-§-^ ^ SX^. ^-^ ^^1^1 (conductive filler)^ cf0^^ -g-g-«fl cfl«H

^^^ A]

graphite, ^£^ carbon black, ferrite -^^1 ^S 4-g-^cf #s.$ filler* ^"?i# matrix

f calendering 1- filler^ ^r^^ ^

•i- igh loading) °1 3

- 97 - D ll-f <§W 7]7§q ^-^-i- ^711 £i}. £# #5^ carbon black°l 3-f-c- particle size7]- <5J-JL structure^]- ££: grade7>

carbon black^ cfl-

2-6-2. No Filler Al/TM/Mg TM KgPE/gTM • hr 1 Kaolin 20/1/0 Zr 10.2 2 Kaolin 0/1/0 Zr 3.0 3 Kaolin 0/1/0 Ti 0.9 4 Kaolin 133/1/0 Ti 15.5 5 Kaolin 120/1/10 Ti 12.5 6 Kaolin 3/1/0 Ti 0.3 7 Kaolin 0/1/0 Cr 2.7 8 Kaolin 5/1/0 V 6.6 9 Kaolin 1/0/0 Al 10 Tufa 0/1/0 Zr 1.2 11 Tufa 0/1/0 Zr 1.2 12 Tufa 30/1/0 Ti 13.5 13 Tufa 0/1/0 Cr 2.0 14 Dolomite 104/1/10 Ti 27.8 15 Perlite 100/1/10 Ti 17.0 16 AI2O3 40/1/0 Zr 6.0 17 AI2O3 0/1/0 Zr 14.5 18 S1O2 1/1/0 Ti <0.1

19 SiO2 0/1/0 Zr 3.1 20 Marl 0/1/0 Zr 0.2 21 Fumice 0/1/0 Zr 1.5

22 CaSO4 312,500/1/0 Zr 401.0 23 Mica 660/3/1 Ti 0.1 24 Asbestos 7/1/0 Ti 9.0 25 Wollastonite 1/1/0 Ti 42.2 TM : transition matal

- 98 - Resistivity (Qcm) 10" 0 Conductive packaging for static-sensitive electronic components 10"

Dielectrics '°M (Insulators)

Semi-Conductive -Anli-Static Semi-conductor O High voltage coil industry HP Simi-Conductive & EMI Shielding 10° Dry Carbon Black 10-* O EMI shielding 1 0 Low temperature heater 10- Conductor

2-6-2.

Physical Properties of Carbon Blacks

PI Particle Size V —> Structure o High |_ Harder | —» Surface Area Melt Viscosity 14 —• Conductivity 1 Processibility 1 MM MM —». Porosity a Density

• High Loading Poor | Mechanical Properties 1

2-6-3. A\^*\\*\ Carbon Blacky

- 99 - PFT 7] ^Ms. ^ 1096"Q 3-f "fl PFT 7l mechanical mixing^ £]*H afla^ 4^-^1)^.4 «J= 108

filler^

PFT

PFT

£M (toner)7> 71)^5] Si4^ ^\4A $.3-S\3- 514

4- 3*WHI ^ *^r7l^ 4^^-^^!

51

71^-i- 7M^ filler ^-^r 4i^

4. ole^ ^-f -i-^^ filler cflA] nano S71^ filler!- 4-8-«r7fl

°i sa4. (Cu, Fe) ^ carbon black, carbon fiber > ^-^1- ^sflA^ 4|3i-»]ii3il°! ferrite* 514. Soft ferrite ^^ Mn-Zn-, Ni-Zn-, Mg-Zn-ferrite %•*) $X3-, hard ferrite ife Ba-, Sr-ferrite7|- $14. Radar ^^r^°l &TT Spinel ferrite, ferroxplana ^^ soft ferrite^ ?^r-§-AS. A|-g-£]ji

- 100 - 12 11 10 9 • 8 O Polymerization Filling • Mechanical Mixture 7 I 6 ro 5 4 3 2 1 r o 0 o • -1 ° o o -2 . I.I. i . i . i . i . i 10 20 30 40 50 60 70 80 Graphite Concentration (wt. %)

2-6-4. PFT sf Mechanical Mixing°ll Graphite %•£.«§ i4€- ?i££ «

3. 2-6-

At^ -¥-7l>^ «Q O-S^- filler^] nanometer geometry ^. VDT

- 101 - 3. 2-6-3.

I. TV • Ghost *fl*i|-8-

iv. ^tfofltnai-g-

30%

2000Vd

ITO(Sn doped >^«m 17" ol^ £qe|oilAi 104-105

fe ITCXSn doped

IT0

fiUer

^Sj-71^0]

- 102 - -fe] 14 HHr *1^- -si

71, €-^«y#7) -§- £.€• S-oH-H -8"8-S|

7pj- ttj-B]- 0.5^ol«l-^ iBHWdine feature size)^l device^ ^^-^ RC delay^l ^«fl 3.XI

^-^0) resistance7l- ^7V*1-31 on-chip device^ capacitance7> £*}x}7\] ^ 5Jo|c}. o] ^-^ «fl^^^ wj-^^S. ^-f-nl resistancel- #±*]f]jL 7)&$] silicon oxide ^^^(1^=4.2)^: -fr^*°l #£r (Interlayer dielectrics)^ capacitancel- SEMATECH ^^^.JLAii *^V

400% olAj-o) device 4j^oi ^=AJ-^ ^jo.^ afl^^jL Slcf. nfefA-1 Oxide*11 k= 2.0 - 3.0)-g-

•fi-71

- 103 - -8-8-3 &4.

(toughnessH

6.S. Tio27i- safe- 31, °i ^7i

NOxS} ^-^ 51 Aj cfl7l

^ Safe -

jl ۥ !#- 3E fe sheet, Ji^-7.}oii ^7lAj porous ji^-xfl- lH ^^H^ ^}}

- 104 - ^r nanoporous ^~^«^ nm ^1^^ JLS-xl- q-t-a-fi-71-

4. °) -ft- 4 5a

l ^ Supercapacitor ¥ Separator -8- JL^-4^«fl^ ^l^cf^^ l+ic^^-o] 7Hf*}-tf. 3^JL wound dressing

^.S^fe 71S] 5.=-

2.

- 105 - 1990\!tfl

o)v]

sat)-. ^71,

6.S. EMI

EMI s. 7fl

nano PFT

7^ o-,

device know-how logic memory chiip-ip - 2.5

- 106 - 1- -f-^H ^7111M- f^J^S. polyimidei 3.0-3.5^1 Hl-°r#^°f £TT low k T-fl^U^Efl)^ 7fl^-^- lab

(1) 71^^ ^-7li^ 71^^^- 7W^ nano ZnO, ITO), *i-fi-^(SiC>2), ^-^^(Al^), ^7l^lE^(ITO, In:ZnO), ), ^^l^^t-^ (Hydoxyaphatite)

rigidity,

i ^AJ^. 7|.X1JL ^o.^ ۥ Omicron) 7]A^ #^ 7fl^i-g- filler

, polymeric sol U, ceramic-polymer

SLsL 1996^ ^^-4^71 ^^^--^oil-Hfe -fi-^-^ *7l Bfl7ll- (PCB, PCP, dioxin, TCE, phenol ^)^1 £-sfl 5J ^^ *M*H TiO2 sol Jl^- TCE £*1H1 tfl«H ^^-1- ^*<9*f^i, 1997 VI, «tfl^^-«a(^)6||Al TiO2 ^"^11^ 43,

^^-5. nano particle TiO2^ ^«fl-§-g-°fl tfl

- 107 - L $X±*\, 1999^

TT TiO2 ^-

compounding £fe coating «V^ uov^^-°] ^

TiO2 ^^^ 7l^^1 3-301 H Vl componding o 3, sol-gel ^-i- <>l-8-^ WS]- ^-^, coupling agent* CVD ^^-^^^1 x\s.qjL XI4.

(2)

pore*

71 ^-& Ji-frSl-j! Hj-A]o))

oj.vi

- 108 - JL-g-74 i4i-g.fr -^^ 3^*11 nl^-S) M^o)^ ^& 7)^S. OL

3.

7}.

71

EMI

Nihon 711^-1- ^Tilofl-M

421-

1996^«fl

- 109 - compounding^

JJfSll-8-O.S. M-ii ITO l 3*}?} 7^5] S.^ ^^V«>JL 514. M-t ITO 104~105

}^ TCO fe St^-S. ^-^^ i^^l^ i^^i^-i- 103 ^.S ITO

ZnOM- MgF2

ITO -§-^, M-2n Ag-Pd -i-0-!), ITO ^-^, IZOdn doped ZnO)

ITO CVD ^ Sputtering^^ll

TCO ITO

34

110 ITO

ITO

Al±7fl7l-

300MHz «»[€• logic chip^f ^^^(Gb0!^1-) memory chip^: ©14. His. QaAs S.a^liB|(transistor)7> siUcon^l is] ^(switching speed)!- M-^ifljL ^^l1^, JL^JE^j (high-density

"^^-(dielectric constant)°l ^"^ 1-^s] el 7} ^••f-nl^-^- cfl^l^jL sa©.^, ^«a#S.fe ^^1 4-8-ilfe- SiCfe

Allied Signal, Amoco, Asahi Glass, Dow, Dow Corning, DuPont, Hitachi, Schumacher ^^ A]^lf-^- 7H^^ol4. 4!-I-

- Ill - 3. 2-6-4°fl 21 a},

7]^SiO.v| CMP (Chemical mechanical polishing)^^4 ££. o^e] 7^^ 2:?i-S] device ^]^

6.S. -fi-7] JL^-4^ 71-^JL, -3-<3*H, ?1^(toughness)

5a4. ^-71 # filler

A]71^5. ^^-w>ZL 5U4. (n^ 2-6-5)

- 112 - 2-6-4.

ILD ^ Thermal stability <1% weight loss per hour at 450t in N2 No fluorine atoms. Molecular structure Crosslinking mandatory for high Tg and high modulus Tg > 400t Mechanical stability Young's modulus above Tg > 108dynes/cm2 No delamination upon cleaving Adhesion Scotch tape test: No failure Stud pull test: > 9kpsi Thermal expansion < eOppm/t: lateral coefficient (Tee) < 220ppm/T vertical

HYBRID MATERIALS

INORGANIC OXIDES ORGANIC POLYMERS

MIXTURES M

BLENDS

COMPOSITES

NANOCOMPOSITES IO-'M MOLECULAR COMPOSITES

2-6-5. -g-^Hv H.7H1 $\^ Hybrid

Loy-i-

- 113 - 7fl\l-§- n^SH!: ^)°}^. -B-^lJL^-^^i Il^-g- triethoxysilyl groupA^. 7]^ 3**H °11" tetraethoxysilane(TEOS)4 tHl f-lf^^AS. network ^2:

-g-*}- ^11o|ES] network l4^<*ll s]*H nanoporous slicatel- ^^: *r Si4. Polysilses- quioxane^gr ^^ -fi-?i-i-(k=2.6-~2.9)4 400t ^^-s] ^^ 1] &) ^V organic polymer template 1}-^«LS. 6-arm star PCL-§- 50%4^1 £.^*H 3 cfl 40% ^ porosity^- 1.93 -n

(1) 7}

TiO2

D . TiO2 ^# fl^ Toto

TotO 4^

114 - Thermally Decomposable Polymer High Temperature Polymer (PSSQ)

Nano-templated Film

High Temperature Polymer (PSSQ)

•.•.•-•o° .*o*: : o* •;.' .o-: *'.'.°'''°

Nano-porous Oroano Silicate Rims

2-6-6. Nano-templated film°1] ^Itt nanoporous organo-silicate^

1a, n-4.8 1b,n = 5.8 1c, n* 7.4 1d,n = 9.5 1©, n-11 If, n = 15

2-6-7. Star shaped PCL

- 115 - mirror), -2.31M-8- blind, tf7]£.<$ *g-*l-g- 5&°.n1 4=-*W 350?} oi^-i- 35-

fe 380-420nm

Sunblock -g- 4^ Sfrtff- «£•, ^-Sj^l S^, ^-^^> -^5]^^ -§-§-- -8-8-^fl ^.oi, tfl&HlAl 7JJS.JE. ^-DlAfl ^.^-i- ej: 3^^^^. PET fi UV/IR

(2)

£1 nHl^ ^ H| Gore-Tex(teflonir^), Micro Bion(-f BJI^TH), Sympatex(polyester?il) -§-4 ^-^8r ^1^-i: ^^ wound dress -§• aL

Nafion(DuPont), Flemion(Asahiglass)

Gore-Tex(W.L.Gore &

- 116 - 1 Associate)^ Nafion^ ^gtM -!- aj-f-ol^g- JL£*}3UH pvDF - Belcore^ 7]&° Separator^ ^#<£

. Celgard(Hoechst), Setela(Tonen), HiPore(Asahi), Exepol (Mitsubishi) ^-©l ^L^olcf.

"smart fabric" 7fll£3Ml£. ^rVd

Umass Dartmouth ^-^^-H-S!^, M|«LeJ-i^l- EPSCoR l Akrontfl, MIT-l^H

- 117 1. %q±$ W3(1998) 2. Gore •§• 4*^ ^H^Ul"^ internet site 3. C & E News 4. ^^ ^4*S *r£- * USP ^-*]f: 5. jlg-al- 4^4 71^, ^ "e|f 2*r*I*14r 6. o]*|. al#<>l£l-5H3l*l Bellcore 7]^ USP 7. 94>d SRI International Report 8. tR^-fr-y^- (1997. 6. 23) 9. ^4^1^(1999. 3.26) ^ 1999\£ LG

10. The 6th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, 1996 11. www.acq.osd.mil/sadbu/sbir/army982.doc 12. http://ntc.tx.ncsu.edu/ritml/proposal/M98-D01.htm] 13. MRS Symposium Series Vol. 435, "Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Materials," 1996. 14. MRS Symposium Series Vol. 431, "Microporous and Macroporous Materials", 1996. 15. C.R.M. Grovenor, "Microelectronic Materials," Institute of Physics Publishing, Lodon, 1994. 16. C. Feger, M.M. Khojasteh, and M.S. Htoo ed., "Advances in Polyimide Science and Technology", Technomic Publishing Company, Lancaster, 1993.

- 118 - A) 7

1. 7||

POLYMER ALUMINUM/ HIGH COMPOSITES TEMPERATURE STEELS NICKEUCO8ALT SUPERALLOYS

OXIOATION- RESISTANT THERMAL LOW COATINGS BARRIERS OBSERVABLE

2-7-1

- 119 ^ (quantum 2L4(quantum confinement effects)* H window

JELS.

L mono- %~& 4(^)T?#^ 4i."T 3:3 i=?"# cluster^- colloids-b ^ catalysts) °\]

1, -8-713

cluster-assembled #^-§: afl2.'& «H ^-el^l 4^ ^-^r clustersl-^

Cluster7> «£a.#3 #^<^1 -§--§-£]<>]^17\4 #^^.^: ^ El 514. ^l-tl"^,

5a4.

7} SI4. *r4^ la^Bn^-H alloys

- 120 - tfl*fl£H*lTr ^4^7lJL4(quantum size effects)^^,

3.7} S. *m cluster

polycrystallites7l-

f. Lead titanate/polymer^l 4^t^^ -n-^i^-^r^ 200nm glass composites°ll ^ 21 ^-^^^1:^ ^>S.^|/JL-S-^ composited

S. ell°}x\^ #sl-2:n|-# <>l-g-«- 71-S-^-g-^, ^i:-g-^ 71^, Sol-Gel 7lEf wet chemical routes ty&°] <>]•%•&*)•. cfl

9X3- Sol-Gel

^•^:-§-^(chemical vapor deposition)^- 7}^}JL fe Sodium/halide flame3)- Encapsulation(SFE) ^-^J^ Plasma Quench Plasma Discharge Spherodization(PDS)-§-;^ nelJL Electro Explosion (ELEX process)^- 7]&tfr#v±.

- 121 - (1) 71 #£-8-611

(7V)

MClx + H2 - M + xHCl balance)

Q carrier gas<^14. 7l#tiV-g-^o] 6.3.^ Fe, Co, Ni, Ta, Nb, Mo, W, V ^«>1 31^$} Gibb's 4-fr°im^ ^^^, "Jr^-I fe 1400 K <»1#<»1 i] Gibb's 7] *H&<$ fe-g A5. 800 - 1400 K Gibb's

MgCl27]-

MC1X + Mg = M + x MgCl2 balance) Na), carrier gas°14. 1300 K #0 Gibb's -g-(negative)^ #• o

- 122 - (2)

evaporation)^

^^4- 7V1, 3L71 nfl^-o]l o] dt-g- -f-^1-^ ^-^^^^ sa-ff4-fi-<9S.(mean free path)7>

S5JI4.

5514.

4. a ol 7^1

71 A||

. ©1

^02; ^Hll- scale-up

- 123 - °vHI Sl^ -8-8-8-71 ofl

^^ JE^ «!-§• ^ i-«-^7l«l|# s^ck AI^^S]

o]ol MW^Sl ^^^1 Sa^Hr ^^°1 81 ^r.

l- -1-^ 5 Torr^l ^ ^^1 ^•;iol S.0^^ ^°1^^> aggregate!- <£-§: ^ SllL, 47] Eflol^^

^ 71

(3) 7l#sJ^aV-g-»g (chemical vapor deposition) ^ 71 £^ ^-^^ ^711- S^SI-aV^-cHl fi)

^-«fl A(g) - B(s) + C(g)4 2^ 61-S"^ t±^ A\o}°) #$- A(g) + B(g) C(s) + D(g)S. 4^ ^ 5tt4. ^i^H^ CtbSiCb -» SiC

^ XI**. ii

1o)st 01^.01

- 124 - -8-711

l^ Ni, Co,

M0nClm ^?1 fl-^-i- M0(R)n

ZnO, ^r^-i- ^7}s] &±&$ £^ I^-^^ $]& TiO2, SiO2, AI2O3 ^^ inl^^-^li, SiC, Si3

717> :

^•y *H?r i^oii ^^-i- ^E , core-sheU Sl ^2:7]- ^-^^1: 7^ $M

(4) Sodium/halide flame4 Encapsulation (SFE)

•8-^^^3)- ^£7^ ^g^^fe 5J^- ^-g- ^71- 3-a-

advanced powder synthesis laboratory°H^1

- 125 - ±r 3.7)3,

2-7-2S} 2-7-3-t-

Flame Nucleation and kicomplete Agglomeration growth of primary coagulation particles

2-7-2.

• • © © ~ © © . • • .«• o w o

... *•.•..••••*•

Flame Nucleation and Encapsulation Agglomeration growth of primary of primary of encapsulated particles particles particles

2-7-3.

SPE 01 ^1-

- 126 - sodium vapor^ ^ «HM

6 i7f ^7fl5f^l ^^ Ti, Al, TiN, TiB2, W, W-Ti M ^^ H^ AIN and A1-A1N composited M-^nlEi a.7l^ ^-^S. ^a «• ^ 5a4.

, Northwestern ^^^1 Materials Science and Engineering°)l*)-e-

A: Evaporation Chamber (Arc Set-up Shown) B: CVD Furnace C. Collector D: Powder Reservoir

2-7-4.

