Volatile Constituents of the Leaves of Siparuna Thecaphora (Siparunaceae) from Turrialba, Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Volatile Constituents of the Leaves of Siparuna Thecaphora (Siparunaceae) from Turrialba, Costa Rica Rev. Biol. Trop. 50(3/4): 963-967, 2002 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Volatile constituents of the leaves of Siparuna thecaphora (Siparunaceae) from Turrialba, Costa Rica José F. Cicció1* and Jorge Gómez-Laurito2 1 Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Química, Universidad de Costa Rica, 2060 San José, Costa Rica. Fax: (506) 225 9866; [email protected] 2 Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. * Corresponding author. Received 6-VIII-2002. Corrected 18-XI-2002. Accepted 26-XI-2002. Abstract: The composition of the essential oil from leaves of Siparuna thecaphora (Poepp. et Endl.) A. DC. collected in Turrialba, Costa Rica, was determined by capillary GC/MS. Seventy-six compounds were identified corresponding to ca. 95% of the oil. The major components were germacrene D (32.7%), a -pinene (16.3%), b- pinene (13.8%) and b-caryophyllene (4.1%). Thirty-one minor compounds were identified for the first time in this genus of plants. Key Words: Siparuna thecaphora, Siparunaceae, essential oil composition, germacrene D, a -pinene, b-pinene, b-caryophyllene. The family Siparunaceae comprises two from southern Mexico throughout Central genera, the monotypic West African genus America to Brazil and Bolivia. It is called col- G l o s s o c a l y x and the Neotropical genus loquially “limoncillo” (little lemon) probably S i p a runa (formerly placed in the family because of the strong lemon-scented fruits. Monimiaceae), which contains about 72 In Panama, the infusion of crushed leaves species of shrubs, straggling shrubs, and trees is used to treat colds and rheumatism (Duke (Renner et al. 1997). Up to now, six species of 1972). In Guatemala, the fresh leaves are S i p a ru n a from Costa Rica have been placed on the forehead to relieve headaches described. (Morton 1980). Siparuna thecaphora (Poepp. et Endl.) A. To the best of our knowledge, no reports DC. is an aromatic shrub or small tree (3-5 m have been made regarding the essential oil tall), with opposite, simple leaves, and unisex- composition from this genus of plants in Costa ual flowers. The fruits are fleshy and reddish Rica. when ripe, with arilate seeds. Due to its highly Early phytochemical studies of the genus variable morphology, a great number of syn- Siparuna revealed the presence of aporphine, onyms are found in the literature (e.g., S. oxoaporphine and morphinandienone alkaloids nicaraguensis, S. andina, S. gilgiana). This (Braz et al. 1976, Chiu et al. 1982, Gerard et plant is a widespread species in Costa Rica. It al. 1986, Lopez et al. 1988, 1990, 1993); cadi- can be found in both Pacific and Caribbean nane sesquiterpenes (El-Seedi et al. 1994) and sides of the Country, from near sea level up to kaempherol glycosides (Leitão et al. 2000). close to 2 000 m elevation. It is distributed Reports of the leaf essential oils constituents 964 REVISTA DE BIOLOGÍATROPICAL obtained from the Panamanian and Brazilian S. ture: 250ºC; detector temperature: 260ºC; ion- guianensis were varied. They range from tho- ization voltage: 70eV; scanning over 38-400 se containing as main constituents curzerenone amu range; split injection 1:20. Integration of and curzerenone derivatives (Antonio et al. the total ion chromatogram, expressed as area 1976), epi-a -bisabolol, spathulenol, selin-11- percent, has been used to obtain quantitative en-4a -ol, elemol, b-eudesmol, atractylone and compositional data. germacrone (Zoghbi et al. 1998) or (E)-neroli- Identification: Identification of the com- dol (Fernandez-Machado et al. 1998). ponents of the oil was performed using the Some chemical studies of S. thecaphora retention indices on a phenyl methyl silicone have been done previously. The oxoaporphine column, and by comparison of their mass alkaloid liriodenine was isolated from the spectra with those published