Mathematics and Computer Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mauro Picone Eimatematici Polacchi
Matematici 21-05-2007 17:02 Pagina 3 ACCADEMIA POLACCA DELLE SCIENZE BIBLIOTECA E CENTRO0 DI STUDI A ROMA CONFERENZE 121 Mauro Picone e i Matematici Polacchi 1937 ~ 1961 a cura di Angelo Guerraggio, Maurizio Mattaliano, Pietro Nastasi ROMA 2007 Matematici 21-05-2007 17:02 Pagina 4 Pubblicato da ACCADEMIA POLACCA DELLE SCIENZE BIBLIOTECA E CENTRO DI STUDI A ROMA vicolo Doria, 2 (Palazzo Doria) 00187 Roma tel. +39 066792170 fax +39 066794087 e-mail: [email protected] www.accademiapolacca.it ISSN 0208-5623 © Accademia Polacca delle Scienze Biblioteca e Centro di Studi a Roma Matematici 21-05-2007 17:02 Pagina 5 indice ^ INTRODUZIONE EL˚BIETA JASTRZ¢BOWSKA MAURO PICONE: UN SINCERO AMICO ANGELO GUERRAGGIO,MAURIZIO DELLA POLONIA E DEI SUOI MATEMATICI MATTALIANO,PIETRO NASTASI MAURO PICONE E I MATEMATICI POLACCHI Matematici 21-05-2007 17:02 Pagina 7 INTRODUZIONE « ENIRE a parlare di matematica a Varsavia, è come portare vasi a Samo», scrisse Mauro Picone settant’anni fa (in una lettera a S. Ma- zurkiewicz del 10 dicembre 1937), facendo eco al proverbio po- Vlacco sull’inutilità di portare legna nel bosco. Quest’affermazione mostra in modo eloquente quanto all’epoca fosse rinomata in Italia la scuo- la matematica polacca, capeggiata da Wac∏aw Sierpiƒski. Era del resto ugualmente tenuta in grande considerazione anche nel resto del mondo, durante il ventennio tra le due guerre. Il presente volume delle Conferenze dell’Accademia Polacca delle Scien- ze di Roma contiene una documentazione eccezionale e di grande interesse riguardante gli stretti contatti intercorsi alla metà del secolo scorso tra i ma- tematici italiani – in particolare il loro più insigne rappresentante del tempo, il già ricordato Mauro Picone – e i matematici polacchi nel corso di quasi 25 anni. -
Scarica Scarica
Archivi, Biblioteche, Musei L’archivio e la biblioteca di Francesco G. Tricomi ∗ ERIKA LUCIANO - LUISA ROSSO 1. Francesco Giacomo Tricomi1 Nato a Napoli il 5 maggio 1897 in un’agiata famiglia borghese, Tricomi frequenta l’Istituto tecnico locale, dove concepisce una passione per gli studi scientifici grazie all’influenza del suo insegnante di Matematica Alfredo Perna. Conseguito il diploma all’età di appena sedici anni, s’iscrive al corso di laurea in Chimica dell’Università di Bologna. L’anno successivo passa a Fisica e infine, nel 1915-16, torna a Napoli e si immatricola al terz’anno del corso di studi in Matematica. Arruolato nell’autunno del 1916, segue un corso per allievi ufficiali di complemento presso l’Accademia militare di Torino e il 1 aprile 1917, fresco di nomina, è inviato al fronte, dapprima sul Carso e poi nella zona del monte Grappa e del Piave. Nonostante la guerra, riesce comunque a portare avanti gli studi scientifici e consegue la laurea in Matematica a Napoli il 16 aprile 1918, durante una licenza. Terminata la Grande Guerra, Tricomi torna a Napoli all’inizio del 1920, decorato di due croci al merito, e riallaccia i rapporti con alcuni suoi ex docenti, fra cui R. Marcolongo e G. Torelli che lo indirizzano nelle prime ricerche e lo mettono in contatto con G. Fubini. Nel febbraio del 1921, su suggerimento di U. Amaldi, è assunto da F. Severi quale assistente alla cattedra di Geometria analitica presso l’Università di Padova. L’esperienza alla ‘Scuola’ di Severi è tuttavia di breve durata, poiché nei primi mesi del 1922 Tricomi è chiamato a Roma dove consegue la libera docenza in Analisi algebrica e infinitesimale e dove ha modo di inserirsi in un ambiente accademico di eccezionale levatura, che vanta in quegli anni la presenza di illustri matematici, fra cui V. -