Arc-evaporation ^1 If- jet7>

- 127 - oj

2-7-541

10 nm

Graphite

2-7-5 4^

(5) Plasma Quench Process Plasma Quench Process^ Alan Donaldson"^] Idaho National Engineering and Environmental Laboratory °fl *\ ^it^lSS.-^-11] ol ^•^•0} i|oi) plasma Quench Technologies, Inc.* 1993^1 °1 QA}^ PQ porcessl- ^l-g-sfl metal ^ ceramic powder exclusive licence* 7H2 ^A^ <>1^A>^. 1995^ Ti Idaho Titanium Technologies* ^H*MS£|-. °1 S|4^ 3Kg-TiAir t£S] 500KW^- #*13- 25 7f^lJL <&o] <£# 100-200tonfl-£.^ Ti cf. Plasma Quench process-c- plasma arcMH'H product precursor 5000K 4^1 7]-«i^ ^ Delaval

- 123 - A

Ti -g-^rM ^l^s] precursor*!)S.°]4. 5000K171- Ti^ hydride^. Cl^r hydrogen chloride^, ^^r^cf. °1 hydrogen chloride^

(6) Plasma Discharge Spherodization(PDS) Process PDS process-fe- 9OVd^3i Materials and Electrochemical Research Corporation(MER Co.K°lH Cryogenic PDS reactorl-

PDS reactor* «l-§-*fl )5a4. . PDS

5-10^m plasma channel^

109-1010 280MPaal «a-^*|-oi|^ ^^Sj-^-cf. PDSwov^^ ^-^^ ^^ pulsed ^-^r pulsed pulsed °1#

o.^ NiAl, MoSi2, NiTi, TiAl, FeCrAlY^-g-^ o]nl ^^^^0.5. ^^r ^^7}- s\o]

(7) Mechanochemical Processing (MCP) D]^-^1 advanced powder technology(APT)^Hl A1 -b X^^ University of Western Australia^ ^ 7fl^-«H ^-«l-i- -f-^-^ MCP7l^-§-

- 129 - -f

. Oxides, carbonates, sulfates, chlorides, fluorides, hydroxides^

ZrCU- CaO-iL

ZrCU + 2CaO -> ZrO2 + 2CaCl2

MCP "o^^r nfl^. cf^^V ^^^ ^^ ^ 5U-

SI

(8) Electro Explosion Process(ELEX process) Argonide^l-fe ^l^Hfe- ^-g-^-S. electro explosion uov^-^-5 High Temperatrure Institute f. Argonide

wire^ll 10"6iS] #^ ^^Vofl #711- ^ wire?]- l Al, Cu, Au, In, Fe, Mo, Ni, Pd, Pt, Ag, Sn, Ti, W, Zn, Zr^ wire *r 5l^r ^-^ol^ nano powderl- ^1- ^ Xl-^-13! T1O2 nitride fe chamber^ £|

5U4.

. 4-§-*}fe wirefe 0.2-1 mm^-7lsl wire ^fetfl wire^l ^-7]

^- 3-4 nano powder* ^13:^ ^r&4.

- 130 - 4.

efl 7]^-J2J- ^V^^ °]-§-^- -TI^H nanophase, nanoscopic ZLB^JI nanocomposite

o.s. Af-g-o]

(1) 14 ic-^-^- *fl£] ^12: 71^^- ferroelectric, piezoelectric, varistor, ion- conducting #

^l-i- BaTiO3, ZnO, c-

2-7-6^

(2)

- 131 - uf

Ceramic/Metal Nanocomposites ( containing naiio-size metal dispersion)

nano-size metal particles

ceramic matrix

Effects of nano-sized metal phase * improvements of physical properties (elastic constant haidness etc.) of ceramics * enhancement of fracture strength * toughening by the plasticity metal phases Possibilities of adding new functions to ceramics by the nano-sized metal

2-7-6.

(3) 3.7}$] 3-6 niti

(4)

- 132 - -§-711- 71-^Tfl

71 Til^01 ^-^ 71 Tfl ^ol ^^^"i- 4-g-*}-^

r 5a4.

(5) ^^EL zftfL ?] ^jol WC/C0 0.3 n>

VC

(6)

, riOnm 3.71S] ^ofl 7].^^. 7j-^>^ Fe, Co n?)JL Fe(Co)-B ^

100 n %•& 7.1-71 O1«OVA^4 ^ , oil- 4S.& 4^ ^•^•^ nJ-l-^ Tltfl^M* (GMR)

H. 2-7-1^8:

— 1lo QoQ ~ SL 2-7-1.

Property Application Single magnetic domain Magnetic recording Small mean free path of Special conductors electrons in a solid Size smaller than Light or heat absorption wavelength High & selective optical Colours, filters, solar abs orbers, absorption of metal photovoltaics, photographic particles material, phototropic material Bulk Formation of ultra fine pores due to superfine Molecular Filters agglomeration of particles Uniform mixture of different kinds of R&D of New Materials superfineparticles Grain size too small for High strength and hardness of stabledislocation metallic materials

Large specific surface area Catalysis, sensors Large surface area, small Heat-exchange materials heat capacity Combustion catalysts Lower sintering Sintering accelerators temperature Surface/ Specific interface area, Elastic behaviour of metal, Interface large boundary area nano-structured materials Superplastic behaviour of Ductile ceramics ceramics Cluster coating and Special resistors, temperature metallization sensors Electronic properties of metal, Multi-shell particles chemical activity of catalysts

- 134 - 2.

^02: sa Jitf

$X

$U 4*9=$

50nm

TiCh

WC/Co Mechanochemical process-

•8-71 ^-i

- 135 - Fe, Co^ Fe-Co f^ D^ ^^°J Ag

°H

Co# >S^:«1-fe 7l«a?l (^)#« ?i^^ifl^^ sjtv Til- ^li^ ifc.ofl'H Ti

Nal- ol-g-^ 3:4li&-8--§r °] •%•*[<* Ta

3.

^ Af VacuumschmelzeJJtt'Hl

V cfl-

ZrO2, SiCh, TiO2, ^ 18S)H4 1^ «

l-6l leading

- 136 - 7\. ^"IMfe- nanotechnology(NT) ^^°fl <3# 1,3503€(97/98^£)•§: 7> ^1-^^1-c-iHl ol ^ 60%!- National Science and Foundation(NSF)°l f. o) o^^ul^ Du Pont-S-

cfl^(Washington Univ., UCLA, Kansas Univ. •§•) «-^*|-7fl ^1 *| 5] JL 5U .S. Dept. of Energy's Albany Research Center)°iM-b 4! Mgl-

Nanopowders Industry4iA1^: ^^ 4^4°]^ ^-(Ag)

lOOnm ^l^s] nl^-^l](Ti: Micron Metal, Atlantic Equipment Engineers, Zn: Big River Zinc, Fe: Atlantic Equipment Engineers, Co: OMG)l-i- #2], $•

°l NRIM (National Research Institute of MaterialsWl*| -

ULVAC^HH #B}^41 u, Ag, Al, Ni, Co, Fe)# iifl-S.3.

Kawatetsu Mining^H-H ^l^-^-^-wV-g-ofl ^gj| NiCl2 o.

-g-s.

- 137 - <|J.M.oflA-]o| ^iLt!- Q^- %&•& ^!^|3: -g-^4 microelectronic, optics, ultraprecision machining ^ «s>u) 3f uj-itnlE) MITH 4^ V $210 million

7MJ H fl-JE.7r ^^ 5J°1

, DFG < °11 SI 4. ^^-°11^^ EPSRCSl "the Advanced Magnetic Programme"-§- nanomagnetism^- ^^*}Jl $1°-*], i^]^°fl^^ 4^^2: ^5.^ tfltb VTT Chemical Technology (1995-1998, 1 Mio ECU/year)^^ "Ultrafine Particles (UFP)" research

- 4^7l^(MINAST and Swiss Science Foundation NFP36)4 4 6>«fl 37fl ^-^-^ £^ ^5-Zl^ol o^c}. ^.^•^M-c- CNRS (Centre National de la Recherche Scientifique)7l- Magnetic Naiiostructures, Physico-chemical study of Si based nanophase ceramic powders -§^ Wtt 4^1(GdR-CNRS)# ^^l*rJl 914.

4

(1)

YKK°1M

J1S. ^ 4^- -8-8-«fl fi] ^£5. 7>^>M ^# 7>*«fl 4i^ £3^1 ^^Dlw ^^^ ^I2:*>fe 71

- 138 - 71 Tfl 88.5%4l *M^? ^dk 8.5%, 3)£it «i(olS.f-, 4I# ^) 3% 7^41 £)«H -§-71 iflofl

0.23:

7fl ^^fe

M-fe n ^7

-S- 45.7} •%••%•%

fe l,5001C l,500MPa£l All Tfl

-§-41 ol-g-5)^ ^JL^r ^S-g- 4^^S.^ 7fl

- 139 - ^ 717)1

nl-H-ol 99.9-99%,

2-40

.3}.

200 •§• 4-8-«ll 1 cm2

- 140 - -2-3. zi 10-30

oj^-o]

9XA

10 nm

(2) (Ti)

itanium Matrix Composites) 7fliM- 7fl^-«|-aL 4. ^0) 71HV 7}

1994^ ol 31 iS ElEl-%- 71^1 °1 Sii^-g-fe- T 7flsl ^^«fl ^8 AV^aj (General Electric Aircraft Engines, Pratt & Whitney)^ 37flsl EIEI-%- 7^1 4^-7fl ^xj.^ *fl (Textron Specialty Materials, Atlantic Research Corporation, 3M)^- ^l-^^l ^^^rl-«fl 9l°]

- 141 - 30\l

37H 71 ^-i" 7 Atlantic Research Corp.^ E}E)-^ ^-^- 7^1 4 tape)

. Stt Textron Specialty Materials^ vapor deposition)^:

5aJl

71 £. ^-cf. «^ ^ol i^# ^^i $i^ 51^- 5-^1-g- afl^lcHl o|o^ TMC ^flofl tflefl jicf ^^^-^-ol ^Tfl -8-g-*m 3H4.

(3) ^l^S^ (Zr)

l.5GPa

400nm 01^0.

1.5GPa

- 142 - 1,5001

(4) ^el$ (Si)

60~80% , ^e| . NIST^I

ATR,

#71 5]-^ ofl^l ^oil ^j-^Aj^- cflo^ ^13)-IV

71 o]

EL

- 143 EL EL7}7\ 34^-4

-5-M- pn

- 144 - 1. US patent 5,498,446 2. Johnson DL, Dravid VP, Teng M-H (1997). Nanoparticle Synthesis Apparatus and Method. USA, Northwestern University. 3. Dravid VP, Teng M-H, Host JJ (1995). Graphite Encapsulated Nanophase Particles Produced by a Tungsten Arc Method. United States Patent, Northwestern University, Evanston, Illinois. 4. ^^-4*^^^, '97H1S. 3K!"l-*r#$l38-, PP 48~49, 77~78, 105, 103~104 , 1997 5. ^Mlef^, Vol. 114, pp 88~89, 1997 6. Avery N. Goldstein, "Handbook of nanophase materials", pp 20CT205, 1997 7. Modern Plastics, Feb. pp. 28-29, 1998 8. Science, 265, pp. 370-373, 1994 9. ^BfUlUffW, 216, 1996 io.^£ B nxmmm, 28o, 1997 11. <£& B flJIISSfKI, 211, 1996 12. Advanced Materials and Processes, 359, 1999 13. «J£ BflJIUffM, 282, 1997 14. ^3^, 2000^^ %#7}£*l<$2) al^4 ^-^21-^, pp 76~78, 1994 15. L. Brus, Columbia, Semiconductor Nanocrystals, pp89~92, 1997 16. G.C. Hadjipanayis, Univ. Idaho, "Nanostructured Magnetic Materials", pp 105~106, 1997 17. US Patent 5,882,376 18. US Patent 5,795,537

- 145 - 8

-, vfluVJZ2fl

71 ^o] ^fl^. S]o\]

ss. ^-^-€4. M-ii^-^-^S-fe L+t efl«isi

7M

100DJ: ^sl lcm

- 146 - °H1

A

1 polyimides ifl°!M ^1^^ ^T ^4^ JiJLilSife^, oj7|o|Aj cross-linked sulfonated polystyrene «l=.fe- ^^-^ Fe(H)s]

7] ^-^11 ^AJ^ >r 0^4. Nandi -i-^r a.#4 iron carbonyl^ polyimide v}HH Ai^-3.#4 ferrihydrite

Zl 7\A £"«; B1471 nfl^-ofl nl2l ^-A^^^ ^. «H, -Ml ^71

- 147 - l Gianellis 3 Talc^f mica^f ££- -§>AJ- <&le]7iMS.fe- M-^l poly aniline^- 3. sjfe- aniline^ . -a-«a^c)-. AJEJJ^JO.^. polyethylene oxide^

Okada •§-£ -&J2.1S.i4ol^. clay 7} ^^^ nfl q.H clay sheets!- ^^-^. ^ 5%^1 clay* £^1-Tr 1-^nife- 1~2 110 MPaS.

Yano ^^r ^-^-^1- ^|2:«V7l ^efl, clay^ °

£]JL $U4. Heiq-, ©I nf.o

•I" °l-8-*H

371^1 Aflg^-^ ^-^-^ ol-g-^V AflS.^ S-A^ -^71/^-71

21 ^ 7

- 148 - ^7} 3414=^*1 £24

sit)-, ^eflsi 7fl^.ofl Hijji*).^ ^7l7> 14:* ^§^.5. ^ - H}-g->3, 2) ^^8- 4i^^£, 3)ii domain < lOOnm (clusters, grains, layers §•), b.7fl^«V-g-j!}- ^-^^ ^^^ H]^ C.^-A^ domain

71 Til *J,

\vetting4 adsorption^ nj-€- donor-acceptor^f

141 3.71 S. n3-2\ ^2:1- ^l^^fe 7l^S] 7fl^3V 2) 371 7115-1- ^jAJ-^fe. Wj-^^ 7fl^ nHB)-O.S. 3) <>

2.

SIcf. neiq-, Aflel-njife. ^M^u^ ^^7fl^.«2}-fe ^-e)

- 149 - , 4*1 ^ 5a4.

2-8-H

0.2 ^ £.3.7} ^ ioo 2-8-1 * a * *

ofl AV Hj

- 150 - (2)71 tf*S

71 $

100

5U4. ^##^

[ A(g) -> B(s) + C(g) A(g) + B(g) — C(s) + D(g) ] ol

fje.3. 3*nn

2)

3)

- 151 - [M(OR)n], ZnO,

TiO2, SiO2l AI2O3

3J O-Q-O 7I AVti JX. Lt O O x | O X.

7] <$#•%• $ $ -§-

- 4oot: MOO3 , WO3 , V2O5

N02 #$ 175- 500 TC A12O3

1000- 17001 TiO2 , AI2O3. ZnO, SiO2

>5000K S -AI2O3, TiO2 , Cr2O3

H2 -O2 flame AI2O3, SiO2 , ZrO2 -AI2O3

320- 4501 TiO2

AI2O3

- looor ZnO, MgO

7fx] nj -8-8-^

- 152 - & 2-8-3

A] 3, *$ V -18 ^ «J e]

. ^±7}^ ^^^^7]^S1 °}3.7}& -8-^^ofl-H

. «>l^r^^-5.S. «l-§"§-^-Efls1 Target^ ^ ^^-^1-^

. ^i* ?i^^ ^^4 3-8-*U -f-^7V^

- 153 - , 371 ^-i -§-o] l| 711^A]7171

7} ^H ^S*>7fl €4. olS-

EL7)6\} ^^ Ai^ o]

nl^l ^^ pHl- ZPC(zero point of charge)e}JL «V^ pH < ZPC°] ^4-fe- -§- 3 *l-^-i- ?H1 pH ol7l nfl^-ojl

- 154 - Stern

OS! PHI- ^-^ - DLVO <>l^o.

2] <^^o) ^^fltl-jL, ^^1-S.^-El ^

un oil %^°}

DLVO °l-g--2. Zukoski ^ ^§^7l^ wv#^^^ o>qel- -§-ofl 3.7)

7]

-8-

- 155 - 5a4.

^Cf.

JSL-S- ^4 ^^-°fl ^*H -S-^^A-l ^-SlAl^Cf. ^^^ <^ 4*1-71

5a4.

- 156 - 22 =(OH", C03", SO4 "")

b.-fi-i ^ a#^^l^ 7l-

CO21- ^^l 701C

S.S. -§-

(NH2)2CO = NH3 + CO2

HCONH2 = NH/ + HCH2OOH

CO2 71-il- »fj-#«|-^l^- S#o>^lH S.S. pH pH

- 157 - zt (nz m>+ + n[M(H20)P] - [Mn(H20)np-m(0H)m] " + mH

PH, ^-^1^^ ^^ f-ofl

i7l ^£7} 10"2M -g-^r-t- at} 15~25%

pH, -8- o.O2M

- 158 - -g-sj-jz.

hydroxypropyl ceUuloseSf

10-100

Stober, Fink, Bohn^: #3f ^:#^ 3-^-g-^«HlAi NH4OH* #^5. TEOS

SFB *^-i- 7fl^l-^c}.. 01

Si(OC2H5)4 + 4H2O = Si(OH)4 + 4C2H5OH

Si(OH)4 = SiCh + 2H2O

- 159 - 5. &^r "S^t^l ^Sfl A^ ^SH TiO2, ZrO2, ZnO, AI2O3

LiTiOs, (Ti,Sn)O2l LiA102, (Zn,Sn)TiO4 ^ $1^-^ ajS-^-c- phenyltximethoxysilane M- methyltrimethoxysilane

^r SiC, Si

^ 0.3M ^£S^ Matijevic

71^

7\

A 4^1t ^4 2:^-fr 3Hr ^-^^li 2^4 ^"^ ^ell- «oM«Hr ^61 7} 3.7]3, ^^°J4^ a.711-

- 160 - 71-1,

17V

-8-.fi ufl^-^a 7B^o)i ^^a.ji o^^ ^^^)4. a* «a^-^ 71 3-fS. ^^^ ^S-^ ^^S. ^^V^l ^^-2-JL 50.01 °^7l^^ ^^-tt Sal SUfe ^ ^ °l 4 •

71 «a

Sialon

•§-•§-

- 161 - AI2O3, ZnOl-

TiO2l SiO2

o 1990^ o 1998V1 °}if- ^-^^MI Frontier Carbon Technology^ 5\d?> o 1990\icll oj^i €}-S] (nanostructured materials)^ ^^4 ^ o 1991H1 °]$- ol^4^^fl^(NSFH>Hfe- ^?> 65^^b •&•§• program°fl ^1^1 -Univ. of Florida, Research Center for Particle Science & Technology - SUNY, Materials Research Science and Engineerign Center o nl^Bfs^ia (NSF), ^-H£^7l^ (NIST), ^-¥-^, ^^^1^ (DOE), *} "S-^^r (NASA) -§-<>l ^^«f^ WTEC (World Technology Evaluation Center)-2] "Development in Nanoparticles, Nanostructured Materials, and Nanodevices" program o ^-^ IFAM #^±2] IGC, VERL

1981V! , 1980^^ H. Gleiter^l

42:

162 - ^(quantum dots)3

Nanodyne Inc.

90^011 I-O *4. 1991\i °1^ M-t ^IS. ^^ ^TLJIJ17}' 2775?i 1996^ «•*« -^°J:DJ sl-cisKE. 925^1^ fe^-ol 53-^ ^]ofl 7fl7Hs;^cf. 1991 ^ 2

300?l

5acf.

5atv.