in the literature twigs (under the synonym S. nicaraguensis) (Stenhagen et al. 1974, Swigar and Silverstein (Gerard et al. 1986). The alkaloids liriodenine 1981, McLafferty 1993, Adams 1995, 2001) or and oxonantenine, reported for the first time in those of our own database. the genus, were isolated from the roots (under the synonym S. gilgiana) (Chiu et al. 1982). The volatile oil of the fruits (under the syn- RESULTS onym S. nicaraguensis) was studied previous- ly (Manjarrez and Mendoza 1967). The main The oil is constituted mainly by hydrocar- constituents of the oil were b-elemene, citral bons (89.0%) whereas the oxygenated com- and b-ionone. pounds accounts only for 6.4% (Table 1). Among the 76 compounds identified, sesquiterpenoids represented 56.7% and MATERIALS AND METHODS monoterpenoids 38.7%. Germacrene D (32.7%), a - p i n e n e Plant Material: Leaves of Siparuna the - (16.3%), b-pinene (13.8%) followed by the caphora from Costa Rica, were collected in widespread sesquiterpene b- c a r y o p h y l l e n e Santa Cruz, Turrialba, province of Cartago, in (4.1%) were identified as the main const i t u e n t s 1998. A voucher specimen was deposited in of the oil. Among the oxygenated compounds the Herbarium of the University of Costa Rica a -cadinol (1.6%), epi-a -muurolol (1.0%) and at the School of Biology (USJ 68612). 1,8-cineole (0.8%) were the major ones. Th e Essential Oil Isolation: Fresh leaves other constituents were 69 compounds found in were subjected to hydrodistillation for 3 hr minor or trace amounts. Of these ones, thirty- using a modified Clevenger-type apparatus. one are newly identified compounds in the The distilled oil was collected as a colorless genus Si p a r una (see Table 1). liquid, dried over anhydrous sodium sulfate, and stored at -10ºC [ 0.2% (v/w) yield]. General Analytical Procedures: The oil was analyzed by gas chromatography/mass TABLE 1 spectrometry (GC/MS). The mass spectra were Percentage composition of the Siparuna thecaphora obtained using a Hewlett-Packard G1800A leaf oil from Costa Rica GCMSD System, employing a fused silica aCo m p o u n d bRI Le a v e s dMe t h o d (30im x 0.25 mm) column coated with a 5% phenyl methyl silicone (film thickness a -t h u j e n e * 93 0 0. 3 1, 2 0.25iµm). Operation conditions were: carrier a -p i n e n e 93 9 16 . 3 1, 2, 3 c gas: He (1.0 mL/min); oven temperature pro- a -f e n c h e n e * 95 3 t 1, 2 ca m p h e n e 95 4 0. 4 1, 2 gram: 75ºC (4 min), 75º-200ºC at 3ºC/min, sa b i n e n e * 97 5 1. 3 1, 2 200ºC (8 min); sample injection port tempera- b-p i n e n e 97 9 13 . 8 1, 2, 3 INTERNATIONALJOURNALOF TROPICALBIOLOGYAND CONSERVATION 965 my r c e n e 99 1 2. 5 1, 2 a -c a l a c o r e n e 15 4 6 t 1, 2 a -p h e l l a n d r e n e 10 0 3 t 1, 2 germacrene B 15 6 1 1. 3 1, 2 a -t e r p i n e n e * 10 1 7 0. 1 1, 2 E-n e r o l i d o l 15 6 4 0. 3 1, 2 p-c y m e n e 10 2 5 t 1, 2 b-c a l a c o r e n e * 15 6 6 t 1, 2 li m o n e n e 10 2 9 0. 4 1, 2, 3 germacrene D-4-ol* 15 7 6 0. 1 1, 2 b-p h e l l a n d r e n e 10 3 0 0. 3 1, 2 sp a t h u l e n o l 15 7 8 0. 1 1, 2 1, 8-cineole 10 3 1 0. 8 1, 2, 3 caryophyllene oxide 15 8 3 0. 2 1, 2 (Z)- b-o c i m e n e 10 3 7 1. 0 1, 2 ep i - a - m u u r o l o l * 16 4 0 1. 0 1, 2 (E)- b-o c i m e n e * 10 5 0 0. 2 1, 2 cu b e n o l 16 4 7 0. 3 1, 2 g-t e r p i n e n e 10 6 0 0. 2 1, 2 b-e u d e s m o l 16 5 1 0. 2 1, 2 ci s -sabinene hydrate* 10 7 0 t 1, 2 a -c a d i n o l * 16 5 4 1. 6 1, 2 p-m e n t h a - 3 , 8 - d i e n e * 10 7 3 t 1, 2 mint sulfide* 17 4 1 t 1, 2 te r p i n o l e n e 10 8 9 0. 1 1, 2 Monoterpene hydrocarbons 36 . 9 li n a l o o l 10 9 7 0. 2 1, 2, 3 Oxygenated monoterpenes 1. 8 n-n o n a n a l * 110 1 t 1, 2 Sesquiterpene hydrocarbons 52 . 1 en d o - f e n c h o l * 1117 t 1, 2 Oxygenated sesquiterpenes 4.6 ci s -p-m e n t h - 2 - e n - 1 - o l * 112 2 t 1, 2 al l o - o c i m e n e * 113 2 t 1, 2 a Compounds are listed by elution order in a 5% tr a n s -p i n o c a r v e o l * 113 9 t 1, 2 phenyl methyl silicone column; b RI = Retention tr a n s - p -m e n t h - 2 - e n - 1 - o l * 114 1 0.