Guido Fubini-Ghiron
Intellectuals Displaced from Fascist Italy Firenze University Press 2019- Guido Fubini-Ghiron Go to personal file When he was almost 60, he was expelled from the Polytechnic University of Link to other connected Lives on the move: Turin because he was Jewish. Known as one of the sharpest and most intelligent Italian analysts, he decided to continue his brilliant work on Fubini Mario Fubini Ghiron Eugenio 1 differential geometry abroad, hoping for a better future for him and his family . (Eugene) Fubini Ghiron Gino He immediately left for Paris, and soon found himself welcomed to Princeton. His two sons, expelled in Italy at the beginning of their academic career, also found their way to the USA and stayed there. Formative years in Paris He was born in Venice on 19 January 1879 to Lazzaro Fubini, a mathematics teacher at the machinist school, and to Zoraide Torre. At only nine years old, he was enrolled at Foscarini High School in Venice, achieving, in his eight years of ginnasio and liceo [junior high school and high school], perfect grades (all 10s) in mathematics2. In 1896, at seventeen years old, he enrolled in the Facoltà di Matematica [School of Mathematics] at the Scuola normale superiore of Pisa, «where many scholars became passionate about research in geometry»3. A student of Ulisse Dini, Eugenio Bertini and, above all, Luigi Bianchi, he graduated with honors in 1900 with a thesis titled «Il parallelismo di Clifford negli spazi ellittici» [Clifford’s parallelism in elliptical spaces]4. 1 Letter of 30 October 1938 from Tullio Levi-Civita to Oswald Veblen from the Institute for Advanced Study at Princeton University, translated and reported on the Università Bocconi’s website, section Rubriche <http://matematica-old.unibocconi.it> (accessed 2 February 2019). -
Network Map of Knowledge And
Humphry Davy George Grosz Patrick Galvin August Wilhelm von Hofmann Mervyn Gotsman Peter Blake Willa Cather Norman Vincent Peale Hans Holbein the Elder David Bomberg Hans Lewy Mark Ryden Juan Gris Ian Stevenson Charles Coleman (English painter) Mauritz de Haas David Drake Donald E. Westlake John Morton Blum Yehuda Amichai Stephen Smale Bernd and Hilla Becher Vitsentzos Kornaros Maxfield Parrish L. Sprague de Camp Derek Jarman Baron Carl von Rokitansky John LaFarge Richard Francis Burton Jamie Hewlett George Sterling Sergei Winogradsky Federico Halbherr Jean-Léon Gérôme William M. Bass Roy Lichtenstein Jacob Isaakszoon van Ruisdael Tony Cliff Julia Margaret Cameron Arnold Sommerfeld Adrian Willaert Olga Arsenievna Oleinik LeMoine Fitzgerald Christian Krohg Wilfred Thesiger Jean-Joseph Benjamin-Constant Eva Hesse `Abd Allah ibn `Abbas Him Mark Lai Clark Ashton Smith Clint Eastwood Therkel Mathiassen Bettie Page Frank DuMond Peter Whittle Salvador Espriu Gaetano Fichera William Cubley Jean Tinguely Amado Nervo Sarat Chandra Chattopadhyay Ferdinand Hodler Françoise Sagan Dave Meltzer Anton Julius Carlson Bela Cikoš Sesija John Cleese Kan Nyunt Charlotte Lamb Benjamin Silliman Howard Hendricks Jim Russell (cartoonist) Kate Chopin Gary Becker Harvey Kurtzman Michel Tapié John C. Maxwell Stan Pitt Henry Lawson Gustave Boulanger Wayne Shorter Irshad Kamil Joseph Greenberg Dungeons & Dragons Serbian epic poetry Adrian Ludwig Richter Eliseu Visconti Albert Maignan Syed Nazeer Husain Hakushu Kitahara Lim Cheng Hoe David Brin Bernard Ogilvie Dodge Star Wars Karel Capek Hudson River School Alfred Hitchcock Vladimir Colin Robert Kroetsch Shah Abdul Latif Bhittai Stephen Sondheim Robert Ludlum Frank Frazetta Walter Tevis Sax Rohmer Rafael Sabatini Ralph Nader Manon Gropius Aristide Maillol Ed Roth Jonathan Dordick Abdur Razzaq (Professor) John W. -