SiO2, TiO2) AI2O3, ZnO«=»il 7l^^%o)l ZnO, ZnS, Carbon^- ^^15.^1 BaTiOsi t?)*fl cfl

(DSiO2 SiUca

- 163 - °] y\^^\n € %•& 204A ^^EM^ 3*fl sand -g-^, fused ^ sintered silica &!k, white carbon, fumed silica, silica gel -crlM-0] °H Silica-c- n source°fl ty-fy natural silica^ synthetic silicaS. Natural silica^ *}°! #*fls] silica^.*] Ef ^^ *>*=• 3M I^^MM- 3-&S.2] xHl A>^# (>95 °]%-2: 4A1 ^^1 silica l:^^ fused 1i sintered silica . Natural silica^ ^-^-°fl pore7f ^JL cf^-^ ^.^^ ^.^ JL, hydrophobic?!: ^^-i- ^^ ^^^] silica^^ ^^^- o]^.^. ufl (unit ceU)4 4th ^ (polymorphism) ?£S] Sj-4}-^ ^%£. ^^| "siloxane bond (Si-O-Si)"<>fl

870 TC 1470 °C 1700 "C quartz ^> trimite <=> cristobalite <=* viteous

sand ^^^r natural sand* £$*\°\ #/<&?}*)

•I- ^fl^ti: ^ OH- ^2:, ^AAl 2fl£ifl *H ^1^-SJ-^ ^JOIJL fUSed silica ^^ ^^^ natural sandl- JL-&°]}*\ -g-§-^^ xjz]-^ jf. H. Fused silica-c- hydrophobictt -§"A<]-i: 7|-^lfe- crystalline silica0] ^^-i- °i^ ^i 2:^«H ^12:7} 7f^*|-cf. Sintered silica natural sand &*£•& %•% °J-^*H o]# >H^-014. Sintered silica &!k-& fused silica od4 &S. ^^'fl'Hfe- 4i 1-^tl- ^^-£ $14. Fused silica ^ sintered silica &*£•& JL^£# A*|-^ ^-^ -§-£1- ^«}^ ^^fl^ natural sand synthetic silica ^-^^r €5-5. >M-8-*r^ ^ °1 ^i ^-f°flfe natural siUca

Natural silica ^-^^- crystalline synthetic silica £-iH "1 «fl ^£7} #O.BJ , filler, ^^M], ^^-°>^-, ^2: ^flS ^ # -8-g-ol 7>^*}cf. Natural silica £-

tic Package(EMC -§•) fiUerS. 4-g-s]^ fused -a- ^<^14.

- 164 - Natural silica sand synthetic silica S-lH «1 *H hydrophobicity

. Silica7l-

silica-!- synthetic silicas}- tb1^. Synthetic silica pyrogenic silica5!- precipitated silicaS. tfl^s]1^ precipitated silica-fe- •£-§- pH S^H] ty?\ acidic silica^- alkaline silica^. -HI 1 -S-^" 4 A!^. Pyrogenic silicaS-fe- fumed silica^f arc silica7} $HJL white carbon, silica gel^r precipitated silica ^°11 alkaline silica^l ^tl-^-.

Silica^ 20001: ^H^I JL-&^]A1 7]^}-^ SiO2 vapor7j- ^cf. ZLB]x^t ^ ±, CO ^ SiO vaporl- vapor7>

SiO2 vaporfe gas stream 1 — 10 nm «H-S! primary particles^ 1JL <>lf! particle nonporous«l-Jl amorphous^ ?t^^4. S1O2 vapor^i fe- primary particle ^ n 3.7] 7f ^-ji ^c

SiO2 primary particle!-©1 siUca

Pyrogenic siUca ^ SiO2 ^ ^t ^#^r SiO flame SiO vapor^ flame SiO vapor^ fe plasma jet arc-i- °]-§-t!: ^^ flame silicon ester§"§- SiCl< 5)- g£r chloro-silane-^ Q3.S. *

SiCl4 fe Si metal^r chlorination*}^ flame s]^ ^12:^ pyrogenic silicair %••# fumed s , arc-1- °]-§-tr / 1 SiO vapor-^1 ^^ t]-Ji}- ^^.5. ^i]2:^ ^-^ arc fumed

- 165 - SiO vapory 33 ^s^^Mfe arc furnace!- °l-g-3M SiO vapor* -& carbon vapor* °l-§-*Hr ^^^ coke* ^°J«H ^3^ CO gas* lt\. Arc furnace°1)4 SiO vapor* ^irJl o]s. ^Yty-is}^ CO1- I^BH ^n *1M«H *flf-*|-W. Hydrophobic^ ^«H organo-silane ^^#5- silica

chloro-silane ^-^-1-i- 4^-«l-Jl combustion chamberl- silica ^-^"^ ^^ #^^1 ^i(Cl) ^^-°l5]-fe ^°1 SiO vapor^l

- SiCl4 #^SL£. A>-§-*^ ^^^ silica ^2: «>

SiCl4 + 2H2 + O2 -> SiO2 + 4HC1

vapors. *L>-i-

4-ofl-c SiCl4 * ^^-^-S. A}-8-§ ^-fS.4 combustion chamber ^71] -fi-^*V^ *^?t a^^^ silica -g-iM: ^^ -r 5H4. chloro-silane Sj-^#4- ^^ 4-8-«V^ ^-f°ll^ mixture^ ^^-ul

SiCl4 ^^ ^-^ *«y^°fl ^^l7f 9X°] ^°^3L consistent^ ^-^$] silica

Precipitated silica^ -f-^ 100"C ^SH^H water-soluble silicate 7) ^(inorganic acid)^- ^-g-^1^ ^12:^4. Water-soluble silicate -g-o^A5.^

•i-fi-e1(water glass : Na2 O • xSiO2 ) -%-q°] 4-8-=1^ ^7l^}AS.fe %# c (H2 SO4 ) -8-^°l i^^^-5. 4-§-^l r. Precipitated silica^ alkaUne silica ^°\]5. white carbon1?}-!- x)$*\7]S. ^-cf. HB\^, E§ alkaHne silica £fe acidic silica^ -g-^tl: 1*3.7} *}•%•$ 3L #•%• mechanism^ ^la ^ o]^ «.^.o] siiical-l- #^1^]-^ precipitated silica^. ^-W- 7] 7>x] precipitated silical"ol

- 166 - Na2 O • xSiO2 + H2 S04 -» xSiO2 + Na2 S04 + H2 0

precipitated silical- $2&7] W monomer^ Si(OH)4 monomer!-^ 1-

Na2 O • xSiO2 + H2 SO4 + 2xH2 O -• xSi(OH)4 + Na2 SO4

Si(OH)4 monomerl-^- ^r-%-^ ^M ^ii^l- fiM 4.^ «qo] H-§- f*j£.s sl-3.31- € monomerl:0! ^l^1 deposition

nUcleit- ^-jL^fHt Si-OH(silanol) group

SinO2 n-(nx/2)(0H)nx + mSi(OH)4

Sin+mO2 n-(nx/2)+2m(2-p) + 2pmH2 O

x^ si ^4^ 47111: ^^1 &fe sUanol

Si(OH)4 &^ z?^ ^^ «V-§-«fl #<^*|-fe- silanol

Alkalline sUica &W white carbon^r *-* 6-10%^ •i- ^]-S-Al^ ^J^i^^S. ^1^5]^ o]-t ^e| ^l^si-^ colloid^-tl- ^°fl spray drying*H ^^^-^ ^°m. ?i^^ gel^r 80-90%^ ^€-& «-ft-«tJi 5U31 £^€ ^lf-^r O. 37l7f f-S- 20-100 ym o}^. Wt, 4^r -8-S3. 71 ^«fl^ife ^£^ S4°l ^A«l-4. ^^1*H °J4 371 :# fl«fl gelation^ ^••f-nl:H-(Al) ^-S-^M- silicone oiM- $.# coating^ «ffe- 5iH. ^-^ -g-£.S) white carbon-§- 71 ^^- ^J^14. ^"^H white carbon *I|S ^^flS-fe KOFRAN(^)^ White carbon^ #^^r ^S gelation 4^°11A1 £3 3 fe"fl gelation

- 167 - •f-tf 1-2 ^}^4r -fi-*]-c- batch ^3£.3.>M stirred tank°l| l-fi-5} -g-^-g- *fl •t •¥• 4K+-§- ^r"a*H end-point PH# ^#°.^A-] ^^^cf. a|.eH gelation^ stirred tank vfl«fl^sl ^ ^6\7\ ^tflijo.s. ?>4^-f^ °1 3i * ^ ^H^-^l MS ^H white carbon^- EJ- silicate »1 «fl ^£ spec ranged afl-g-ol afliSjfe- 3H ^HV^OIJL ^.cf ^^. spec range*

Silica #^^r silica 4^1^ 71-g- #^(basic property)^ °fl 5]t> -8-8- t^A^ cfl^S]^ 71^- l- t^5.£ 4^:^ ^ S14. °1^^ #^€^r ^-^-^^.^ silica graded 14^ ^li u,)-^ol ^f^-^1 -SI«fl

silica 7l£ #^^r ^V-8-^, °d^}^^-, 7l^S. 6)4. Silica^ aV-g-^^r silanol group^ ^-^ 51 ^-^4 ^^t!" &$}?} SX^r silica silanol groups th^ ^ ^M0£ ^r^ ^^, pH, 1^^ . Silanol groups ^-^<^1 4^4 ^^^ofl ^^- ^£7} ^^s. silica

. Silica 3-#£ ^^^ alkali^ ^s]«t7iv|

.5. «||^*l-7l7> 7] 51 ^ ^^1^ -8-8- JLS. silica^ ^^-, Jg^ °J£ ^ silica silica^ ^j^ porosity^- 4^

silica ^-^^ ^--g- -§-0)3.^ white carbon^}- fumed silica7|- f. Silica gr^o) -8-8-3TT ^-tfl #^^ ^s. elastomer!^ SBR, NR, silicone, fluoroelastomer ^M ^-tfl #^^ 7]7Jl^ ^J-^^. 7)l fe silica ^-^:£ °1 •¥-^- il ^*f^ fume(j Snica 4 natural silica ^-^

- 168 Silica - s. ^-£7]- s^t ^^-^ 5a4. Rheological improvement* ^sfl silica S-g-8: 20% o]ifl3. ^sj j^ xfl^l-fe- caking silica ^l^ E}~g-*ll ^*h^l?lfe baU bearing vfl^l^ lubricator^] ^^# tb4. JL&*\ #^ suspension^ ^£ S-fe- thixotropy^-i- ^^^-^ cobwebbing, sagging, , plate-out ^§-i- ^I«f7l fl«- ^^«.££ silica ^-^«] A>-g-^r|-. natural silica -g-^, pyrogenic silica, precipitated silica-i:ol

silica^ ^t-S-^4 #^ ^* ^^^, ^^7l^3f hydrophobicaityS>H silanol group Precipitated sili

7> sa^-- #*13t *^S.fe- Slsf, ^^, ^S., <8°

paint fllm 5U4. Plastic film-fr film Aj-Jl?]-^ 1-^7ii4 M^- Dljze]^^ (slipping) $$7} &&^^ o> ^4. ink^ Af-g-^- nfl ^^|^(slipping) « -S-°l ^i^0) «1-JL ink jet^m- photocopy^ ^•^•8-^1 a^ ^i^-H-c- <& Defoamerfe

matting agent, antiblocking agent, antislip agent, defoaming agents ^4. o^Tfl ^f, ^f£] ££ #AJ 7^^. ^^. ^.o>^. silica -8-8-

l 4. SiUca S-^g: >S^ o}l«i)^oi 2-10 ^n 3.7] $\ precipitated silica^l

- 169 - spectf 7>4-f-4. Matting ^tf-g- paint S.^^} silica -gri^f paint porosity, °J4 H^o) JZ.^- f^-M-XI 3-8-#4. Silica ^ S^l hydrated silanol group6] <£;*)] «)-J1 porosity-^ 3.711 -g-^ «F£S silica ^ hydrophobicity 7> cfi. €• 5Jol -fj-e} ^J7l^l chill-proofing ^^^lfe acidic silica^}- A]-g-£jji ^cf. ^£.^- silica 7l ^^ porosityS.-H ^-^^fe #^^ ^f 3.715>f T]^ §-

precipitated silica(^5. white carbon) S^ fumed silica?} TiO2 ^~

^-# xfl^lfe- TiO2 1- t-fr^- silicate °1 silicate ^efl^ ^-^^°fl ^«fl afli^t}. < siUca $^5] «a^> ^^(^5- yt^- og£ «-i)2l- HV-g-^ o]4. silica

insulator!- ^-i"^^ high-voltage cable ^^- 2.^- battery separator^. A> °1€ ^-^S ^S. 4-§-5l-c- silica^ macropore volume°l €• white carbon^. ^^ ^^"i- th-fr^: silica ^ ^^1^ ^nj ^-^11- ^^H ^ ^-, ^^-n- £-3fl ^-ofl A^SIJT O^^C-11 ^-S- silica #>$<£- porosity^l acidic sUica7> ^^ 4-§-^4. <>1 ^J«fl3E. *s ^°fl sa^ silica &

, SiO2

- 170 - polyceram, ceramers, ormosils, ormocers -§-^.

?1| ^-©.S.^ *^1^ ^r SI4. M, Wilkes poly- tetramethylene^ polydimethylsiloxane^] ^^-^l 71 ^-^^Ife -S-^r

7\

7> fe 4

Tg 5t^ -70*C 20% oi-8-Oi. GPa<>m 70%^1^

Fitzgerald

10-100 MPa

- 171 - Tetraethoxysilane^l

tetraethoxysilane

Pope -g-^r methylmethacrylate^l

ife- Hashin-Shtrikman polymethylmethacrylate°fl ^ 30 GPa ^lSicf. Abramoff^ Klein °fl £\tHi afli -^-31^-^- ef 45%

. PolyceramOM tetraethoxysilane7l- Davids SchererTr

(2) TiO2

4.2$}- 3.9g/cc

^rLo)

.c.7> TiO2 Jicj- 3*1 ^ Ji-f-

Mg07l- TiO2 ilcfE. ci «1-^*1^ ol 7 S^ ^-fofl ^-OJ^V ^^ol ^cfAj^- oj7] ^SflAife MgOol

- 172 - •8-34.

TiO2

1/2 JEE^r ^ 0.3

TiO2fe **d^, 4^1 ^d **r, ^e]^ -8-« ^ safe ^^r ^V^^^r 7H2. ^4, ^•a^^'Mfe ^)^ 4*« *r 9lt TiO2l- ^I**|-4 **4. TiO2 fe ^^4^1^ JE^ leuxocene €^°fl € A^4 ^"^1 l-^^^u)- Hf^7f SL

^^Sr Ti ^^^ *#

7] TiOz TiO2

TKfct: ^-a^fe ^^ 1931\fLofl

TiO2l- -fl-a-«|-fe *3.2.3.7M ^cflsl^cf. o Til- £^-sl-JL Sife ^^-^r fl-^ofl ^-^ Ti, Fe -§^ #^ ^^^

TiO2

FeTiOs + 2H2SO4 = TiOSO4 + FeSO4 + 2H2O

TiOSO4 + H2O = Tia + H2SO4

fe TiCUfe Ti

- 173 - TiCU

A >S)- #^ tinting strength!- #-b TiCfc

2FeTiO3 + 7C12 +3C = 2TiCl4 + 2FeCl3 +3CO2

TiCU + 02 = TiO2 +2C12

^ TiO2 Si, Al S^ TiO2

^j-g-^fe ^J^l 71-^*1-4. -8-8-«-o>fe 71

-g-g-

A>-g-4ofl oj^fl

sa -fe- 2.55<>l:n. ^- 2.0°laL calcium carbonated-Hfe 1.63, fe 1.56 ^.5. 400 nm

T1O2 -^ 200 fe 200 nm SL4 3.7)

- 174 - M^ nil «m-^ «a^>SAl ^-g

£3]€ 443 TiO2 £3-2.3. o 371 «•£€• *lMSRr 3£r £# *H . til g*| iL^fe X^^e)oi4. TiO2

, -S. TiO2l- S^^f^ 3.2.3. ^.S. aluminum oxide, silicon oxide S-b zirconium OXide7> Af.§-5]JL ol^S^- ^-^-^ #£t ^.XJ.^, 7l^^*j-^# 7^*1-71 ^ *fl polyhybric alcohols (SEfe- polyols)<^|^-¥-^ silicone

30%

T1O2I- €-e1 ^1^171 fl^-Mfe. ovs.1- wetting ^fe

twin screw extruder £fe Banbury mixer^- ^^

71 «<

^ s[-§-( vinyl sliding, paper laminates -§-<>l Sti4 1 TiO2

15~35 nm7l-

- 175 - fl71

5%

3L7] *flf-t-8r ^ 30 nm^l 15-17 Ba-carbonate

TiO2

TiO2 -S-'iHl 7}<££_±t TiO2

xu,

514.

sa

(3)

a

- 176 - € ^"14 >Hl2:7l^^^ Modified Bayer process, «£

, 7>^-g-«J|«af Ethylene chlorohydriding process, Spark discharge process, Vapor-phase oxidation process, 2 -fi- ^T - 7l^5.ir 7l^i^«

71

ifl

Nano Phase

Inst fuer Neue Materialien, Saarbruckener ^^, Indian Institute of Technology^*!^ •§•#

20-100 nmSl l ^qf

# 7}-^^ A] ^4 -§-Al

- 177 - (4) ZnO

TiO24 tf]£*M, 400nm o]-gr|-^ 4 TiO^ 7^21 ^S^ ^^-l- £JL 544. ZnO^r

(vulcanization)

ZnO-cr American Si-fe- French process°fl zinc white S.-e- ^V^-oj-'S^-S. -tr&l7l.E. ^4. Zinc white-fe- French Process°ll $\

*}$] 3.7] U

- 7iAl7fl Sl^cfl 100 nm

American process^ 2)^ ^SfoV^fil ^Jafe- QS. MAS.

urS-^- "y^r^AS. French process°ll ul*fc^ ^^^ ql^6flAiS. ^^fl-c- American process-!- cfl-T-c- French process°ll ^~s\3. 31°.™], Ziel4 °1

i SI 4. 100 nm «l«r -3.71^1 4ic^i^^ -t]-5}-o>

- 178 - evaporation iE-fe- vapor condensation0

w°l post oxidation in situiiL compaction Al^l7li4, 2) i

W u v 2-8-4

-8-

Zn ^.OJ^O.S«.E] Zn0 ^ Zn 3), base

, spray pyrolysis, n

f ZnO ^l ^^ ^ ^r^-^^1^ scale-up«>7l 5. 2-8-4°il M-Efvi supercritical antisolvent precipitation,

o.s. a 2-8-5^- ££ -8-iE.ofl ^^ Af-g-^jL sa^q- 03

711- 7f^H, o]oj] ^.^1 ^711 ^-8-^: -S-?]?] 2) -S-Ai ^ compaction -§-^1 ^>

! 7l<£-§- 7ll^-*>jl, n>^l^-^.S. 4) °1

- 179 - , pillared layered structure(PLS)!- 7}?\ •?-7l7fls.fi! 71 ^#

180 - 2-8-4 3.7}$]

Method Starting material Reaction Reference Materials 99.99% Zn, O2, evaporation of Zn on a Transaction, He tungsten heater or laser in JIM, Gas Zn target, 80% He / 20% O 2 39(4)508(1998) evaporation reaction of decomposed Nippon Kagaku zinc gas phase precursor with Kaishi, 10(1983) acetylacetonate water vapor 1715 Mat. Res. Soc. Sol-gel hydrolysis of zinc zinc alkoxide Symp. Poc., method alkoxide 739(1986) 93 zinc salt J. Chem. Soc. Homogeneous solution, amine preciptation of zinc oxide Faraday Trans, precipitaton base 86(6) (1990) 959 Ceramic Powder Coprecipitatio zinc nitrate, precipitation of zinc Science II Jan. n oxalate oxalate and calcination 6(1988)31 Spray zinc hydroxide preparation of uniform Pyrolysis carbonate, zinc droplets and controlled Chem. mater. (Thermal acetate, zinc thermal decomposition of 10(9X1998) 2451 decomposition) hydroxide nitrate droplets zinc nitrate, Ceramics petroleum spirit, water-in-oil system, International Microemulsion nonionic 0.15//m 24(1998) 205 surfactant Supercritical large volumetric Powder antisolvent zinc acetate expansion of liquid solvent, technology, 102 precipitation 30-40nm. 175m2/« (1999) 127 electrolysis of zinc salt at Electrochemi- 0.04V vs NHE/O2 cal (and potentiostatic deposition Chem. mater. 10 ZnNOs, ZnC10 Chemical) 4 of zinc metal at -1,1V vs (1998) 1120 Synthesis NHE and spontaneous oxidation at open circuit