Recommended publications
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • Local Baseline Knowledge for Conservation and Restoration of Degraded Ecosystems in Ecuador
    Local Baseline Knowledge for Conservation and Restoration of Degraded Ecosystems in Ecuador Ana Getrudis Mariscal Chávez Faculty of Forest Sciences Southern Swedish Forest Research Centre Alnarp Doctoral Thesis Swedish University of Agricultural Sciences Alnarp 2016 Acta Universitatis Agriculturae Sueciae 2016:69 Cover: Deforestation in the north of Cristobal Colón, land on its way to cattle pasture and oil palm plantations, Esmeraldas Ecuador Photo: Ing. Marcelo Estévez, 2005 ISSN 1652-6880 ISBN (print version) 978-91-576-8640-4 ISBN (electronic version) 978-91-576-8641-1 © 2016 Ana Getrudis Mariscal Chavez, Alnarp Print: SLU Service/Repro, Alnarp 2016 Local Baseline Knowledge for Conservation and Restoration of Degraded Ecosystems in Ecuador Abstract Deforestation and land-use changes are a major threats to native ecosystem in many tropical countries, including Ecuador– one of the biodiversity hotspots in the world. In tropical Andean countries, natural ecosystems change over small spatial scales. Thus, conservation and restoration initiatives, strongly require ecological baseline information about local ecosystems history, spatial distribution, integrity, trophic interactions, successional dynamics, home range, health and as well as considering the local ethobiogical and ethnoecological knowledge. The present work was done in order to generate initial ecological base-line information in three locals and one sub-regional landscape. The major findings are: (1) ‘Forest Gap Phase Dynamic Reference Method’ inside three successional stages in old grow reference forest and secondary forest regrowth, was able to generate baseline information about the ecosystem structure, composition and biomass in a local Choco-Darien rainforest (NW Ecuador); (2) Traditional Ecological Knowledge showed good synergy with ecological science-based approaches (e.g.
    [Show full text]
  • Phylogenetic Position and Floral Function of Siparuna (Siparunaceae: Laurales) Author(S): S
    Phylogenetic Position and Floral Function of Siparuna (Siparunaceae: Laurales) Author(s): S. S. Renner, A. E. Schwarzbach and L. Lohmann Source: International Journal of Plant Sciences, Vol. 158, No. 6, Supplement: Morphology and Evolution of Flowers (Nov., 1997), pp. S89-S98 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2475169 Accessed: 24-09-2015 08:01 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/2475169?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 128.252.67.66 on Thu, 24 Sep 2015 08:01:58 UTC All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 158(6 Suppl.):S89-S98. 1997. C 1997 by The Universityof Chicago. All rightsreserved. 1058-5893/97/5806S-0007$03.00 PHYLOGENETICPOSITION AND FLORAL FUNCTION OF SIPARUNA(SIPARUNACEAE: LAURALES) S.