Dipartimento Di Scienze Economiche E Aziendali "Marco Fanno"
UNIVERSITÀ DEGLI STUDI DI PADOVA Dipartimento di Scienze Economiche “Marco Fanno” THE DYNAMIC GENERAL EQUILIBRIUM IN THE ITALIAN PARETIAN SCHOOL MARIO POMINI Università di Padova GIANFRANCO TUSSET Università di Padova February 2008 “MARCO FANNO” WORKING PAPER N.69 The dynamic general equilibrium in the Italian Paretian School* Abstract The paper examines the theoretical contributions of two eminent representatives of the Italian Paretian School, namely Luigi Amoroso and Giulio La Volpe. Both contributed to the most ambitious project undertaken by the Paretian School, that is, dynamization of the general economic equilibrium. This research programme was grounded on two pillars. The first concerned the use of then sophisticated mathematical instruments, such as functional, differential equations, and the calculus of variations. The second pillar involved maintenance of a strict analogy with physics and mechanics. But whilst Amoroso mainly used a theory based on the past, La Volpe founded his proposal on the future. JEL Classifications: B31; D50 Keywords: General economic equilibrium; economic dynamics; Pareto. * The paper has been presented at the International Conference ―General Equilibrium as Knowledge. From Walras onwards‖ held in Paris, Université Paris I Panthéon-Sorbonne, September 6-8, 2007. A revised version of this paper has been accepted for publication in History of Political Economy (Summer 2009). We wish to thank Aldo Montesano and two anonymous referees for their comments. The usual disclaimer applies. 1 Introduction The -
Chapter 5 Product Measures
Chapter 5 Product Measures Lebesgue measure on R generalizes the notion of the length of an interval. In this chapter, we see how two-dimensional Lebesgue measure on R2 generalizes the notion of the area of a rectangle. More generally, we construct new measures that are the products of two measures. Once these new measures have been constructed, the question arises of how to compute integrals with respect to these new measures. Beautiful theorems proved in the first decade of the twentieth century allow us to compute integrals with respect to product measures as iterated integrals involving the two measures that produced the product. Furthermore, we will see that under reasonable conditions we can switch the order of an iterated integral. Main building of Scuola Normale Superiore di Pisa, the university in Pisa, Italy, where Guido Fubini (1879–1943) received his PhD in 1900. In 1907 Fubini proved that under reasonable conditions, an integral with respect to a product measure can be computed as an iterated integral and that the order of integration can be switched. Leonida Tonelli (1885–1943) also taught for many years in Pisa; he also proved a crucial theorem about interchanging the order of integration in an iterated integral. CC-BY-SA Lucarelli © Sheldon Axler 2020 S. Axler, Measure, Integration & Real Analysis, Graduate Texts 116 in Mathematics 282, https://doi.org/10.1007/978-3-030-33143-6_5 Section 5A Products of Measure Spaces 117 5A Products of Measure Spaces Products of s-Algebras Our first step in constructing product measures is to construct the product of two s-algebras. -