- 181 - & 2-8-5 °l-§-

Industry Characteristics Usage Perspective surface acoustic improvement in piezoelectric wave filters, pressure sensitivity and electron property sensor mobility preventing degredation electronic limiting of varistor due to grain varistor, surge transient voltage boundary problem, arrester surge improved response speed

transparent additive to polymers improved antistatic conductor, reflect and papers property and transparency IR and transmit windows, solar cell, optical visible light LCD, optoelectronic device stable high dielectric, antioxidant by thermostable physicochemical, and absorbing UV polymers optical polymer synthesis of alcohol improved conversion catalyst from CO2, gas rates detector(H2S, CS2) flux in lower firing temp., low thermal shock resistant ceramic/glass chemical coefficient thermal glass expansion modification of nanocomposite material, Pillared layered interlayer region and molecular sieve, anion structure(LDH) chemical composition of exchanger host structure fungicide in bio- antibacterial polymers, oxide ehanced antibacterial chemical activity emulsion products, activity per unit weight paints

- 182 - 7\T] ^.oj^.o.5. ?*§$. layered double hydroxides (LDHs)^ pillaring^ $•& interlayer^ modification-i- -g-«H PLS ^l-§-

[Znni-xMnix(OH)2]x+ [An-x/n • at i^lfecfl, oJ7H Mm = 3+3+ 3+3+ 3+ 3+ n 2 All , CrCr , Co , Fe ^-, A " = CO3 ", NO3", OH", Cl" *g-°. }] 7]-^ ^ sao.^, ^-& olf-fe <^ fl.014 ^HV^jAS. Mm/(Znii + Mm)fe 0.17-0.33^] LDH ^£#5.-^ t^ai-i- ^MM", Sfe °fll- *^ pH 5J4 £•& ^^2] chemie doucef^ ^ <4| ^^^ ^ zinc oxide-M #£|-# i^o.s.-¥-E| t)-^- <^e] 7}x]

, gas |, ionic conductor ^^. o] «-^^^, -ij-Si polyoxo ^71 ^-61 ^^ -a- 71-*! molecular sieved ^-^r ^3.7}

7l*-ffl^

-§") 100 40

>+3]-o]-

100 60 100 30 €-tv^l * ^^ ^§ 71!1* 100 30

ZnOfe 1JL Sa ZnO 37)21- a."9=ol ^ doping luminescence -^

- 183 - conductivity-!- 7>^ ^ &A^, band gap (Eg=3.2eVH €• n-type w}£313 •^••^•i: 7>^14. ^i^AV^ollAl ZnO3 ^-S-S-0)^*! varistor, Field Emmision Display%•<)]*] phosphor, ##^1), UV ^>i3l efl°H3 gain medium 1H13 ^

^.^ 7) 71

#71 f 71

21^713 al-8-

, fuUerene) nanotube^ , zeolite^ micro

3.713 cluster

7l, , ZnS, CdS, cluster^

CRT(Cathode Ray Tube)-g-

J1 5U4. 0.3. ^ FED(Field Emission Display)^ CRT3-

184 - . FED-g- *g«fe A

CRT-§- ^#W tj-stf. nJ-2M, FED-g- 3. ^"^ « ^ ^-^^ 71-71-

-, FED# Hl^-^H VFDCVacuum Fluorescence Display) EUelectroluminescenceHHTr 7l^s] ^^•^S.-Mfe- ^^-^-^oj €-^7l- 91

. FED 71^ ^^-^-Al^-sl «i|4]7ll^Al.^^ «^^o.S. 1996^

, ZnS, ZnGajA. CRT ^nJ:

7)- ^-^5}^ 7]H>7)#O1 ^-^£)cH siji, ^-^ 7)$*fl(Kasei Optonics, Nichia Chemicals

* 7fl#*l-7l -^sl-ccj Geogia Tech.°fl PTCOE(Phosphors Technology Center of Excellency)!- ^SM ^^^ ^-^^^ 71^-i- ^-^^ul <&4. °11"^ ^ micron 3.71^. cli#e|o dangling bond7l- em, 1994^ Bhargava £17151 371 Sl ^^-«H Tflfiofl ^^ 05^-7 , MIT^l Rubner zi-f-oflAls. core-sheilas] 141 crystal

- 185 - °l^tt -i-^^r ^^H 1995^d°fl International Conference on Science and Technology of Display Phosphors ^ MRS Spring Meeting-^ Flat Panel Display Materials, ^-H-oiM-c- 1994'd-r-Ei International Display Workshop^ "11 Hi 7H^£l^ ^-ic^ *§%M)2] ^ £ *g7>7> &£ £-8"§- ^ 5U4. S $h MRS Fall Meeting°lH-b 1994Hi-T-£| Microcystalline and Nanocrystalline Semiconductor^ ## Symposium°l

ft°l JiJii|ji 5U4.(7-9) (5)ZnS

^ Zinc Blende ^i-i- ^^-^ i936»d 0. WDestriau7> ZnS:Cu^1

1969Hi D. Kahng -§-^1 ZnS H 4^si EL 1974V1 T. Inoguchi ^

i ZnS:NdF3)<>m

ZnS

Cut- $7}$ ZnS:Cu^

QQo] ^cf. ojufl Cu^ ^^-^Efl^i ^-^-f-aiLS. ^-g-«>oj CI", Br", Ca3\ Al3+4 ^^ ^-5:#^ ^4)^: IAS *H ^4 ^^ ^*«>1 ZnS ^A

^-^ ACEL ±

- 186 - ZnS:Cu4 ££ 7)

W. Lehmann

0^04 ^.jzi^ ^^A]^ ^ ^fe %

ACEL^ ^1^^ -g-1^ DCEL

«l-7l

. CU

ZnS ^-^^ ^-l?}- ^^ #311- WT)1 xlAV^cf. ^-^ DCEL^ -g-sjfe

Cu

DCEL

L 5a4.

- 187 - Hb-IVb ^ ^-^-#^1 ZnS £.*H *H €i?l Mnt EL ii*Rr 3W ^ SAli^j-s. ±z}7} SL^%°\] 4^ ZnS , ZnS:TmF3,

ZnO, ZnGa2O4

-8-ofl

Geogia Tech.°ll PTCOE(Phosphors Technology Center of Excellency)!-

- micron S7JS. rq^l-^lol^ 4 Sicj-. n ol-frS.^^- °d^fl- ^"Tfl *V^ a^^ dangling bond7> ^7}- *>JI oi<4 ^-^. a^^^-o] ^-^- ^51^.^ 4-§-s}:n. 5dt)-. aeiM-, 1994\1 Bhargava

, Rubner core-shell^ $) M-t crystal «>£^11- EL^l -8--8-*M

1995^°fl International Conference on Science and Technology of Display Phosphors 35 MRS Spring Meeting^ Flat Panel Display Materials, ^-^r^l^fe 1994^-?-^ International Display Workshop*^

tb, MRS Fall Meetingofl'H-c- 19941d-¥-&l Microcystalline and Nanocrystalline Semiconductor^ ## Symposium°l 7fl^sH

^^i jijtsiji 54cj-.

- 188 - (6)Carbon

5514. 1970^d°fl £3*1 fullerene^ 1985^1 \ graphite, diamond^ ^i«| 4€- ^^-^ ?2i2] *\3. ^fe Afls.^- 7fl^^ #^

nanotube^ ^^•^A V, nanotube

o]]p]Bl

nanotube7> FED# ul-f- S&^-tf, ^-^ nanotube7> °]I]fl ^^"^ nanotube-^l

^^K ^-i cluster, <>]

hetero diamond, , nanotube in-situ ^^, 31-S-71 simulation f

- 189 - Fullerene#

Ceo-I- ^^^ ul^^ Smalley Po-oto ZLf-o] ^H s]^ %^-*l-7fl ^^*)-Ji Si4. 1998^ Rice cfl^o] ^g-f-o.3. fuUerene fibers^ 4t 7l^ 7fls. 7 ^4^^-S. 7Z%£.A 20~100 Bfl Cj 1

fuUerene4 -fr a^ -SM Til fullerene°ll ^rtl: ^^iE. ^l^sl^, ^1^-^ National Renewable

Energy Lab.

(7) BaTiO3 i.^K MLCC(Multilayer Ceramic Capacitors), Thermistor, AC Powder EL •§•

^c11> BaTiO3

T1O2 ^ ^-^0] 7>

- 190 - SI4.

> 1100 TC

BaCO3 + TiO2 • BaTiO3 + CO2 T

^-5. 371] 14^ ^ SI4.

•§•

BaCl2 + TiCl4 + (NH4)2CO3 + 4NH4OH

BaCOs i + TiO(OH)21 + 6NH4C1 + H2O

300TC 600"C ^talH^Ei D]«-O] BaTiOs^l- ^^i|7| A) a)-#4. °1

> 600TC

BaCO3 + TiO(OH)2 • BaTiO3 + CO2 T + H2O T

SI4.

- 191 4|z] 7}^

TiCl4 + 4H2O -• Ti(OH)4+4HCl

V

Ti(OH)4 -- TiO(OH)2 + H2O

V

H20(l) -> H2O(g)

V HCK1) -* HCKg)

V

TiO(OH)2 —*• TiO2 + H2O

V

Ba(NO3)2 + TiO2 —> BaTiO3 + nitrous oxide

L. A. Chick

- 192 - O.3. # | ^ J o 14. ls1tb BaTiO3fe ^1^1 ^^.S. ^1^-s] Aldrich

fi] ^-SfEf, PJ-&A1C]. -^O]

3.7)°]

Whisker #$• tfnl^]2] ^^-§-^5. ^4-2-^°1

-a

Cfl^ Al^-^- ^Aj^ ^^.5. 7lcHSiJL 51^. *17K}

Composite)^

- 193 - Poisson

ls^is; °dtfl

EL toughening

A] ofl

Af-g- A] nUM^i vfl A) 71^- ^£ 7>^§M1 Si a

- 194 - JE.O.JL

Si-C-N al^^ ^.^-^.^ofl AI2O/Y2O3

AWVSiCTllS, vol% 5nfl,

71- 4 ^^-^ 7l^o] 2,$^ ^|B^^^

- 195 - 3. 2-8-7. Market Particles Required Nanotechnology Advantages Aluminum Oxide Polishing Cerium Oxide Slurries Tin Oxide - ^r^?! capacitance* 31*11 ^•&'# =!iL Barium Titanate - •S'-T-^I ^i£ capacitance U^ Capacitors Tantalum ^ Dl^xj-ois.5. i^aj $.7} Alumina - 3£

.^ o]

SiC al

- 196 - -8-g-*H

Sialon/SiC 4^ Sialon/SiC

fe 1,500151

-Z1O2/M0, ZrO2(Ce02)/Al203^1

ZrOz/Mo^l^. 4°13.^-3.71^ ZrO2 °^W1 ^2^.3.7]^ Mo7\, Sfe 6\) v}o]EL^: X[o}

CeO2S. ^^-^-i- ^^^^t ZrO2(CeO)/Al2O3

AhOa/Ni, Al2Oa/Fe, Ni, Fe, Co ^^l ^.^^ 71^1 a]

ffe 71 if£ ?Jfe4.

1.5GPa 61 -8-o. ^£, 6]^ =-

- 197 - <§7\

-8-8-^

i^- Pb(Zr,Ti)O3 [PZT]# 7l^^ ^ q-

Jl, C/C Composite £-<>H^r ol^o]A]^^^, ^-ill^^-, 7\QA\J\tt

rIndian Institute of Technologyj "Hl^fe

- 198 - | ^fl l ^ ]^ 20~100nm ^ 3.0. jg^- og^ lOnm^H tf-

?V«l-6is.(SiCt TiC)^ iC, TiC)

^.fe 6] ^1

Berkely national Laboratory)j 34 °l-£i(plasma

ix Corp.)j

7fl 62€-/cm2°l #^ ^S«fl°J(torsion straining)-§- 6] ^ nVs.

rNanophase Technology Co.j •& '7}^ (gas phase condensation technology; GPC)'# Af-g-^c^ iO-20M-ic.ol tf 3.7]

^l 7} ^^ ^r 51<^ rfl^^i^s. 4-g-^ ^ 5a4. £ °1 *\*\7\ $&$, AV (yttria)4

r Nanoscale Research Co.j •& 4^4I^S.-¥-E1 4

- 199 - .u 7] 7)] £.-.

SJlfe- rSpinTek Membrane Systems, Incj fe- Titanium dioxide (TiCh), Zirconia (Z1O2),

Alumina (AI2O3) and Silica (SiO2) Membrane-I: ^

SiO2

20 nm

57H

AI2O3,

- 200 - 1. Iler,R.K.:"The Chemistry of Silica", John Wiley & Sons, NYQ979) 2. Bergna,H.E.(editor):"The CoUoid Chemistry of Silica", ACS, Washington DCQ994) 3. Brainer, C. J. and Scherer,G.W.:"Sol-Gel Science", Academic San Diego(1990) 4. Legrand,A.P. et al.: Adv. CoUoid Interface Sci., 33, 91(1990) 5. "Chemical Economics Handbook, Silicates and Silica Report", SRI, Palo Alto(1990) 6. Partitt,G.D.and Sing,K.S.W.(editor):"Charcterization of Powder Surfaces", Academic, NYQ976) 7. Kuhn, W.E. et al.:"Ultrafine Particles", Wiley, NY(1963) 8.Abramoff, B., Klein, L.C.(1992), in: Ultrastructure Processing of Advanced Materials: Uhlmann, D.R, Ulrich, D.R. (Eds.). New York: Wiley, pp.401-407. 9. Bergmeister, J.J., Taylor, L.T.Q992), Chem. Mater.4, 729-737. 10. Bianconi, P.A., Lin, J., Strzelecki, A. (1991), Nature 349, 315-317. 11. Brennan, A.B., Wilkes, G.L. (1991), polymer 32, 733-739. 12.Calvert, P., Broad, R.A. (1989), in: Contemporary Topics in Polymer Science, Bol.6: Culbertson, W.M. (Ed.). New York: Plenum. 13. Calvert, P.D., Mann, s.(1988), J.Mater. Sci. 23, 3801-3805 14. Calvert, P.D., Moyle, B.D.Q988), Master. Res. Soc. Symp. Proc. 109, 357-362 15. Coltrain, B.K., Ferrar, W.T., Landry, C.J.T., Molaire, T.R., Zumbulyadis, n.(1992), Chem. Mater. 4, 358-364. 16. Fitzgerald, J.J., Landry, C.J.T., Pochan, J.M.(1992), Macromolecules 25, 3715-3722. 17. Gianellis, E.P.(1992), JOM 44, 28-30. 18.Gianellis, E.P., Mehrotra, B., Russell, M.W.(1990), Mater. Res. Soc. Symp. 180, 685-696. 19.Huang, H., Glaser, R.H., Brennan, A.B., Rodrigues, D., Wilkes, G.L.(1992), in:Ultrastructure Processing of Advanced Materials: Uhlmann, D.R., Ulrich, D.R., (Eds.). New York:Wiley, pp. 425-438.

- 201 - 20. Landry, C.J.T., Coltrain, B.K., Brady, B.K.Q992), polymer 33, 1486-1495. 21. Madeleine, D.G., Ward, T.C., Taylor, L.T.Q988), J.Polym.Sci. B: Polym. Phys. 26, 1641-1655. 22. Marchessault, R.H., Riuoux, P., Raymond, L.(1992), Polymer 33, 4021-4028. 23. Mauritz, K.A., Stefanithis, I.D. (1990), Macromolecules 23, 1380-1388. 24. Mauritz, K.A., Warren, R.M.U989), Macromolecules 22. 1730-1734. 25.Mazur, S., Manring, L.E., Levy. M., Dee, G.T., Reich, S., Jackson, C.E.U989), in: Metallized Plastics: Mittal, K.L.(Ed.). New York: Plenum, pp. 115-134 26. Nandi, M., Conklin, J.A., Salvati, L., Sen, A.C1990), Chem. Mater. 2, 772-776. 27. Novak, B.M., Davies, C.Q991), Polym. Prepr. 32, 512-513. 28.0kada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T., Kamigaito, 0.(1987), Polym. Prepr. 28, 447-447. 29. Okada, A., Fukumori, K., Usuki, A., Kojima, Y., Sato, N., Kurauchi, T., Kamigaito, 0.(1991), Polym, Prepr. 32, 540-541. 30. Pope, E.J.A., Asami, M., Mackenzie, J.D.U989), J.Mater, Res. 4, 1018-1026. 31.Rodrigues, D.E.Brennan, A.B., Betrabet, C, Wang, B., Wilkes, G.L.(1992), Chem. Mater. 4, 1437-1446. 32. Schmidt, H. (1992), in:Ultrastructure Processing of Advanced Materials'- Uhlmann, D.R., Ulrich, D.R.(Eds.), New York: Wiley, pp. 409-423. 33.Schmidt, H., Seiferling, B., Philipp, G., Deichmann, K.(1988), in: Ultrastructure Processing of Advaced Ceramics: Mackenzie, J.D., Ulrich, D.R.(Eds.), New York: Wiley, pp. 651-660. 34. Spanhel, L., Arpac, E., Schmidt, H. (1992), J.Noncryst. Solids 147, 657-662. 35. Yano, K., Usuki, A., Okada, A., Kurauchi. T., Kanigaito, 0.(1991), Polym. Prepr. 32, 65-66. 36. Zhao, M.X., Ning, Y.P., Mark, J.E.Q993), Proc. of Symp. on Composites: Processing, Microstructure and Properties: Sacks, M.D.(Ed.). Westerville,

- 202 - OH: American Ceramic Society. 37. Ziolo, R.F., Giannelis, E.P., Weinstein, B.a., O'Horo, M.P., Ganguly, B.N., Mehrotra, V., Russell, M.W., Huffman, D.R.U992), Science 257, 219-223. 38. N.Herron et al., J. Phys. Chem., 90, 301(1986) 39. &t« et al., "8fc35»OT3 KW& «&", 1998^miHbPf*^:*:#!* mW&M, 45(1998) 40. H.J.Ryu et al., Journal of the Mining and Materials Processing, Institute of Japan(MMIJ), 113(8), 641(1997) 41. -§-or^iL, 1999^ 6-fi 8<£*\ 42. R.N.Bhargava et al, Phys. Rev. Lett., 72(3), 416(1994) 43. Prof. Rubner^ />&ff= I2;&}S<$t# (1998) 44. D.R.Vij et al, "Luminescence of Solids", Plenum Press, New York, (1998) 45. S.V.Gaponenko, "Optical Properties of Semiconductor Nanocrystals", Cambridge Univ. Press (1998) 46. J.H.Fendler, "Nanoparticles and Nanostructured Films", Wiley -VCH, Weinheim (1998) 47. Advanced materials and process, 1997\1 11-^3. 48. T.W.Ebbesen et al., Nature, 358, 220(1992) 49. http://www.southchem.com/price.htm 50. J.Onoe et al, "The Nano-Structure of Fullerne Photopolymers", it^JLM («££•), 7, 7(1999) 51. CJoumet et al., Nature, 388, 756(1997) 52. A.Thess et al., Science, 273, 483(1996) 53. K.Tohji et al., Nature, 383, 679(1996)

- 203 - 1. 7fl Jl

cfl7]

3.71 fil

3.f-(smectite group)6!! type)-el silicate) ^-

&-$, thixotropy, -g-^ (adsorption, intercalation, contact catalysis) ^ 7H7|

1^ S^ 3-8^ 5ft^ E.-& Pyrophyllite, (2:1 "8)1- 4" 7^1 al 5U£.£- 71 ^-i- 7 fe- 51014. Al «l*fl sao.ni,

- 204 - flfe

«!-JL,

37Is; hydrid composite^

t ^^-S ^^-^14. ©1 s.

barrior property^-

71 ## layered organo-compoundS. organo-compounds°ll

^.^, hydrolysis ?J condensation wV-g-

microcompositeS} nanometer ll

- 205 - (1) ||> siUca ^r smectite «1£*|-7H Xlfe layered silicic kanemite(NaHSi2O5 • ), makatite(Na2Si4Og • nH20), octasilicate(Na2SisOi7 • nH20), magadiite

(Na2Sii4029 • nH2O)sl- kenyaite(Na2Si2o04i l^^i^ makatitel- 4^t} hydroxyl siloxane S"d4 SiO2 f"S"°l ^^Xl^ ^"Efl^ gaUery Sfe ^^^2}J1 -ir^fe # A>O]61| van der waals

Na, K av-g-o)

(2)

37l| SI

7]^- fe [SUOio]4"0M, -fe A A 5a 4.