    [Show full text]
  • Redalyc.CATÁLOGO PRELIMINAR DE LA FLORA VASCULAR DE LOS BOSQUES SUBANDINOS DE LA RESERVA BIOLÓGICA CACHALÚ, SANTANDER (COLOMB
    Colombia Forestal ISSN: 0120-0739 [email protected] Universidad Distrital Francisco José de Caldas Colombia Reina, Miriam; Medina, Ruth; Ávila, Fabio A.; Ángel, Sonia P.; Cortés–B., Rocio CATÁLOGO PRELIMINAR DE LA FLORA VASCULAR DE LOS BOSQUES SUBANDINOS DE LA RESERVA BIOLÓGICA CACHALÚ, SANTANDER (COLOMBIA) Colombia Forestal, vol. 13, núm. 1, junio, 2010, pp. 27-54 Universidad Distrital Francisco José de Caldas Bogotá, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=423939613002 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Artículo de investigación CATÁLOGO PRELIMINAR DE LA FLORA VASCULAR DE LOS BOSQUES SUBANDINOS DE LA RESERVA BIOLÓGICA CACHALÚ, SANTANDER (COLOMBIA) Checklist of the vascular flora of the sub-Andean forest at the Cachalú Biological Reserve, Santander (Colombia) Palabras clave: biodiversidad, bosque andino, Cachalú, Miriam Reina1 catálogo lorístico, Cordillera Oriental, lora vascular, reserva Ruth Medina2 biológica. Fabio A. Ávila3 4 Key words: biodiversity, andean forest, Cachalú, loristic Sonia P. Ángel checklist, Eastern Andes, vascular lora, biological reserve. Rocio Cortés–B.5 RESUMEN usadas, el hábito de crecimiento y el gradiente al� Se presenta el catálogo preliminar de la lora vas� titudinal en el que se colectó. Se discuten las ai� cular de la Reserva Biológica Cachalú, localizada nidades de los bosques de la Reserva Biológica en la vertiente occidental de la Cordillera Oriental Cachalú con otros bosques del Corredor Biológico (Encino – Santander), la cual posee una muestra Guantiva – La Rusia – Iguaque.
    [Show full text]
  • Chapter 1 INTRODUCTION Alvaro J. Duque M
    Chapter 1 INTRODUCTION Alvaro J. Duque M. Introduction 1.1 INTRODUCTION Northwestern Amazonian forest conservation: a challenge for ecologists The actual deforestation rates in Amazonian rain forests are extremely high. The worst case scenario could lead to an almost total disappearance of the largest tropical forest mass that nowadays exists on the earth, in a relatively short time (Laurance et al. 2001). Patterns of rain forest plant diversity in northwestern (NW) Amazonia have particular importance as plant diversity in this area reaches exceptional high values per unit area (Gentry 1988a, Valencia et al. 1994, ter Steege et al. 2003). To guarantee an effective conservation planning, basic knowledge on the distribution of individual species and species assemblages is necessary. In spite of the fact that information concerning to plant communities has much increased in the last decade, most studies have focused on trees because they are the most conspicuous elements in the forests (Gentry 1988b, Duivenvoorden 1995, 1996, Pitman et al. 1999, 2001, ter Steege et al. 2000, Condit et al. 2002). However, it is well known that vascular plant diversity in tropical rain forests is also well represented by other growth forms, such as climbers, shrubs, epiphytes and herbs (Gentry and Dobson 1987, Duivenvoorden 1994, Balslev et al. 1998, Galeano et al. 1998). In addition to this lack of knowledge on non-tree growth forms, most studies have been based on different methodological approaches at individual species or community level, different sample designs, and different spatial scales, which hampers the comparisons and extrapolations among independent case studies. The Pleistocene and Miocene-Pliocene climate history has been considered as the cornerstone to understand the origin of the plant and animal biodiversity and biogeography in Amazonian rain forests (Haffer 1969, Colinvaux 1987, Van der Hammen and Absy 1994, Hooghiemstra and van der Hammen 1998).