Atti Dell'accademia Pontaniana Anno 2008
ATTI DELLA ACCADEMIA PONTANIANA ISSN 1121-9238 ATTI DELLA ACCADEMIA PONTANIANA NUOVA SERIE - VOLUME LVII ANNO ACCADEMICO 2008 DLXVI DALLA FONDAZIONE GIANNINI EDITORE NAPOLI 2009 4 NOME AUTORE (4) Il presente volume è pubblicato grazie al contributo dell’Istituto Banco di Napoli - Fondazione, del Ministero dell’Università e della Ricerca, del Ministero per i Beni e le Attività culturali e della Regione Campania COMMEMORAZIONI Atti Accademia Pontaniana, Napoli N.S., Vol. LVII (2008), pp. 7-10 Commemorazione di Gianfranco Cimmino (1908-1989) nel centenario della nascita tenuta dal Socio Ord. Res. CARLO SBORDONE Gianfranco Cimmino, nacque a Napoli il 12 marzo 1908. Il padre Francesco (1862- 1939) illustre orientalista e poeta napoletano, fu più volte Segretario Generale della Società Nazionale di Scienze Lettere e Arti in Napoli dal 1915 al 1930 e fu Segretario della classe di Archeologia Lettere e Belle Arti dal 1914 al 1935. Laureato a 19 anni in Matematica all’Università di Napoli nel 1928 divenne assistente di Geometria Analitica e Libero Docente in Analisi nel 1931. Vinse il concorso a cattedra nel 1938 a Cagliari per poi passare a Bologna dal 1939. La sua attività scientifica comprende una sessantina di pubblicazioni in vari settori dell’Analisi. I primi lavori di Cimmino riguardavano la cosiddetta ‘Identità di Picone’, che 8 CARLO SBORDONE (2) egli estese in vari modi, uno dei quali accolto anche nel trattato di Analisi di Severi- Scorza, un altro in una memoria lincea ‘Sui sistemi di infinite equazioni differen- ziali lineari con infinite funzioni incognite’ s.6, V (1931-34), 271-345, in cui si pre- correva quella che poi è stata chiamata teoria delle ‘equazioni differenziali astratte’. -
L' Addio a Un Grande Matematico
CAPITOLO 1 L' ADDIO A UN GRANDE MATEMATICO Si riportano i discorsi pronunciati il 27 ottobre 1996 nel cortile della Scuola Normale Superiore di Pisa, in occasione del commiato accademico. Nello stesso giorno, presso la Chiesa di S. Frediano (Pisa) si `e tenuto il fu- nerale, officiato dal teologo Severino Dianich; il giorno dopo presso la Basilica di S. Croce (Lecce) il funerale `e stato officiato dall' Arcivescovo di Lecce, Cosmo Francesco Ruppi. 1.1 DISCORSO DI L. MODICA Intervento di Luciano Modica, allievo di De Giorgi e Rettore dell' Universita` di Pisa. Confesso che quando Franco Bassani e Luigi Radicati mi hanno chiesto di prendere la parola oggi durante questo triste e solenne commiato acca- demico da Ennio De Giorgi, la mia prima reazione `e stata quella di tirarmi indietro, temendo che l' empito della commozione e dei ricordi dell' allie- vo sopraffacessero la partecipazione, certo commossa, ma necessariamente composta, di chi qui `e chiamato da Rettore a rappresentare l' Ateneo pisa- no e la sua comunita` di studenti e docenti. Se poi ho accettato, non `e stato perch´e, sono sicuro di superare questo timore, ma perch´e spero che tutti voi familiari, allievi, amici di Ennio, saprete comprendere e scusare l' emotivita` da cui forse non riusciro` ad evitare che sia pervaso il tono delle mie parole. Perch´e la vostra presenza in questo cortile, le cui soavi linee architettoniche tanto Ennio ha amato e che rimangono per tanti dei presenti indissolubil- mente legate alla loro giovinezza, non ha nulla del dovere accademico, se 2 L' ADDIO A UN GRANDE MATEMATICO non i suoi aspetti spirituali piu` alti, mentre invece vuole manifestare la ri- conoscenza e l' affetto tutti umani verso una persona accanto a cui abbiamo avuto il privilegio di trascorrere un periodo piu` o meno lungo, ma sempre indimenticabile, della nostra vita. -