- 206 - number)!- ^S. ^^^(positive charge)^ , o] £^ 37flsi 27}S, *, Fe3>l 27}$]

271-51

Tetrahedral layer

Octahedral layer

Al3+,Mg 2 +

[Exchangeable cation + H2O

2-9-1.

E.6|Alfe. i0m«/2g

- 207 - Na2+, Ca2+, Mg2+ -§-^1 <# 90~120meq/100g

100~1000nm,

ol^Al^- 750 800m2/govlcil, ol ^^

-5} ^^^ -g-^*H- S] 31 <$ol£ Na, K <

organo-compoundsS. matrix^ wetting ^-i- ^7}-A]^ ^cf. ^•^ *W^-#£: 1-^-i"0] ^^fl*>^l ^-t- ^^ <=>>T^I e+ organo-compound -I- ^^«>^^ swelling $#•§• *-#o.S«l -g-*h37l7} €• JZ.ii"1 •§• ^I^-*H ^^- Stt hydroxyl siloxane^l hydrolysis ^ condensation l

2-9-2^

- 208 - source^, white carbon, fumed silica, silica gel°l 2 0 NaOH4 Na2CO37|- ^3. A>-g-^^tfl COa" ^^ ] 0 . silica, NaOH, Na2CO3^ H2O^ autoclave )] 24-72

White Carbon

Fumed Silica NaOH, Na2CO3, H2O

0.1N HC1

H-Type Layered Silicate

(intercalation)

Akylammonium-Layered Silicate(organosilicate)

monomer or polymer (molecule exchange)

Polymer-Layered Silicate Nanocomposite

2-9-2

organo-compoundsS. H-type swelling

- 209 - l 51O^

polymer^ A^^ 7f^JL Si 71 -chemistry }

macro

-8- ^°1M cflS^"?] m-8-i- #41^-5. ^Bls}^ 4^-3 <&. 2-9-l.>3

3 "J^Aii. g-4r*l ^^3Jl 5Ut 5J-ir o^ ^r Si4. macro ^^flofl^fe ¥ ^ &$

- 210 - 2-9-1.

vinylpiridin, styrene, montmo 1960 acrylamide, butadiene, -rillonite Hi tfl etc.

kaolinite styrene metaclate

vinylpiridin, epoxy, montmo 1970 acrylonitryl, 6-nylon, -rillonite etc.

kaolinite styrene - ^^>-&^^oilsi?V grafts 6-nylon, acrylonitryl, montmo acrylamide, styrene, 1980 -rillonite etc.

FeOCl, V2O5 anilin

montmo 6-nylon, imide, - a^Hl^^ ^^ -rillonite acrylonitryl, etc. 1990 - 7>1ofl fi]^- Sialon fl-^ M0S2 stylene hydrotalcite propylene chloride

(1)

2:€ smectite/nylon 2-9-2.>*H| Macro

- 211 - S. 2-9-2. Nylon 6/ Montmorillonite 3-fP —i o Nilon 6 NCC* NCH" Montmorillonite content (wt%) 0 5.0 4.2 Tensile strenth (MRa) 69 61 107 Tensile moduulus (GPa) 1.1 1.0 2.1 Charpy impact strenth (KJ/m!) 6.2 5.9 6.1 HDT (1.821ft) (t)*" 65 89 152 Water absorption, 231, lday (%) 0.87 0.90 0.51 CTE(xiO"5 cm/cm "C) II 11.7 10.3 6.3 _L 11.8 13.4 13.1 "Nylon 6/Mont composite by the conventional method "Nylon 6/Mont nano-composite '"Heat distortion temperature

3. 2-9-3. PP/Talc, PP/Montmorilonite

Composition (wt%) PP PP/talc PP/Mont' PP-1 50 47.5 44 PP-2 50 47.5 44 talc 0 3.0 0 MDH" 0 0 12 Density (g/cm1) 0.1 0.92 0.93 Melt index (g/lOmin) 23 16 12 Tensile strength (Hfe) 31 35 39 Tensile modulus (GRa) - - 2.1 Elongation (%) 300< 92 22 Flexural strength (Hfe) 38 45 53 Flexural modulus (CRa) 1.5 1.9 2.4 Izod impact strenth (KJ/m1) 97 72 72 HDT (t) 120 - 130 'Montmorillonite 3wt%, "chemically-modified PP/Mont complex ppsj- ££ ^-^^ polymerl- ^^1 «f^ dl°fl^ <>]$•£ %°] Sl^-H-S., <^ 7)

- 212 - master bathS.

14 fiber

smectitel- smectite °d^>» matrix polymer PP matrix^ £ smectite

(2) Gas & liquid^ Smectite . Gas & liquid^ Dupon 4^ -&3-/PE 7$ ^-^^-^ film-g- ti>^^-^l Hl«H Gas & liquid^ , Yano -^^ Smectite/polyimide -^ l-^j^^ film-g- ^ Smectite/polymer ^ Jf-^-g- 7V

(3) Smectite/polymer Nano composite^l Smectite/polymer M-ii^-^-^fl^ xft3,&

smectite/PP nano smectite toluene ^^1

213 - 5a smectite/PP qii^-zfl^ ^-§- J^# ^^ PP# "fl-S-°1| ^12:^ ^-^fl-S-t- master bath 3. «H -f-^ I Si-c^, °H, €^ PP°fl ^I*H smectite^ ^ ^J o]

smectite/polymer smectite/-?-^

smectite^ macro smectite/ polymer Tfl^Sl #^-8r 3.7] smectite/polymer . smectite^ acid

smectite^

5UCJ-. ^-8- «-8-H7> feTflsU, ^-8-^-1

o.5L s) 5a4.

cross-linked^ -eiH- polymer-silicate

- 214 - 5U4. H v polymer melt intercalation o softening point °1#^

7>X)

5a4. 71S) 7>^]JL &•& 7l#£l hybrid composite

7H

2. ^-tfl 71^

-8-71 ijns.q-oiE.7V -, 4-8-^= ^^11- ^^^1 ^ (Nylon/Mont,Polymer /Mont

«> a4.

-OI safe.en, safe 3^5

^^r Ca-

- 215 - 8o%i- sat}..

6l-8-«1-

2-9-4.

-§-£ U SiO2 AI2O3 Fe20s pH l^-E. 55.9-65.7 18.7-15.5 3 10> 12> 1.4 -200^141 J3HI-§-<£!-8- 55.9 1&7 3.4 10> 8> 1.3 n 56.8 22.7 7.8 9.5 3 1.1 tt 57.1 22.7 7.45 9 2.5 1.0 -325o)l4l 7lE} 57.1 22.7 7.45 9 2.5 1.0 -200i4l

S. 2-9-5. 71^-^ •8- £ ^S.^-#-S) JI#-?lSl- 71-t- #A^ 7l^ ^•1 S. ^,1 AL^Q-^-<>] p. ^•^101^. ^1^7l# _Q ^ -^3 3] rf. ^tj Qi JL^S. ^-^71^- ^-^-Sl-t}- inll #^1-8- ^i^ ^r^^l-8- Sl-^-i-^ ^"SSl-^-i- M-ic -^-^?flS.$(- 71^- ******

- 216 - 9X7} nflS-ofl, mi£i4olE. £^ -8-71

71

(1)

zeolite^

; zeolite

E. ^ magadiite, kenyaitel- «1^-^: makatite, illeritefe- ^^^l -a^^vfl^'H ^^°1 71-^*1-4. ^e ^^ Hoechst4 -^°il^ silicate^ tfl^- tfl^= ^-^ -g-^^- 7fl^§l-^ f-^^Ml builderS.^1 ©1-8- •i: fl^: field testl- ^*^°11 9X^-S.S., zeolite builder!-

- 217 - , ^-^Ei 10 7}

pillaring

i ^«1-^ magadiite ^ kenyaite^l 5] aj a>-g-

SiO2, NaOH ^ Na2CO3 £#-%-°J\ ^°\)*] Na- magadiite^ Na-kenyaite ^^M D)^l^ f. Na-magadiite^

-5.^, SiO2/(NaOH+Na2CO3)=5, H2O/(NaOH+Na2CO3) =100?] i^'Hl-H, 160 afe 170TC ^£1- -fi-^l«1-^>H 48 Al?l ^4, kenyaite-fe magadiite ^-^r quartz^f Q& -i-^-i-^f

nem SiOz/(NaOH+Na2CO3)=5~10, H2O/(NaOH+Na2CO3)=100 o (NaOH+Na2CO3)=3, H2O/(NaOH+Na2CO3)=150~200 J £r kenyaite7|- ^^^Si4. ^-^ silica^ #ti]7

(NaOH+Na2CO3)=20, H2O/(NaOH+Na2CO3)=200], kenyaite-b ^?>*fl?l maga diite# TiAlx] &JL amorphous silica^l^i ^]^ ^8 384. Si/Na ^ H2O/Na^ «l7f ?1^1^ silica^ -8-«flH7l-

kenyaite 1^^A^ #^1^-1^ ^r $1°-$^ °fl#€cK 4^Ai kenyaite ^ #-& Na *Et -fi-^l*|-^>H silica^

71 i ^

(2) ^^^^-#s] ^?v^«g 71 ^

^ 71 ^s; cf^^ #^5. ^^Ai^i^di ^^.^ -g-e]^, 5^€)-^ «?! 712: ^^^j?l ^^-ofl fit ^t>

- 218 - amine swelling Al*l ^4 ^ A>O)O]

( o)

Octylammonium magadiite €^ ^]s^l -8-7l-g-n|| JL^I" i4^ ^^, %•# 1±A ^ gallery heights &# ^ ^-°js]^ #^£l ^-^ ^]l-ol *^€ octylamine solvent ^-^1-i-^r ^S. lameUar ^lf1^ fi 5a^ ^^.S W€ ^r $i4. n^ 2-9-3^ solvent/octylammonium magadiite gel-S] 7f^-^o] ^^^ u^iflji 5atf. GaUery height^ solventl- octylammonium magadiite gel^l gallery height^ «l^t3: &-%: . n-hexane^ ^-& «l2-^ ^-^- &*}$] ^-f (critical dimension 4 A, length 10.3A), gallery heights *$%•§; £4 =L7liLcf^ solvation^ ^ ^cf. Mesitylene4 2,2,4-TMP(critical dimension 4~6A, length 9A) ^-c: branched molecular^ ^-T-, gallery heights ^?HH^ solvent ^-^H ^li ^*^ gallery height^ %•# ^°d€ -fr7l ^-^^ solvation^l , solvent

- 219 - A : ^Si-OH -NH.

2-9-3 Models for the interlayer structure of organic solvent/octylamine magadiite : (a) n-hexane, (b) hexadecane, (c) 2,2,4-TMP, (d) mesitylene

- 220 - 3.

7} 5Ho.nl,

«• 5i -MIS.^- i^fl^ ^^1" ?fl^*H ^^r ^^-i" °l^-*Fal SI4.

Chem Co> s.<^ Sud-chemie Co Tfl^O-S. 50^ ^^17V sao.^, «y EPIC(Edison Polymer innovation corporation)o] ^^

tfl-^-g- ^Sio.

1994^ 871], ?!-frXj ^-7l^^l-§- §-*0^3: 27fl,

- 221 - 3.2.3. %-g-Sl WTI 71)

S. 2-9-6.

1990 1991 1992 1993 1994 33,700 25,800 31,000 30,000 30,000 107,000 108,000 97,500 96,700 97,000 35,000 35,000 35,000 35,000 35,000 180,000 130,000 131,000 113,000 130,000 82,000 58,500 58,800 60,000 50,000 sf. «a 577,000 583,000 581,000 473,000 475,000 593,000 600,000 600,000 600,000 500,000 ^7>e) 36,600 18,100 23,000 25,000 25,000 ^] £1-11^1 oV 5,910 21,500 18,000 13,700 14,000 o| ^> 51,100 40,500 47,700 85,000 84,000 549,000 554,000 534,000 517,000 484,000 iSJA]^. 145,000 145,000 136,000 94,600 100,000 511 -T- 45,000 5,110 14,500 14,500 14,500 14,600 55,300 31,900 5,050 25,000 f-fKE. 69,000 42,100 40,000 40,000 40,000 -^?-D|*"LJ oj- 150,000 38,000 120,000 120,000 110,000 ^* iri] o 1 151,000 64,600 150,000 150,000 150,000 El ?1 97,500 75,124,000 124,000 382,000 300,000 USSR 2,700,000 2,400,000 2,000,000 1,600,000 1,300,000 nl ^~ 3,470,000 3,430,000 2,950,000 2,870,000 3,290,000 ^ 421*11 99,900 99,900 83,000 83,000 169,000 7] E)- 431,331 808,528 289,563 145,559 304,189 9,620,000 9,390,000 810,000 7,550,000 7,580,000

USBM (1994 )

- 222 - 2-9-7.

71 # ^ -8- £ 7l^^r^ .a. "8 3 s^-??#-§- ^^Ml^S] tf«}f^ ^7)1 ^°1* *1£7)£ -g-^Hel ^sfl-g- *££. tf-871* 3-friW #"11 tfafl-8- ^•8-fl- ^?ii 71^^ 4**11 *«2:7l£ *!•#*•§• ^D^Sl-^-§-

4* ^-^^15.5)- 7]# ^^-^t> 3-8-3*1

polymer

^]^1 ii||Jg.6fl scattering^

E. P. GianneUs

SL^ aluminum^lM- magnesium hydroxide^) ^^^1 sheet gallery £^ 4°l°ll ^cfle. o.^ O]

o o

- 223 - Na+, K+

-5H matrix^ sl*H wetting ^- Organo-compounds

matrix 7M1S] 71 ^

blending^

144x1 jas. 7l7flaj

. 0)4 ^. 14^371^ l^ A)-

Giannelis ^-^t-& mica ^ ^^^a|?llo]E.o] ^4 -T-T1 !&4. 1994^^11^ ^J ^5l?lWl^^ oH-3-Al-i- ^^V l^i curing agents. M.' matrix

pinnavaia

magadiitei epoxy polymer-!-

- 224 - exfoliation chemistry-i- nanolayer

^-5. 7l|7flsl ^5]?l]6l^ ^(l/fln)»ll ^1

.fi.'S'H barrier property!- 7HJI

o.5. scattering-t- ^i^^7l nfl^-oii q.

barrier film

2H§*rjL Xi^.^ ^-^fl^o] ^-HS-fe U]^7l^ ifl^-

Michigan ^EflSJ-s] Pinnavaia S^sf s^cfl^s^ GianneUs 5. smectite clay# <>l-8-*!-^ q-i-a.^-7]]^ sa^-M- oH 71313 ^ ^ barrier

4.

- 225 - , Y+'S'S barrier property* 7fx]

&o]6\t

)] $] 5a4. 2-9-8°

1,000^, PCB 2,000^ advanced composited 30^ , low-grade-compositet! fiber reinforced plastics *]%<>] 20^M:Q}B.S., °] JL

o]

, permeability^^

voc

- 226 - 2-9-8.

2008>d 1997H1

1,000^ 3,000^ 7l# Cfl«fl

Engineering Plastic V* PCB 7l^-§- ^%tA 2,000^ 4,000^ Advanced nanocomposite 2,000^

3,000^ 9,000^

Fiber Reinforced plastics 20^1- 60^1- 7l# tfl*O

Advanced composite 30^1- 160-^1-

Advanced nanocomposite i_l Tl o s^

50^ -i- 250-^ I-

- 227 - 2. tam&m, mm—jp, umr3it^Vdv past Sffl " s* CMC m Rgjjrt (1985) 3. ±#$3J? "&±^t//polymer nano^£#" && material, Vol.3, Nov. pp.598-606(1996) 4. Y. FUKUSHIMA, " Intercalation to fljfflfr MUfl " ^E@, Vol.32, No.4, pp.7-14(1994) 5. O. H. Kwon, S. Y. Jeong, J. K. Suh, and J. M. Lee, Bull. Korean Chem. Soc., 16, 1995, 737-741. 6. O. Y. Kwon, S. Y. Jeong, J. K. Suh, B. H. Ryu, J. M. Lee, J. of Colloid and Interface Science, 177, 1996, 677-680. 7. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 1994, 6, 1719-1725. 8. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, Chem. Mater., 1994, 6,1017-1022. 9. R. A. Vaia and E. P. Giannelis, Chem. Mater., 8, 1996, 1728-1734. 10. E. P. Giannelis, Advanced Materials, 8, 1996, 29-44. 11. R. A. Vaia, Hope Ishii, and E. P. Giannelis, Chem. Mater., 5, 1993, 1694-1696. 12. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 5, 1993, 1064-1066. 13. R. Krishnamoorti, Richard A. Vaia, and Emmanuel P. Giannelis, Chem. Mater, 8(8), 1996, 1728-1734. 14. Z. Wang, T. Lan, and T. J. Pinnavaia, Chem. Meter., 8, 1996, 2200-2204. 15. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, 1994, 573-575. 16. M. S. Wang and T. J. Pinnavaia, Chem. Mater., 6, 1994, 468- 474. 17. J. Wu and M. M. Lerner, Chem. Mater., 5, 1993, 835-838. 18. M. Sikka, Laura N. Cerini, Surya S. Ghosh, and K. I. Winey, J.

- 228 - of Polymer Science: Part B: Polymer Physics, 34, 1996, 1443- 1449.

- 229 - 1 ^ 7fl iL

, elastomer, advanced composite coating £°MM -S ^-^. Hl^*jO.jL W^Cil aS] ^£- ^j^tb barrier property* 7H

Sac}-.

71 ^-1- ol^-*H 7l#^r ^^H microcomposite^ nanometer 3.71 si ^v}^*}^ ^2: 71^1

7MJL

51 71

- 230 - 33

tf|*0 barrier o

1989\i M-^^-6/Clay Timing Belt CoveHl

6/Clay Unitikafe- ^1^

BAYER

As.^ NIST, Edison Polymer, Nanocor4 S^ ^- 7}^ afl-g-<>14. 1990^ nl

- 231 - 3-8-3584. Elastomer/Clay GM2J- Montell North America^ ^-S-O-S. *}%•*}$ ifl 3-8- 7^$ TPO Base^ TPO/Smectite clay (Texas-based Sourthern Clay Products, Inc.)31 M-i^^t- 7fl^5S4. 14

Epoxy

Pinnavaia ^^^, ae]jl Giannelis ^^^ -§-?]^ o] ^^ lab-scale

71

71 #

71 £ -^W 4 7j^#£1 ^vj: ^^l-i- ^^§f< ^-S.^ «14] -Q-i 7l^«y ^-4f tj-ii ^^^1^1 ^fli, ^1^^ ^-^ ^-<^ 71 £,

71 91 7lslefji

- 232 - 2.

T\\

A] 2)0.

172: 9,880^^ °1*} ^ 9,020^^ 28^ 9,780^^4 is 7,866^Q^

a 3-2-i.

3]AV all Si 71

M- ^ -S-6/montmorillonite E}ol^ol^^^^ 1990 >d (~5%) ^x^^l-g- ifl^ PS/SJR^£(Clay) 1999^ ^^S, €-§• a|| s.. -8-71-s- 4 ^ -l-6/montmorillonite( ~ 5 1990\3 1015C mm %) Unit ^•**>-¥-*, 1995>d M1030D ika * ?>• AliEfln> ^**>-¥-* M-^^-6/^-^ mica 1996\£ mi FE 20102 y\^ 3.7]} cfl-

barrier^

- 233 - , EVOH Si 4.