    [Show full text]
  • Siparuna Guianensis (Aubl.) Tulasne9.39,82.120 in Hist.PI
    DOMINIQUE CORINNE HERMINE FISCHER CARACTERIZAÇÃO FARMACOGNÓSTICA DA DROGA E DO EXTRATO FLUIDO DE LIMOEIRO-BRAVO - SIPARUNA APIOSYCE (MART.) A. DC. COMISSÃO JULGADORA TESE PARA OBTENÇÃO DO GRAU DE DOUTOR P!W ç fi. !J/l/l. f1 ;r.e.j4 l. éíA SA I TV 1° xaminador ? I2-OF J)/2.. !312-{/No Iv(Ifll/ C'i N/ 2° Examinador ?/ZOM. [)R../J. I/llrSi./1< o rn.óA O/YlJZ.4 3° Examinador PiLOPA. lJR../.}. EL.,F/<IE/J/7 M;tI/</A#JVi? BHCCI-l/ 4° Examinador São Paulo,09 de setembro de 1997. eJ!aAIIOap opueUJa~ Ope!:>oss'V"lOJd 'Jope~ua!Jo 0'1 .o~P!~eJ6 a °4U!Je:>'Jowe wo:> 'OUnJ8 a Á~e)l 'fi 'O!A~I.::I °'V 's!ed snaw sO'V AGRADECIMENTOS Ao Departamento de Farmácia da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, pelo apoio e incentivo constantes ao longoda execução destetrabalho. À Coordenadoria e Secretaria do Curso de Pós-Graduação em Fármaco e Medicamentos do Departamento de Farmácia e à Secretaria do Curso de Pós Graduação da Faculdade de Ciências Farmacêuticas da Universidadede São Paulo, pelo apoio recebido na efetivação do curso e para a obtenção do título. Ao Professor Doutor Vicente de Oliveira Ferro, pelos múltiplos auxílios, sugestões e incentivo recebidos, desde o início da realização deste trabalho. À Professora Doutora Edna Tomiko Myiake Kato, pelo auxílio prestado no estudo farmacobotânico e colaboração. À Professora Doutora Mitsuko Taba Ohara, pelo auxílio na realização dos ensaios microbiológicos, sugestões e amizade. Ao Professor Doutor Marden Antonio Alvarenga, do Instituto de Química da Universidade de São Paulo, pelas sugestões, ensinamentos e por todo auxílio prestado na identificação espectral dos compostos isolados.
    [Show full text]
  • Repeated Evolution of Dioecy from Monoecy in Siparunaceae (Laurales)
    Repeated Evolution of Dioecy from Monoecy in Siparunaceae (Laurales) S US ANNE S . RENNER AND HYOSIG WON Abstract.—Siparunaceae comprise Glossocalyx with one species in West Africa and Siparuna with 65 species in the neotropics; all have unisexual flowers, and 15 species are monoecious, 50 dioecious. Parsimony and maximum likelihood analyses of combined nuclear ribosomal ITS and chloroplast trnL-trnF intergenic spacer sequences yielded almost identical topologies, which were used to trace the evolutio n of the two sexual systems. The African species, which is dioecious, was sister to all neotropical species, and the monoecious species formed a grade basal to a large dioecious Andean clade. Dioecy evolved a second time within the monoecious grade. Geographical mapping of 6,496 herbarium collection s from all species sorted by sexual system showed that monoecy is confined to low-lying areas (altitude < 700 m) in the Amazon basin and southern Central America. The only mor- phological trait with a strong phylogenetic signal is leaf margin shape (entire or toothed), although this character also correlates with altitude, probably reflecting selection on leaf shapes by temperature and rainfall regimes. The data do not reject the molecular clock, and branch lengths suggest that the shift to dioecy in the lowland s occurred many million years after the shift to dioecy in the ancestor of the Andean clade. [Altitudina l distribution of sexual systems; dioecy; molecular clock; monoecy; sexual system evolution.] About 6% (14,620 of 240,000 ) of the species have bisexual or unisexual flowers (Lloyd, of flowering plants are dioecious, and about 1980; Barrett, 1998; Sakai and Weller, 1999; 7% (959 of 13,500) of the genera are com- Sarkissian et al., 2001).
    [Show full text]
  • LETTER Doi:10.1038/Nature12872
    LETTER doi:10.1038/nature12872 Three keys to the radiation of angiosperms into freezing environments Amy E. Zanne1,2, David C. Tank3,4, William K. Cornwell5,6, Jonathan M. Eastman3,4, Stephen A. Smith7, Richard G. FitzJohn8,9, Daniel J. McGlinn10, Brian C. O’Meara11, Angela T. Moles6, Peter B. Reich12,13, Dana L. Royer14, Douglas E. Soltis15,16,17, Peter F. Stevens18, Mark Westoby9, Ian J. Wright9, Lonnie Aarssen19, Robert I. Bertin20, Andre Calaminus15, Rafae¨l Govaerts21, Frank Hemmings6, Michelle R. Leishman9, Jacek Oleksyn12,22, Pamela S. Soltis16,17, Nathan G. Swenson23, Laura Warman6,24 & Jeremy M. Beaulieu25 Early flowering plants are thought to have been woody species to greater heights: as path lengths increase so too does resistance5. restricted to warm habitats1–3. This lineage has since radiated into Among extant strategies, the most efficient method of water delivery almost every climate, with manifold growth forms4. As angiosperms is through large-diameter water-conducting conduits (that is, vessels spread and climate changed, they evolved mechanisms to cope with and tracheids) within xylem5. episodic freezing. To explore the evolution of traits underpinning Early in angiosperm evolution they probably evolved larger conduits the ability to persist in freezing conditions, we assembled a large for water transport, especially compared with their gymnosperm cousins14. species-level database of growth habit (woody or herbaceous; 49,064 Although efficient in delivering water, these larger cells would have species), as well as leaf phenology (evergreen or deciduous), diameter impeded angiosperm colonization of regions characterized by episodic of hydraulic conduits (that is, xylem vessels and tracheids) and climate freezing14,15, as the propensity for freezing-induced embolisms (air bub- occupancies (exposure to freezing).