<>]!% Qo] ^ 2H71

s. 3-2-2.4

S. 3-2-2.

« 7|| SI -8- s. (1999) (1999) (2002) (2002)

7,500 10* 8,500 16

SOP^-g-^s] 10,000 300 25,000 400 3,000 150 30,000 1,500 **7l 28,000 1,400 34,000 5,000 ifl-?-7||S. Si 7), EMC 8,000 1,300 12,000 2,500 clifsM 180 30 280 50 1,200 30 5,000 100

10,000 200 15,000 300 •8--8-XI* *d47l*Hl-§-iaty,

Hov-g-. ^3 112,000 5,600 160,000 8,000

^1 - 179,880 9,020 259,780 17,866 ^s. SBR

- 234 - 3.

A

70%

4-8-SU Sfe ?li^D}E intake-manifold,

S0P014.

r 7,200^ , 214171 4009°)

1/Pfe #2)-^ PP7> . PP

- 235 - PP ojo^ JO.5. 7ltfl£]jL

60%,

Selar HDPE 4^ LAYER)

150

Under

£]

7>

- 236 - cf.(3-2) ^^-Al^x]o] tiV^sfl i^^-o):^ H>£S)] ^H^-^ EMC(Epoxy Molding Compound)^ PCB S.^ ^^fl, EMC7>

f1^^-^ CEM(Composite Epoxy Material)^ CEM €^-^r^-fe ^i>H]7J|^^.S. 2^3^^

A]

^ Safe 7ltfl£]jl ^Cf. 71$^ ^^^ 1}+% ^g.^ ^^^11- ^7|-t.V ABS

, 1995V1 H^. 8,000-10,000^-, ^-^^^-g- 3,500 4,500^-, X-ray-g- 150-200^-

- 237 - fuUerene^l 4^ 4^^ ^ l3ri nanotube^

Fullerene^ tfl ^=^^ ^ ^ 1991^ ^"^-^ n]^-S| lfial^o] TFC^K MER 4 ^ "y^-5] NEC -^°11^ ^J^ ^nfl Southern Chemical Group)

.fe PVA, M-^^, EVOH, PVDC

Clay ^-^ -fr/^-71 M-ii-i^U ^1^ 71^^ #4 ^-g- ^ JI 3.

€• 7l^o]tf. £ ^ah^'tH ^tF clay ^-^ -fr/JM ^ 7]^ ^3^^^ 7)^^- ZLCflS. ^-g-^h ^ SUfe- ^^ o| 5J6.BJ

\°-£- clay

clay

7l

- 238 - hardness 7] flooring 7lcfl£lJL barrier 1996V!°IH 2001 Vl 43.1%^ 2001^ ^*0 4%^£S.

29.2%

30^^ Mitsubishi, Keeling & Walker Ltd. -§-<>lH

-8-5= 41

1990^ 948^•& " 2000^1 °fl^ 3900 1-: 15% oltf)€ ?ii 1990\l^ 240^ 1-41 2000^^41^ 10009!••§• 1990V! 2 -: 24%

BBC^l

- 239 - 4,230^

BBCTT, 3 313. 5H*!1?}

29.2%

43.1%BH 1996

3711 %O) Business Communication 71 Si"ofl nl-H. <8*1- 1996 ^ 4,230^

5a 6.^, n Al^-t§Ajo} Sa 4.(3-14) 2H71S]

- 240 - TT 3! £-3. ^^14. °1^- ££ ufl^M Nanocomposite

1. ^-vfl Nanocomposite

Nanocomposite ^1

. °H1 ^"^1^ Nanocomposite

(D 7]3:71-g- ^ ^^JGLi7l^ ^^ H-Jf => ^-^-^S 71-g-, compounding 71 ^, ^-^-^ >a^7l# ^ ^-^ ££ ^51 71^71^ ^-5] Nano

4 v]$ => Nano

iL^, nano 4^^l ^1^1 ^l^fl--S.7f ^-cfl . ^E^JL sa-2-M-, nano Nano €-^ ^|2i(^-#, ceramic), Polymer^

- 241 - ^- => Nano

^-^-oj piOymer

© Nano ^ ceramic «-^-§- ^l^^fJL 4*1 zM 4€- polymeH ^^*1-^ 7l

© Nano Nano Size^ ^^ ^ Ceramic §••§• ^^-«r^ Nano f^ ^ polymer f^^-7f

o Nano -^31 4^^r f-^H

O 71

- 242 - «]-

O

2.

Clay/Polymer Nano Composited 4-8- 7]-^ •1-^r 1 : 1 &W 2 : 1*^8 ^. tl 1 : 1 4 A]-^-^(Serpentine)^o ^.^, 2 : E.(Smectite)^, ^l(Chlorite)^

a 3-3-1.4

3. 3-3-1. Nano Composited ^-g- •¥-#*(^) ?V^-?l(KaoUn)^ kaolinite, halloysite, dickite, nacrite 73,474,300 4§-*J (Serpentine)^ antigorite, chrysotile, lizardite, amesite 70,994,700 ^r^(Talc) talc 42,852,600 'd"^ (PyrophiUite)^ pyrophillite 118,801,800 i^)El-ols(Smectite)^ montmorillonite, saponite, hectorite, stibensite 9,867,800 ^^(Vermicurite)^ vermicurite 1,108,000 ^£.(Mica)^ muscovite, biotite, phlogopite, illite 12,200,000 ^•M^ (Chlorite)^ chlorite - 329,299,200

- 243 - , -fi-71/^-71 Nano Composite^2:•§-

9\SLV), Ceramic ±4$\ 4-8-9 £$ tJ-tfl^KES., ^-*fl-8- Nano Size*fli# 3l> ^ft«N, Ceramics ^-s] i-fl^

, Ceramic £ Nano Size Particle^. ^1^5]^ oj-i-^- a^. Nano CompositedS-8

3.

Nano Composited

5a4.

S. 3-3-2.4 £<>] Nano Composited

5. 3-3-2.°fl^^ pp, PE, ABS ^-^ 1 7V4i^ ^M4 Epoxy

2} 7^ol] ^oi7}- ^AM- pp, PE ^-sl ^-^^lfe ^7l|si 7\A°\ •§- -fr^l^jL S!l^.£-S., ^5]t3: 7>^i- Nanocomposite^-H -8

^, '96\i ^-vfl PP 9=1,0003 Wd if£7}- E]^, 1-ai-i-^l^ AS. ^

- 244 - 609 *H °1S-

3-3-2.

^^-^^-^ 1993 1994 1995 1996 3,260 3,685 3,626 3,892 2,750 3,038 3,393 3,891 177 189 200 224 6,161 6,872 7,630 8,007

4.

Nano Composite s] ?!*1*H

-8-8-i- fl^ ^*1] 42^ ^^ 9J KIST, ^- Polymer/Clay Nano Composite

%JJM Nano Composite

^l *«l-fe iL-8-7l£S] ^- safe Nano Composited

- 245 - S. 3-3-3. -¥-7|/-B-7l M-i^iN 7fl^--|- W

O"a"-^ ^ ceramic ^flS-^l O -g-^/ceramic M-ic^-^^S. ^1 nano •§-^'^ll2:7l4g-a!l' -^^^l SI •• -n-71/^-71 H-in^-^-7.11 ^li-g- ^> 7])^- . i-^-sl-ji $X^-S.S., °j ^ ^ Ceramic M-ic^-^- ^Ili

71*5-2} (^TL'kl^^- ii-n-^b O Smectite, Mica -§- ^-^-^-i-sl < L : "^"^fl -n-^l^ ST 71^:£.S.A )I •• -n-71/^-7) i4in^-^)-?ll ^li-§-

71 # Ji-fr

^ll2iSl 7]^-7l#-§- 5j-i. O 4°^ Polymer Hybrid

O Polymer Hybrid 7l^ i-fr / 7 Hybrid af ^^ S)-^iT:--;^l/-T-7] ^J B»T8T^I I~T7\ 5! TT !/ KIST -n"7l l-|ii-^-^-7ll ^fl2:# TI^T ^.i?]^^ Tfly}-^o)l

M"5".

A O ^-7l ^ -n-7lSj-^]-§-^ '& ^7l# •1-^] magadite ^J kenyaite •^ -fi-7l/-T-7l H"-^^-^^ ^l2:-§- —°i, cf'S^ si-^-i--2! ^"Aj

OElastomer^l cf^tb 3171^- O Elastomer^1 J17l^5l- 7l^Jl-^- 4}- 7l^-g- it-n-*1-J1 SX—tf IS? •4 Elastomer/-T-7l M-iz^-f-^fl ^12: 7m °j. O -T-7151-^-i-sl ^-^^71- ^ S.

(KS)7l# Ji-fj-

- 246 - 3.4. «] AflS* Tfl^ Si #^ ^-*7l, 4*4, 3^, ^4 ^ ^4^15. -g-8- 7}-^4- 7M1JL XIAH «^1 microcomposites] nanometer 3.71s]

4-8- 7>^

1.

.^ Paint Pigment, Cosmetic, Pharma-ceuticals, Medical diagnostics, Catalyst & support, Membrane & filter, Batteries & fuel cell, Magnetic & optical device, Flat panel displats, Biomaterials, Structural material, Protective coatings-§-°fl °]

Af-g-

- 247 - A.

S. 3-4-1. #3.-%-

85 90 93 2000 2005 «li

50 120 220 1,000 3,000 1 - 50 100 300 700 1 30 50 100 500 800 2 - 1(1) 3(3) 30 100 3 4 A 60 100 150 500 1200 1 20 30 50 150 300 - 30 50 70 150 450 2 - 1(1) 3(3) 50(20) 150(30) - 4 A 500 800 1,000 1,500 2,000 4

^ ^-s 150 300 300 350 350 4 100 200 250 250 250 4 20(20) 40(40) 50(50) 120(20) 150 4 1,300 1,300 1,300 1,400 1,500 1

400 400 400 500 500 1 200 300 400 400 400 2 40 70 155 200 250 3 (40) (70) (155) (200) (250)

1. Mineral Review, Am. Ceram. Soc. Bull., 1995 2. Ceramic Industry, 21(6) 24~33, 1983 3. ££<3*ti S-sUSr^sWl'&'S^fl) 4. ^rS ^^ 3.71 oil ^£7f *W*}^ a]^ 30%»

- 248 - S. 3-4-H^-

TiO2, AI2O3, Si

J7 3. Xf^-ol nfl-f

^}l 3.JL

^ tfl*W

3. 8-7°!]^

of i°U SI*}. Ht!: tfl-?-^-ol ^"^ 2:^7>^ 13-Tflofl

- 249 - 3. 3-4-2.

1992 >d 1995V1 2000^ 2005>d 5,387 8,887 19,805 38,133 308 400 653 • -frills. 1,186 1,667 3,055 • ^}^^t)S. 1,793 3,027 5,645 1,501 2,484 5,809 342 507 985 ^ *)]£}-ij| -^1 Aj 245 430 174 600 83 559 1,760 868 2,230 3,502 9,503 19,960 350 470 750 • 911x l M °1 ^ ^lfif^! — 510 880 2,200 1,100 •

^ 31 8,664 14,265 36,385 75,151

(1) 71 #7fl^

- 250 - 3-4-3, 2 3-4-4, S. 3-4-5, S. 3-4-6°il^ 4 A

3-4-3.

1990^ 1992\! 2000\l 2005\l 139 174 477 791 38 52 225 515 20 30 135 368 Bio 4^^i 7 13 63 166 204 269 900 1,840

3-4-4.

199OV4 1992H1 2000^ 2005>d

3-4-5.

1990V1 1995id(96) 2000\l ^•a-^t-oo-oo *1 *V 7l 4 S. 77 140 290 13.6 14 22 80 16.6 7] Ej- 9 18 50 18.3 100 170 (639) 420(929) 14.6

- 251 - S. 3-4-6.

1990 >d 1995\1 2000^ 10.380 17,560 30,680 7)7)1-?-^ 1,460 2,020 2,840 1,000 1,770 3,500 690 920 1,740 ± 31 3,150 4,710 8,080 1,650 6,230 27,090 t 3i 15,180 28,500 65,850

i 1999-2005^1

50% SJ 6. 30% 80%

(2) 1993^^ 8.3%^] a 510.5. 7ltfls]ji

, 71^,

90%

- 252 - o.S. SE

fe *fl 2

- 253 - 1. K.Nihara, " 2. Edison Polymer Innovation Corporation ?•}£-, (1999) 3. $^-'&.£*n ^^3 ^^AI 4. "Fire Retardancy of Polymers", NIST iLJL*| 5. "98 JL7l^#2Hl ^£#4 7flt-S-^", I±gi, (1998) 6. ^-g-fi] S^^^W^g 7. -S-oV^Ji, 1999^ 6^ 8. J.Onoe et al, "The Nano-Structure of Fullerene Photopolymers", it mxm{oi^r), 7, 7 (1999) 9. T.W.Ebbesen et al., Nature, 358, 220 (1992) 10. http://www.southchem.com/price.htm 11. "2000^ ^#7]#^sl ^^ ^^^^1", ^^^^^1, (1994) 12. 13. 14. 7l^7l^ A]^- ^^-^.JLA^ Business Communication Co.

- 254 - 21-MM

•I- ^El-Lfl^ i^ t^o] &o.n|

7171

21 -Ml71 ^HV 4 7l<£g.°l:6|M

71 ^, -¥-71

71 #

"Sl 10 H 01efms(TP0)4

- 255 - ^ sa^- 3-7}>8-±4 7V^^s] %&o] -g-01^4. elastomer/^-7l ^-^-i^# ol-g- ]^^ *fl7]l^ ol^-Si 71^

^f7l^-i: oi-g-s^ ^^4 -f-Jd ^ ^71 Tfls., #eH 71^- ^--i

71

-fr7la]oi ^7)1^ -^-

1 ^7^1 (1999-2001^)c»fl^fe 41^, ^-# ^ clay

^r^l, elastomer aelJL q^^-Tfl^lsl ^1}^

day x clay -n-7l -H-BI^H^I- ^^"°1 -§• ^-f^^l^r ^ t ^1, l7}i^^^.]) elastomer clay

- 256 - MEMS, ^£«0, :*;£-§-

gj ^r^^3)-7l^ tfl^-S. 21^71 oil

lJL ^O.M- (71 «a ^^•2:) «^1 M-^^r^^^i^l «3 7fl^ ^ o]

- 257 olefin

Epoxy

explosion

SFE

1

1 emulsion ^ QS. 1 - 259 - Cf7]^ &}£,***Uday x+i^l« el

7im7m (1)331 1999. 9. 1. ~ 2002. 9. 31. (36 711-S)

^^:500,000 ^ ^:90,000 31:590,000 1. ^4^

hybridization 7]^

l^lH^S. : 7]^^ silicate M-.1 -S-°d 71^^31

ij'^l t_l -J— • ' | O O oAHV^dLC 1 -

n 1 hybridization

2. <*R*M1-

< A O u|ic^-^-^ |-§- £7}di $ ^r^li^ll ^31 ?J

o -S-/-T-71 q

0 A}- 4)-

4. 7lEf

- 261 - ol« El- ^|2

(2)^711 2002. 9. 1. ~ 2005. 9. 31. (36 7fl^)

^-^: 800,000 DJ?i: 150,000 31:950,000 ^1(^ l. <3^*H1-

S-§-7lt- ^"^ %

"171-4:^ 4=-^l/

3^1-^£ : Barrier 4°]i 2. <3^2H1- O Q| 7l^S A^ ;r;!'l'idlfi ^ hybridization S}- 7] ^ "ST1, '•i-^ ?t^l TT1^

o^ o]] il)--^ -§--§-7^13:7]4r ^ o Barrier *>]|o)-g- «§7|-4i^ ir;^l/-T-7l 3. ^^Ml-

^1- f-*H ir^Hi ^^

4. 7]^ ^^

- 262 - 4*1 * *W «7H^^1/^-71^ ^ty

71)^71^ (3)^7^1 2005. 9. 1. ~ 2009. 9. 31. (48 7fl-S)

u 711:900,000 ^ul(€^) ^^: 700,000 d #: 200,000 l. £^4^

lt-^-g-7.11 ^TJl

—rl / \3 -yl "*T. J^~ -t 1 v^l / —j"* / 1 ^ " ^T* 4 ^1/-T-7]^-^- l^- rt hybridization 7]4: 711^- ^ ^-^ ^l/-T-7l-g-^ Uj-

4*1-^.5=. : (cJ:'il"S|"l- $\ •?!••§•^ 7]^- 7fl ^ x- 2. <2^4^ ^ 71^ o -g-<4- 7]#

O -T-7]-g-^

3. ^4^

4.7\n s? 4*1 ^J^jM ji^^>*

- 263 - ^7J^ S

3-T-:750,000 ^#:100,000 31:850,000

1. ^"T^^l2] -T-5.

<5| ^ 5IA-1 ^ ;*] / TA ^ M-in^-t)"7!! ^12:^) ^

J^.A^ ^x] -^ 7j] ^ I

ofl^l, UPE, olnlH. prepolymer^]

o ^j £~-n"7] "§"(-n"7J *^ )^V •§"/t]'7]^

:;*11 ^ prepolymer ^ o -^-7]-^ S. 5}- ^ ^ ^11 /prepolymer-S]

]}2i ^ -i-^^7}- 7}£

3. ^^4-^1^1 ^^Hov^ =-01 5.=. 2V^^. 7].^ 'interdiciplinary'

4 7] E-V ^" ~?" JH" ^ll ^1 "^ ^1 .?- 3l -^r "^

^3 ^ ^ "^"^ ^ ^1" ^^" til ^] "^""^" ^1 ys

- 264 - 4 4 4 *ll ^ 7m 7l|^7l?> (2)

^^-:l,050,000 t!?>:200,000 711:1,250,000 1. <3^4*^

^ij=.^l 7|];g 7]^- ^-^_ rt S^IVdS- : Pilot

2. ^4^

o jn.-§-^f B]

^4 i^-, 4Vc^ 3j /^ A]- 7J ^.

^11 -g-3}- 71^- 3" end-user ^^11-44 ^^9. ^l-^j^l, £.. T=-^1 ^13:^^1, ^-n-^3)- -^-f ^^.-5-n-, ^1- 2] ^#Sj-i- ^1^; ^-^ ^-r-7 ^jafoi ^^^1^1

4. 7] Ej- <£^ 4^1 -id^Al JL

End-user -1•°1 ^Sb ^v<^

- 265 - 4 *ll ^ JI7 (3)^7(1 2005. 9. 1. ~ 2009. 8. 31. ( 48 7fl-g)

^^:700,000 nJ?>:700,000 711:1,400,000 1. ^4*^si -=-a "Ttl ^ / "~L >?^ ^A— 11 ^t"| p 0 J "oU -~rT- f *r*p —^— "^T~ r Sf* "T^~ * ~~\

S^'diE.: Pilot

2. ^4^1-s) ^^.i41-§-

i 1 l . Ol "7|_ Ol ^ >^V TZZ ^ "7l

^A^, "n"7l --T"7l 7^1 QS] ^-§1-^1 (compatibilizer)

^ scale-up 7l- o pilot ^-^c

o afl-g-S] ^ 1^ i^, ^'tt^Ml T1-^ 3. <2^4^1-

L

Sf^ JE.JL 95

4. 7lE}- <£^ -3^411-

- 266 - %\ 7] ^711^"

(1)^:741 1999. 8. . ~ 2002. 7. .(36 7)1-i)

^•¥-= 700,000 ^1?>: 100,000 741: 800,000

1. £^4*11-2] 3-5 •^Hf^s.11!5!- TL7] q^t ^^1-41711-1- ^-^• Sj-^^rj-o}, vfloj-s.-^-^, JLtySL Elastomer ^71 IS

l^V^t: Elastomer/-T-7l^-^-^ q-ic ^> H"5T -E-^S[ 7}£ n S)-^-^ 7)1^ 'tJ'^^l^l

2. g^^MM^1 ^Avfl-g-

1 - /•T-71 £-<+ 7l^<^^-, sol-gel^ JE°d 12}—S.11!-^! Sf^}''^ 711'^f]'^

3. ^^MM

- 267 - 4; «l ^ ^•^ *l2:7l 71 7J 2002. 8. . ~ 2005. 7. .(36 7H*!) '11^-4 «a«i< : 900,000 ^#: 200,000 7j|! 1,100,000 1 ^3

E 3- s.