    [Show full text]
  • "Laurales". In: Encyclopedia of Life Sciences
    Laurales Introductory article Susanne S Renner, University of Munich (LMU), Germany Article Contents . Introduction . Families Included . General Characters and Relationships of Laurales Online posting date: 16th May 2011 The Laurales are an order of flowering plants comprising have tepals and stamens arranged in three-part whorls and seven families that contain some 2500–2800 species in 100 stamens with valvate anthers. In terms of species richness genera. Most Laurales are tropical trees or shrubs, often and morphological diversity, the family is centred in tro- with scented wood of great durability. Besides being a pical America and Australasia; it is poorly represented in continental Africa, but species-rich in Madagascar source of high quality timber, the Laurales also include the (Chanderbali et al., 2001). Relatively few species, such as avocado tree (Persea americana), a native of Mexico and spice bush, Lindera benzoin, sassafras, Sassafras albidum, Central America, the cinnamon tree and the camphor tree and true or bay laurel, Laurus nobilis, now survive in (Cinnamomum species), native in Southeast Asia, and the temperate zones, but during Palaeocene and Eocene bay laurel (Laurus nobilis), native in the Mediterranean warmer climates Lauraceae were abundant in the northern region. The earliest lauraceous fossils are from the early landmass of Laurasia. The fossil record of the family goes Cretaceous, and within flowering plants, the order is back 110 Ma, and at least 500 species of Lauraceae are among the oldest groups to diversify. The presently known from the early Cretaceous through to the late Ter- accepted classification of the seven families is based on tiary (e.g., Eklund, 2000; Balthazar et al., 2007).
    [Show full text]
  • A Phytosociological Study of the Montane Vegetation of Researva
    The vegetation of Reserva Biológica San Francisco, Zamora-Chinchipe, Southern Ecuador 145 The vegetation of Reserva Biológica San Francisco, Zamora-Chinchipe, Southern Ecuador – a phytosociological synthesis Rainer W. Bussmann Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany, Fax: [0049] (0)921 552642, e-mail: [email protected] Abstract Few floristic inventories and even less syntaxonomical vegetation descriptions of tropical mountain forests exist. The author presents a syntaxonomical treatment of the vegetation of Reserva Biológica San Francisco at the northern limit of Podocarpus National Park, Ecuador. The “Lower Montane Forests” (1800-2150 m), grouped in the new order Alzateetalia verticillatae, have a very diverse, 20-35m tall, 2-3 storied Estrato arboreo, and are a typical mosaic-climax. They grow on Terric Haplosaprists and Aquic Dystrupepts, developed from old landslide material and extend up to 2300 m at the bottom of wind-protected riverine valleys. At altitudes from 2100 to 2650/2750 m, the forest structure and floristic composition change completely. The vegetation types belonging to this “Upper Montane Forest” form the new Purdiaeaetalia nutantis, growing on Histic Petraquepts. They represent a monotypic vegetation type, with only one Estrato arboreo, and stems between 5-10 m, sometimes up to 15 m tall. The canopy is completely dominated by the twisted stems of Purdiaea nutans (Cyrillaceae). The „Subalpine-elfin forest“ which closely resembles the Bolivian „Jalca“ forms the uppermost forest belt of the study area. Described as Clusio ellipticae – Weinmannion cochensis, this forest – more like an impenetrable bushland - grows on Humaqueptic Epiaquents and is closely dovetailed with the adjacent Páramo region.
    [Show full text]