-8-^ ^7f V s. 3^}\£S. o or)

n1, 7l^^ OMOSIL^l 3*r\l 3 °^ t^l^i^ Elastomer ii^r-^^l0!^^

4. 7j Ej-

Elastomer 4i^B

- 268 - Ml * *a -a-8-^71^711* 71l^-7l?V (3)^-741 2005. 8. . ~ 2009. 7. .(48 7fl^g) 37fl*>« 800,000 ?1?V: 800,000 A'- 1,600,000 «1(^€ ) 1. ^1^1 ^rS. 1^741 •tlT?" Elastomer i.^11 ^| 71^-^-

< -Qiif 71^-^ Elastomer J^7l^ QS. Elastomer H-ic-^-^-^ll 4*1- Td£: 2. -8-

^l)/M-i,4^7l

\!£: ~ ^ Elastomer/^71^-^ i

HlS.: - 71^^ «a B}i£o] <#AV 7l^-( 7] - 71 ^MJ -¥- L

3. 'HI 51 ^^1H,V •a tfl- Elastomer 4. 7lE} y^2f^l xi ^xl jiB^xl-sj-

Elastomer

- 269 - 1- *0 * + ^^,11 ^7H (l)^Tfl 1999. 9. 1. - 2002. 8. 31. (36 7ii-a)

-:700,000 waoo.ooo 7(1:800,000 1. Microelectronic packaging •^l TT "fl ^ll "8" H" d TC Silica^l M-ic-^-^-^11 ^-^J-S}- 7l^ ^^ _ j^.^\s£^. < i 9 - 1^^ 7fl4^ < 5xlO"5oC - ifl^-&£ > 450^ : Microelectronic i3ackaging-§- insulator ^ ^^l"3?-

2. -8- 1*> ^JE. : -fi-¥-7l blockcopolymer % silica A]

o

o o : o Matrix^ r-7lufi o H o ^^ ^7 3. a] ^^!«g

4. 71^^71-

- 270 - 1 Tl ^ftXI ^1 ^^4 ^i7l* 7||i 71 # (2)^X1 2002. 9. 1. - 2005. 8. 31. ( 36 TO

^-^-:700,000 ^1*100,000 XI :300,00i 0 i. 500r

l^l-HiS. : Microelectronic packaging^- insulator ^ t nl^l XI ^T1"^ ^11 ^^l 3 ^ XI ^ ^"^ ^^ 7l^r 3 3^}Hi£. : ^-n"-?i^l-§- i-^fl ^^l:^- ^ 7|^- 5j-cfl 9 &l 1*>V12 ^ XI ^

E. : o ^-n-^ i-J-ii^-'^-^lls] CMP Process Compatibility, Plasma, REE Stability *%7\ ^ 7l-^^ M-t-S-^-^ 7}-§-2i^l-&|

3. <3 7i«a^i , ^5L, <3^^£l &&.<& tt<&^- ^M^r &q ^^ ^r 4. 7] Ej- ^^-4^1 -tl^^l ulBJA>*J- 43 7l^^£S. ^5}

- 271 - J.}*} * ^^Til ,r^l ^+i

7 (3)i&7fl 2005. 9. 1. - 2009. 8 31. ( 48 7M)

%j "•[""• § \J\J.\AJ\J :300,000 711:1,000,000

1. i ii it'll *U3 AoVcasi- line testl- -f-t H 71 #

-Sr?ll 4 A^ -g-g- SM 2.

o Microelectronic packaging *l-ft-^^l-§-

0 •^•^^I'H ^J 71-^- 2^2js}-; -§--§-"?H

si -g-g-y ^ 3.

,)<

4. 7]E}- «a^-4^1 <0^Al jlBlA].^

- 272 - 1999. 8. . ~ 2002. 7. (367||«)

1,200,000 V: 100,000 ?f|: 1,300,000 •a

, pt,

sodium C99H1) - Ag, Pt, Cu C00\l) - ('01 Vj) - 2. C99id) - (100 g/Hrfl-SL) - Sodium/halide flamed°)1

COCd) - (Ag, Pt, Cu) 5-150 ran, 99.8% Sodium/halide flamed ofl S 5? Sodium^-^71

('01 «d) - Sodium/halide flamed°il , Pt, Cu)

l^E.al- 7) 3.

71 4. 71

7l# road mapt

- 273 - 2002. 8. ~ 2005. 7. (367fl«)

1,200,000 }: 300,000 ?fl: 1,500,000

Pilot Pilot THE. ^1 mechanochemical

Pilot^S. ^^ (Ag, Pt, Cu) 3*l-'d£.('041d) - : , Pt.

) - 3 Kg/Hr fl-.E.(1d# 10 ton - Mechanochemical ^°)1

) - 3 Kg/Hr - ^ii^-^ Pilot fl-JE. <«S<+ (Ag, Pt, Cu) - Mechanochemical^(MCP)i , Si, Ni)

- 30 Kg/Hr fl-.2.(100 ton^SL) S)

. Pt, 3.

4 71 E|-

- 274 - 4^1^ * ^l^i #* 1i71* 7|*

(1) 1999. 8. - 2002. 7. (3>d)

: 1,250,000 ^^> : 200,000 31 : 1,450,000 A\

1 e1 5l H ^1^7l# 7R*

bMH 7l* 7fl* 7] ^-8- i+ic

2. <3^4*ll £1 ^Atfl-8- o 13 51 ^ ^71^-g- S : TiO2, AI2O3, ZnO, ZnS, c -S} •S'-^^Til 5l ^li'Jh*l T1^ 'S, 'Hl^-S'S, CVD'S, -§- ^ii'y^i- ^]2. o lei 51 ^

o lei 5J $ ^71-^-g- ^ll<^7l# "^T1" tfltb 4^-y-,

o 71^-i^S ;7 # 51 2c le] 51 ^$71 ^-8- -* *!" 51 ^-^71^ Jf-

~ ul" 1 —k"E O T=-*|7l^]: * tl^il^-1- ^-^ 71^- <

4. 7]Ef

# 51 ^-*] road map-i- 4^*H ^r^^

- 275 - ^ ^-#-8- 'Hlat-^i ^^

7^ 71 ?V (2) tMl 2002. 8. - 2005. 7. (3Vi)

1,350,000 ^^V : 300,000 .1: 1,650,000 tt «1(*1*I) 1. ^^ Ml 2} ^-5.

«•!• « MTI** 4y

• ^ *H ^ "S"'?i7]^"' 21 pilot • ^^1 ^ •^'^71^""8- 4t°J^ 21 £# r a ^13*1-VIS 8- M-ii^V 21 $#

2. MI2j ^^vfl-iL

o ^ •1 pilot ^-^ Pilot Pilot plant -o-'S^nr ^1°! o 5 -1-^^^1-21 -g-#^ * 71^ 7H

^ ^-x)7l^-g 5 0 ^ -l-i.'tl^l- ! $#71^-

3. M121 ^-J«ovi o 1£31 1- ^-S. pilot fl-S2l o v o n

4. 71 Ej- IAI jielA^j-

o "t 421 71 ^7f 71-^-ej-SLS. Q ^

- 276 - Clay/Polymer M-ii^t 12: 71 £• 7fl*

711*71?* (1 1999 . 8. . ~ 2002 . 7. .( 36 7fl|) ^^ 7fl^Al" ^Jf: 900,000 ^ 1: 900,000 <^ Hl(^J^l) * a 1. W^Ml^ "If ^ organo-clay *l2: 7,* m 1*1 ^ ^-^ 7l^ 711* l^j^- 7l^ 7fl* I hHlic : organo-clay ^1 2. ^^-4^1^

•%•£.£. ^-^ 71-^tb %• ^ ^^woV^ ^ ^ 7l 71-^ 7M si-t)-^ ^^»g-»a-i- oi-g- 3 7l£ ^"^

- Organo-clay °fl ^Itb Organo-clay ;

- ^fl^^-i-^l -T

4. 7lEj- Q^-zk ^1 Aj^Al JI^A>*j-

-«•

- 277 4*1 * Clay/Polymer i+ic4^-*ll- % A3, 71^ 7fl^

«7l# (2)^711 2002 . 8. . ~ 2005. 7. .( 36 711*1)

^•¥-: 1,000,000 ^I?J-: 200,000 7(1: 1,200,000 1. ^"P^^l-^1

Organo-clay pilot scale ^12:

1 pilot scale 2^r'dS. : Organo-clay pilot scale ^]3z : 3 2. <2^4*1 si

- n^i f^KSrtl"# pilot scale afl2i 7l^

* Al*l# -*i A> ^ ^^1^ ^7f - Organo-clay pilot scale ^li 71^- 7flt * *l2:-5-^-&1 ^^jij- * *l*flf- ^

3. ^^4^1 si 4^*8-SI °1J1 ^T1^. Lab. Scaled. *J

- 2}-^rt7)l > - ^§- ol^ji

4. 7lEl- <=^^i

- 278 - H^W t^. ^71 f7l/^7l W« 4*^ *fl2:7l# 7H^- (3) ^7)1 2005. 8. - 2009. 7. (4Hi)

3-¥- : 1,100,000 'S& :300,000 Tfl : 1,400,000

1. <^4*)13 —¥-71 (-g-^-, ^)e}^, clay) M _J^-7l/o.7] uftj-Ji^-^ljJI. J^^•5. ] >1|2.7l# 7fl^-

;*fll*}1d.-E-: -¥"71 M"i. •§r^;S ;^l2*l-1dS.: -T-7l/-¥-7l -^-^- 4ii^4v 4 jijt^-^ ^3:71 # 7)1^- n ^]3*l-i^£.: J^.71/^.7] ji^- i•\btL

2. ^4*13 o -T-71 q-in^l

0 ^~7]/^-7] ^-i - tfl^-lir^ : -g^•/^- l 2}-^1 /clay ^*^" M*ic- "\jir - -T-71/-TT-71 -^ *fl Oj 7] ^ *- E 0 ^-71/^-71 4H - Pilot *34£* O -T-7]/-¥-7l -6^ < ; J l-|-ic y^l-Sl pilot •?- ^7]'t- 3" M'^-'y^v^i

4. 71E)- •ST4^1- 1 'tl^Al JIBJ^}-^}"

o ^^14^ ;

- 279 - (Road-Map) (1) a a 3 y

Z! I/clay Intercalating agent

Ul 7| ~s& silicate

hybridization 71] # ^ ^ ^] ^ (Road-Map)

2 "d

hybridization

51

BarrierS n PI

4 h

p

i CO RO } r olU J k

i

•Kh r C\J

l Jir X co

3. P

f

E5 5'K HKI mm

- 282 - 2000 2001 2002

Intercalating agent

hybridization ^|# \^ silicate §E|j ^^ 2003 2004 2005

Zl 7^ XH Bt ot 11 tH 0^

r

i

1 _^_^ f! ,

28 4 - AH ±=. D 1 ^ AH m -j I f~> CD ^^ —^ C> O *^ ] / \

hybridization ^§ £|^j Barrier-S- M-t4tJ-^fl \ i/ 7

("H H'K

200 9 ^0 H|fl w <~ ui i

o RD flo

w CM IUU -n *±f, —i/ a Km

TJ J5 D :J m o i

M 5 200 7 CO p ruu

— a- - oJ._

010 010

- 285 - XI rH

i

r

CO

RO 1 r

t\

C\J

r § i L g

fir TJ i

r

j' >• i ^r 73 '1*i ra o|o u 77 u -M 11 — 1 Co _^T- K Oi —T^JT -i^- 0' 1) C ° •go •Kh J o W ^o D'K 0* 3u •• ^ ^ fN ^ >i or IN° ^ ^° o - t Dim

HO •KjOi Ft LH 7!? -H •gnJ "j"

- 286 - - n

•"TJ CO

olll J IN K"J 31 •Kl- L C\J

03 u-J i M O IT i L

31 i'--

r

p'K *3" "ts" F|o TO ^ W p'K ¥J ° ^J n'K 1 J~ <+> T\ 'go S ^^ 1

^n) *J" ^r r-1 ^ *lr ^

W « •ft

TV •N oil! IP

- 287 - i k

31 p i h

CO RO 1 r olll i

31 CVJ M 5 p

i T7- tf CO '— i k i

70

r i r 1 r

IN

, TT <] ^r a(r **- ^ -^ "5° ^ W}a •Kl- ml "FT ^ ^° "c'K W Pi D •(,1- -r- p|« ^o IN0 ^° sis I SI

HO 8 •PT

•3?"

EJ 'KH

- 288 - p)m

(Nl

w

o)o )-c l 8 ro n- CO oE? p'K 7? '•K 'ol f*

W

99 9 o - B1 o» o Ml 7T

w >, ro ro O u i

- 289 - N w

o IN" o CM *^ Tml

—1

*1r M W IT! ^.J

(N J P'K CO 73? CM w UJl •^

"o Pi a*

•go

>

" !! CM >

CM "K- P'K /I •sr 'T IS

Bf

290 - 00

CM i

200 7 _o ?? £ ^ p'N

PUD * fr 5 mi 1D -X * s $ w CO CXI 5- 9

1 K ay jj D'K $U O ml ^ W ^ CM i -<1 Kb •¥ nT •JO N 5 ml

- 291 - "5" Pi

k 00

r i r s i ii ' I TTM 03 i i sO w

T—|

T—t

1 r ' r 1

wi o |

4" ^ 3 TT « <1 ? r V "f 3 ^j -^ Tir Sr ^ n r s)-j w ^m ^joT p'K m|r ^ i i i >1 op 'go -go -t "5" ^ S=

J i -. ^p^

W" s|r ^"J S3 T—<

- 292 - "5" Pi

k i I ' k j

CO

T r

K-l 1 I 1

r ijr M IT

T \ * n'K ^ S S I ^ , •pi'?? , ^"o"!—. d "w0 IJ*11 ifl- ^ 11 5© W °t° ^ ^|r P)o j|o g ^|p a|o j^ T?3 3 "i " sir ^ o)o ^^rK TT O Pi T "i" F|O 'go i i ii

I U ™

*nT M HI

CM

- 293 - 31

L

j

j i

i i -a •Kb o r s i | i

CO IT i

I i

1

T FN r4_ 0 •uT j|o •(•)r ^J 1 Pi K" ^" Dp ^ i i

•go T TN" t i|r ojo

5 3 CO

- 294 - W •B-J

ui|r ^o

200 1 rV- i i

T L

u ^ od

Ts" Tui n 1MUJ Mjl 4 'if 1 200 0 rj-

B ~ p'K <\ | ^_* - 3P g ^ IN" I J w ^ CQ . 199 c

"3" IS" ijoT

- 295 - o TLT K1 o *k o njO ,__ OJ KO ^" SID IN rH M

I

^ *,, do T * CO n- 'X™ pj o o H- IB

olo KlU ^ 0|0 — =J • • ISO O -Him S 'go SI'r ii

C\J iS h ?o LU

-<| 50 u|r

- 296 - 7fl

2005 2006 2007 2008

D -il ~rt ^ ^f—£ il /T1 - ****** SI A|-°j $}• T -

i l4.t-^-'ll'*H-§- -^2.!-x-£llii" Elastomer ^il^^l's'?^"!1 7|^o u(--t -c-^ ^T1 I M-JE^-&*H4 -y^l ^Elastomer 1

i L i i L i k i k

5J SO CO

KJ i L

r 5J r r y i k

tfj

r

O OS Si sir Ini v(lll w # W FT

i "SpU TVI isr Tjjf =L, L1J j| ^ i

SO ^(- K r>,

Eh Ill-J j[ ^ 1_1 ®^

oil! TJ

- 298 -

1. ^-8-^*11-8- M-t^-^il^ -g-§-7i^^-^

^•^•^ o Film ^|2 2:33 ^1^2)- 7)£7m °7>^^ -§-^2:33 ^^^(CMP, REE stability) « rt^H ^-a-SI- 3 ^-8" 7j^ ^-ifl - 008 -

rE ni° l<* la.

hi H^ ^ W I r i 4i ^ iuyr ng M ^ R- H> XI ^ Hi

pQ * OOOO * °OOOOO* -Li n> o|o o2 oi .£ * r> o> ofci n|o ow "§: g" -*• * oto o|r 02 ^ °£ 4J n2 02 02 i°i a = =lo

0|r »£ *£ P pp HJ ^Jf ^ hx »s r^ g ^ Hi & J£ J£ CD JJnUft: w. 1 4 Jaoto o2 r^ r Oi JJt nt. W S ^ Oi ^ ^ rJT ^ 010 l£ jf -1*

£

H" oto If Jim S

19 £ Flu -H

| oT 5 9 o w I r CO 4 — &3 r r£ 1 r

i I \ r i r CO rSL ' 1 r i r in0. k t 02 T—< * Hill CO _•_ r\ ar SO Hi D ol nJ

j 'go X

E 1K"

oT 1QIU tr n|-j

T—(

- 301 - A

2002 2003 2004

\±^ °J M.,

*f (CMP, Plasma, RE stability •§-) tN

$11 P'K CS1

~ "FT » p'K DJflJ p-K if of

It ojo

15 o CSI CO o

K "go

0(0

<*>

•a-

- 303 - (Road-Map)

1E.MI 1999 2000 2001

Sodium/halide flamed s|&

5-150 nm, 99.8% £ Sodium/halide flamed o)| °\?} ^^^•^ Si Sodium ^lii?!^ Sodium/halide flamed o|| °|*i- , Pt, Cu) (Road-Map)

2002 2003 2004 3 Kg/Hr ^a(^& 10 ton MechanochemicalSoil fi|

3 Kg/Hr Pilot ffa «& (Ag, Pt, Cu) MechanochemicalS(MCP)oi! s.| *h GO , Si, NO 8

, SFES 5=' 30 Kg/Hr fi|

. Pt, 1999 2000 2001

i

—• Sodium/Halide Flame ^* SFE^^l^l^ Encapsulation(SFE) ^^liM]

Sodium^ ^"7]^- I *° rJ-j 7\" o IN0

i—

tN eu Tin •

u •*• TN" m|r C/) flu Ho •<|fli y\ mr TN" IN f^" -t

i L p •On) • f To co n= •<{ ' L

i L do

•K ;ess (

T 'K e o Pi CM K-i y i

Bj-J N H •3- Pilot T echa n l|u

- 307 - i

J CO RO i r Pv ^—N oW 1

1^ I

C\J ^ al i 1 r w

ajo r

Tf D« ill (#11 sr *r ^ ^o K"J 5T •fr ^r rH rf DHU 150 rt- w K nM O| Ol ..||r O| — Ol

oi So on Rr K ^ in K ui| _H KH ij fr tJ o|o tJ uH <\ 'J W J" HST Dhi zTJ Bhl TH ^ -go

HO = 5T

- 308 - n Pi n- i t v TJ r i L i CO RO \ r oIU

KJ 1 •Kh 31 1 f T3 CM 7 O K

r J

w CM

I r . K[ n- I El n- <|ni i50 J —1 no ^ rt- •Kh RC TO So 3 * MJ oio? PiC Q. 50 oKu QlK o O 'loj J|0 KO <"J

51 Pi l Pi 50 ffl^o

CM 'go HO LH H

IB J/vl oIU

- 309 - en o O CM i 'I lO . ZnS , IS t Bj-J

/ \

'if

'go

- 310 - rj- V

<\

CVJ

- 311 - : Clay/Polymer 1 ^ (Road-Map) ( 1 ) E.MI ^ 5! iJ S ***** 1 a 2 td 22.

1 Clay/Polymer ^12: 7} <=t 7^^ •f-'y-jj-^J-g- ^]2:

I Organo-clay ^12: 7]<=t : Clay/Polymer M-i^^-fr ^tfS^l- ^ 7]^ 7t^ ^^^1 ^(Road-Map)

( 2 ) £!• Tfl ^ 3 ^ S "I ***** 1 'd 2 y 3 a 3L Clay/Polymer 1 scale *1]2: 7] it 7fl1|h

Organo-clay pilot scale

CO I IN

- 5

r—I "FT CM "0 Kl o Org E

dp 1(1-

O

CM "& W

en en i—i

<0 ^ TO

- 314 - - Clay/Polymer 2

2002 2003 2004

organo-clay pilot scale pilot scale

U1 Organo-cla3h pilot I I t flu n

i

31 i r i 31 CO

*o r oIU K"J CO •Kl- 31 C\J

ol *

Road - CO

'or 3J fl" t

Is 7s" r n'K oT 5T oT oT oh Kl oT rh ,K K •s- cjo m » >1 •3" 3- U)|r -g-j •3"

** 1 i II N * ? w fN •3" D'K Dh >h W Dh t # •Rr" TN" ^ Ts" FT rs o Ts" ^ Dh o° Dh PI ih Dh "a <•> •dfu N so K-l •go IH !h •5= IN" ^ D^

•3" B|r

HP •KH oIU

- 316 00 t

CM M of Si TT 9H sir W Fjo

o

•or 5

34-J If T -Him

- 317 - MOU

- 319 - ^305-353 ma 3# /Tel : (042)868-2047/Fax: 042-868-8346

1999. 5.

2.

3.

cf. 4.

5.

FAX : 042)868-8346 ^4: : (305-353)

a|gl XI- TEL : 042)868-2047

- 321 - (D2^%o)t}( ),(2)2~10^^( ),(D 10-100^«( ),®100^^olAov() ® l^-^i® ©Iw'g ~49^f )7©lo0)i ol ^( ) -8-H

~^~ -^^* (A V *^

i** FAX

^r FAX(042-868-8346)S

2. ^?!:•§•

2) ^^ 4-8- AS. £^

- 322 - 3)

500 ~ 1003)

4)

5)

6)

7)

8) JL

9)

- 323 - . o 3. e

1)

2)

(-f 305-353) TEL : (042) 868-2047 FAX : (042) 868-8346

- 324 - (43%) DJ € 3. (26%)

(35%)

(15%)

3. 10\l

« 4000 ~ 5000^ (43%) • 2000 ~ 3000^ (23%) o 1000 ~ 2000^(17%) o 5000^ (13%) o 1000^ nl

4. 10^

71 E}

5. 7111H) (39%)

Polymer4 fi

- 325 - 6. 1) 71^ 7fl«H ufl^v ^^^1^ ui ^l^sjlBjj H-C^ : (21%)

: (17%) ^•^•^ 7l^

2) 71 ^^#^ : (42%)

• (14%) » ^171^ 7flt4 ^-^^^ ^Jiii^ : (8%) 71 E}

7. 7lfl l : (52%)

: (17%) 71 E}

- 326 - 8.

: (39%)

: (19%)

9. ji7l^

: (8%) : (5%)

10. 5L7]*§- ^-S- : (39%)

- 327 - ^ M^(Nano)

1999. 4. 27.

KAERK3M,

2.

*** 3^5}/ KAERI i^Tf-/ HCC ^-^Aov, ^^^/ KIST ^^^/ KRICT

-*l| -r ^) rJ 3^*1/ KAERI

3. 4/27 : 2) 4/27 - 5/20 : A 2i*\ ^ i°J: : A

3) : 4 File) 4) 5/22 - 6/14 : 5) 6/15(S}0 : 6) 6/16 - 6/26 :

- 328 - 7) 6/30

4. A ^

, -g-S. 7|^

A , -g-S.

jit]. fl-S-1-

point7>

- 329 - 1. 71 2. 7l

6*1

4

RFP:

S- font^- graphic llfontS. sfji -§-^-l-fe- heading/bottom margine 2.5cm, 2f 3cm, -f 2.5cm ^-frf- ^^

- 330 - * «H : 1999. 5. 21. (^) 4:00 a.m. * %± : HCC * %q : KAERV KIST/ KRICT/ HCC/ 3:

. **(

2^"

4^- Elastomer

6^" Sol-Gel^: 7^

2. [email protected]^ e-mail.

3. 1*1- JijL-H ^j)#Al zj- ^-o>^ RFP H

- 331 - * #!•*!)°J*f : RFP Format %9l $• #!k

4. 4 a

5. *}--§- 4:00 p.m., HCC

6. SLJLA] ^^Al; uVHA] ofEfl ^ ^1-=- ^ 1^^ llpoint, #^^ 160%, >y-«V 2.5cm, $• 3cm, -f 2.5cm margin ^ => ^ => 1. => 7>. => (1) => a.

3*3

afl 6^ 7l^7|]tiav

all 7^ 7]CJ]JL4

*** ^i w-£#4^1 RFP

- 332 - 3*1-

: 1999. 6. 11. (-3-) 2:00 p.m. * ^ *

KAERV KIST/ KRICT/ HCC/ S

. **(

2^

4 4% Elastomer 4 5^- -fi-71—B-71 ^ 6^ Sol-Gel-I-

4 4

- 333 - ^ 5/294*1 [email protected]. e-mail.

A RFP RFP 71 Format

4. 4 ^ , 4 7) E|-

5. 4^ 4:00 p.m., HCC

6. iLnJ-!! : llpoint, #^>^ 160%, A4-§-*l 2.5cm, 3f 3cm, -f 2.5cm margin. ^ => 1. => 7}. =» (1) => a.

4^

*** RFP

- 334 - RFP*

ITEP/ £^ ?.U> : .^^4^7V M^- broad

•g-JJL

- 335 - * <£*] : 1999. 6. 14. («1) 4:00 p.m. * ^± : HCC * #^ : KIST/ KRICT/ HCC/ S

1. 6/16(^)7}^ [email protected]. e-mail Ji'i

(1) **

afl 4^ov Elastomer afl 5^ -R-71--B-71 all 6# Sol-Gel^: all

(2) ^-?- ^^o^j m-^i RFP

all 1 all 2 all 3 afl^-4^1: Elastomer

^1 4

- 336 - *** HcN : Lab scale 7fl^/ Pilot scale 7^/ Production scale ^ 3,7] ^^Q Items

(3) ^ RFP^- ^^l*}^- ^^-7^ Flow Chart *HJ : A T&A^. 1^^ 71-S.S. 2]-^ (^^7l^.hwp^l 2)-^ Form

2. 4 ^«g^fe. ^ #y

^ 71EJ-

3.

- 337 - 1999\i

2.

^ RFP 4)

71^ Tim

4)Road map 4 £# ^44^1# 3+3+4^1

-8-71 £<>HH 4^1# 6€ 16«a S.^M 4 ^^°H^1 e-mail

- 338 - Patent Title Nanocomposite material for magnetic refrigeratio and US05381664 superparamagnetic systems US05840796 Polymer nanocomposites US05726247 Fluoropolymer nanocomposites Highly ordered nanocomposites via a monomer US05849215 self-assembly in situ condensation approach Carbon fiber reinforced silicon nitride based US05376599 nano composite material and method for preparing US05431967 Selective laser sintering using nanocomposite materials Method for forming diamond-like nanocomposite or US05352493 doped-diamond-like nanocomposite films US05677252 Sion low dielectric constant ceramic nanocomposite Method for manufacturing an alumina-silicon carbide US05894008 nano composite US05905000 Nanostructured ion conducting solid electrolytes Method of preparing layered silicate-epoxy US05554670 nanocomposites High magnetization aqueous ferrofluids and processes US05667716 for preparation US05030592 Highly dense cordierite and method of manufacturing Intercalates and exfoliates formed with oligomers and US05877248 polymers and composite materials US05876812 Nanocomposite polymer Intercalates and exfoliates formed with N-alkenyl amides and/or acrylate-functional pyrrolidone and allylic US05849830 monomers, oligomers and copolymers and composite materials US05846643 Thermally stable fuser member Intercalates and exfoliates formed with non-EVOH US05844032 monomers, oligomers and polymers; and EVOH composite materials containing Exfoliated layered materials and nanocomposites US05698624 comprising matrix

- 339 - Patent Title Diamond-like nanocomposite corrosion resistant US05728465 coatings Intercalates and exfoliates formed with hydroxyl -functional; polyhydroxyl-functional; and aromatic US05830528 compounds; composites materials containing same and methods of modifying rheology therewith Superparamagnetic image character recognition US05667924 compositions and processes of making and using Erosion resistant diamond-like nanocomposite coatings US05718976 for optical components Intercalates and exfoliates formed with oligomers and US05760121 polymers and composite materials Magnetic refrigerant compositions and processes for US05641424 making and using Magnetic nanocompass compositions and processes for US05714536 making and using Melt process formation of polymer nanocomposite of US05747560 exfoliated layered material Magnetic nanocompass compositions and processes for US05889091 making and using Capacitive thin films using diamond-like US05638251 nanocomposite materials A12O3 composites, process for producing them and US05123935 throw-away tip made of A12O3 composites US05910523 Polyolefin nanocomposites US05883173 Nanocomposite materials Intercalates and exfoliates formed with monomeric US05880197 amines and amides'- composite materials containing same and methods of modifying rheology Field emitter with wide band gap emission areas and US05861707 method Hybrid nanocomposites comprising layered inorganic US05853886 material and methods of preparation

- 340 - Patent Title Intercalates and expoliates formed with organic US05730996 pesticide compounds and compositions containing US05786068 Electrically tunable coatings Method for preserving precision edges using US05795648 diamond-like nanocomposite film coatings Intercalates and exfoliates formed with monomeric carbonyl-functional organic compounds, including US05804613 carboxylic and polycarboxylic acids! aldehydes; and ketones; composite materials containing same and methods of modifying rheology US05807629 Tactoidal elastomer nanocomposites Compositions and methods for manufacturing waxes US05837763 filled with intercalates and exfoliates formed with oligomers and polymers Viscous carrier compositions, including gels, formed US05721306 with an organic liquid carrier and a layered material: polymer complex US05705222 Process for preparing nanocomposite particles US05686791 Amorphic diamond film flat field emission cathode US05675216 Amorphic diamond film flat field emission cathode Methods for fabricating flat panel display systems and US05652083 components Methods for fabricating flat panel display systems and US05614353 components US05612712 Diode structure flat panel display US05609792 Phosphor and method of making Methods for fabricating flat panel display systems and US05601966 components US05597511 Phosphor and method of making US05567352 Phosphor and method of making Intercalates and exfoliates formed with oligomers and US05552469 polymers and composite materials containing US05531928 Phosphor and method of making US05567351 Phosphor and method of making

- 341 - Patent Title US05858457 Process to form mesostructured films US05863515 Mesoporous alumina and process for its preparation US05868966 Electroactive inorganic organic hybrid materials US05871872 Dye incorporated pigments and products Production of nanostructured materials by hypersonic US05874134 plasma particle deposition Process for antistatic treatment of resin and antistatic US05879589 resin composition US05885343 Dyed silica pigments and products made Anti-fogging coating composition, anti-fogging coated US05854341 article and method for producing US05891611 Clay containing antistatic layer for photographic paper Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo US05514734 silanes, organo titanates, and organo zirconates dispersed therein and process of preparing US05531926 Phosphor and method of making Alkylalkoxysilyl-l,3-oxazolines, a method of production US05847145 and use Ink cartridges having ink compositions with US05837041 pigmented particles and methods for their manufacture and use Net-shape ceramic processing for electronic devices US05834840 and packages Net-shape ceramic processing for electronic devices US05801073 and packages Method of chemically depositing material onto a US05789027 substrate US05733644 Curable composition and method for preparing Method for producing nanocrystalline multicomponent US05728195 and multiphase materials US05718878 Mesoporous titania and process for its preparation US0570499 High conductivity composite metal Thermoplastic elastomer-asphalt nanocomposite US05652284 composition

- 342 - Patent Title US05589011 Nanostructured steel alloy Silicon nitride/silicon carbide composite densified US05643843 materials prepared using composite powders Thermoplastic elastomer-asphalt nanocomposite US05652284 composition US05704993 High conductivity composite metal US05718878 Mesoporous titania and process for its preparation Method for producing nanocrystalline multicomponent US05728195 and multiphase materials US05733644 Curable composition and method for preparing Method of chemically depositing material onto a US05789027 substrate US05589011 Nanostructured steel alloy Silicon nitride/silicon carbide composite densified US05643843 materials prepared using composite powders Intercalates; exfoliates; process for manufacturing US05578672 intercalates and exfoliates and composite materials US05541143 Sintered composite of silicon carbide and silicon nitride Method for producing silicon nitride/silicon carbide US05538675 composite US05525556 Silicon nitride/silicon carbide composite powders Composite materials containing nanoscalar particles, US05470910 process for producing them and their use for optical components Process for the chemical preparation of bismuth US05458867 telluride US05420081 Preparation of fullerene/glass composites Nanocomposites of gamma phase polymers containing US05385776 inorganic particulate material Broadband absorbers of electromagnetic radiation based US05381149 on aerogel materials, and method of making Conducting polymer films containing nanodispersed US05334292 catalyst particles: a new type of composite material for technological applications US05158933 Phase separated composite materials

- 343 - Memorandum of Understanding between High Temperature Institute

and Korea Atomic Energy Research Institute

High Temperature Institute (HTI) and Korea Atomic Energy Research Institute (KAERI), hereinafter referred to as the Parties, recognize their mutual interest in promoting cooperation in the field of nano powder technologies. To this end, the Parties agree undertake the activities as set forth below.

Article 1 - Objectives of Cooperation

The general objectives of cooperation are to provide opportunities to exchange ideas, information, technology, personnel and to collaborate on subject matters of mutual interest.

Article 2 - Field of Cooperation

The Parties will cooperate in the fields of nano powder technologies. The collaborative activities under this Memorandum of Understanding(MOU), hereinafter referred to as the Collaborative Program, will be outlined in the

- 344 - Annexed to this MOU by mutual agreement of the Parties. The contents of the Collaborative Program will be subject to modifications or supplements from time as agreed upon by the Parties.

Article 3 - Method of Cooperation

The principal methods of cooperation include the transfer of information from one party to the other, meetings organized to discuss specific and agreed topics, visits of or attachments by teams or individuals representing one party to facilities of the other party, the implementation of joint research projects or specific projects sponsored by either party, and using one party's facilities, built or to be built, to do R&D work desired by the other parry.

Article 4 - Coordination

A coordinator will be designated by each party to provide a central point of contact in each organization, and through whom all communications and arrangements for cooperation will be made, the Parties may established a joint meeting for the effective coordination of cooperative activities under this MOU, composed of representatives designated by each party. The meeting will conduct a joint review and formulation of the Collaborative Program and take place alternately in the Russia and the Republic of Korea. Within the framework of the Collaborative Program, coordinators of the Parties may agree to carry out specific projects by concluding separate arrangements between them, if necessary.

Article 5 - Sources of Finance

The cooperative activities under this MOU will be, in principle, based on

- 345 - financial support available to each party. Such financial conditions will be specified in the Annexes to this MOU which outline the details of the Collaborative Program pursuant to Article 2 above. The Parties may depart from this general principle in financial sources by mutual agreement, when necessary. Prior to being involved in any specific projects according to article 4 above, the Parties will determine the detailed terms and conditions including financial sources to be set out in separate arrangements.

Article 6 - Transfer of Information

All proprietary information transferred under or arising from the use of information transferred under this MOU may be made available for noncommercial programs of either party, but shall not be disseminated or published or transferred to third parties without mutual written agreement of the Parties.

Article 7 - Intellectual Property Rights

Prior to carry out any cooperative activities which may create or furnish an intellectual property, the Parties will agree on the terms and conditions applicable to it on an equitable basis in the form of the Intellectual Property Addendum to this MOU.

- 346 - Article 8 - Amendments

Any amendments and supplements to this MOU are subject to mutual written agreement of the Parties.

Article 9 - Term & Termination

This MOU will be in effect for an initial period of two(2) years from the date of final signature of the Parties and will be extended automatically for additional periods of two(2) years, unless it is terminated at any time at the discretion of either party upon ninety(90) days advance notification in writing by the party seeking to terminate the MOU.

IN WITNESS WHEREOF, the Parties hereto have executed this MOU.

On behalf of HTI On behalf of KAERI

Signature Signature

Dr. A^ /V Dr. WhungWhoe KIM Name W&'T?X- Jfa*-*^/0O-Z>~ Name

Director General Project Manager Title Title

29. May 1999 29. May 1999 Date Date

- 347 - * ^ 3 2- «S ^ W7WS.3LWS. INIS ^^l^H

KAERI/AR-541/99 J17l^ l|t *«•*! 7l|« (71 SI 4^1 ^^iLuLAi)

7] O^ Tjl ^ ^2. &. j£L. ^^ ^ ( •g^- -3- JJ. W- O^ -ZJL ^^ ^

2 •S* *?r ^h *?J ^n ^ •$• ^T * ^^ (^" "5* J3J" ftl" 71 -^" •?•])

cfl *d •8^- *5" -^ ^|- ^ 0^ -?- -^~* 1999. 6.30

P.347 371 B5

*71 -yl] / /"^ \ T-ll Ol >jl / \ ^L Hi 15] 7l#Ji^

«*fl«7l*

^•i] M-ii ^-^-^sl 711

°1JI ^9-^5."g-i- *g-^l*l"c- •§- a. ^^^-fl-fe- -as. ?1* hef J. ^"^^1171- cf^sl-

T3- Slol S4. -^-^W M"^ •^•^•^71- 7)-^! oj i\ 7}x] ^ ^1 7l^aj Ji-rii-i- sfl^sV^l ^-*ll ^^l^l-^lfil Lfii-^-^-;()) "g-^-b -^-*1 "^-r- ^11

S.1- ^*1*S1"& ^^°1 •^•fl"^ "Hi 71^-g- s^nsl-ji 'tl-

a} ol 7l^ 7fl^- 7l^(^i t+^^^1, vtt^^a. **7l*. ^^«y, ^71^, MMT BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Standard Report INIS Subject Code Report No. Report No. No. KAERI/AR-541/99 Title/Subtitle High performance nano-composite technology development First Author and Whungwhoe Kim Department (Nuclear Materials Technology Development Team, KAERI) C.K. Rhee, S.J. Kim, S.D. Park,(KAERI) E.K. Kim, S.Y. Jung, Co-author and H.J. Ryu,(KRICT) S.S. Hwang, J.K. Kim, S.M. Hong,(KIST) Y.B. Department Chea,(KIGAM) C.H. Choi, S.D. Kim(ATS) B.G. Cho, S.H .Lee.(HGREC) Publication Publication Taejon Publisher KAERI 1999. 6.30 Place Date

Page p.347 111. & Tab. Yes( O ), No ( ) Size B5

Note Open( O ), Restricted( ), Classified Report Type Tech. Report . Class Document Sponsoring Org. Contract No. The trend of new material development are being to carried out not only high performance but also environmental attraction. Expecially nanocomposite material which enhances the functional properties of components, extending the component life resulting to reduce the wastes and environmental contamination, has a great effect on various industrial area. The application of nanocomposite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical Abstract field. In spite of nanocomposite merits, nanocomposite study are confined to a few special materials as a lab. scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects in order to compete with other countries and overcome the protective policy of advanced countries, with grasping oversea's development trends and oue present status. nanocomposite, nanopowder synthesis, polymerization, Subject Keywords intercalation, powder dispersion, MMT