Toward a Scientific and Personal Biography of Tullio Levi-Civita (1873-1941) Pietro Nastasi, Rossana Tazzioli
Toward a scientific and personal biography of Tullio Levi-Civita (1873-1941) Pietro Nastasi, Rossana Tazzioli To cite this version: Pietro Nastasi, Rossana Tazzioli. Toward a scientific and personal biography of Tullio Levi-Civita (1873-1941). Historia Mathematica, Elsevier, 2005, 32 (2), pp.203-236. 10.1016/j.hm.2004.03.003. hal-01459031 HAL Id: hal-01459031 https://hal.archives-ouvertes.fr/hal-01459031 Submitted on 7 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards a Scientific and Personal Biography of Tullio Levi-Civita (1873-1941) Pietro Nastasi, Dipartimento di Matematica e Applicazioni, Università di Palermo Rossana Tazzioli, Dipartimento di Matematica e Informatica, Università di Catania Abstract Tullio Levi-Civita was one of the most important Italian mathematicians in the early part of the 20th century, contributing significantly to a number of research fields in mathematics and physics. In addition, he was involved in the social and political life of his time and suffered severe political and racial persecution during the period of Fascism. He tried repeatedly and in several cases successfully to help colleagues and students who were victims of anti-Semitism in Italy and Germany. -
1 Curriculum Vitae Di Aljosa Volcic Dopo La Laurea Conseguita Presso L
1 Curriculum vitae di Aljosa Volcic Dopo la laurea conseguita presso l’Università di Trieste nel 1966 (con lode) sono stato, sempre presso l’Università di Trieste, per un anno borsista del CNR. Dal 1967 al 1975 sono stato assistente e nel periodo 1970-75 anche professore incaricato. Ho preso servizio come professore straordinario di analisi matematica l’1.1.1976 presso la Facoltà di Ingegneria dell’Università di Trieste. Dall’a.a 2002/3 sono passato al raggruppamento MAT/06 - Probabilità e Statistica Matematica presso la Facoltà di Scienze MFN dell’Università della Calabria. Lingue conosciute: sloveno e serbo-croato (a livello di lingua madre), inglese (ottimo), tedesco (buono), francese (discreto), russo (lettura testi scientifici). Dal 1983 al 1985 sono stato Direttore dell’Istituto di Matematica Applicata presso la Facoltà di Ingegneria dell’Università degli Studi di Trieste e sono stato Direttore del Dipartimento di Scienze Matematiche dell’Università degli Studi di Trieste dal 1985 al 1991 e ho poi ricoperto la stessa carica per un anno nel periodo 2001-2002. Sono stato per due mandati triennali membro del Consiglio di Amministrazione dell’Università di Trieste. Ho fatto inoltre parte della Commissione di Ateneo per i cinque anni di avvio delle strutture dipartimentali presso l’Università di Trieste, a seguito della 382 del 1980. Sono stato membro del Consiglio di Amministrazione del Centro di Calcolo dell’Università di Trieste dal 1978 al 1985. Nell’ottobre del 2002 mi sono trasferito all’Università della Calabria. Dal 2003 al 2006 ho svolto la funzione di vicepreside della Facoltà di Scienze MFN. -
Aspetti Rilevanti Della Tradizione Italiana
THE ECONOMIC DYNAMICS AND THE CALCULUS OF VARIATIONS IN THE INTERWAR PERIOD BY MARIO POMINI* Abstract Analogies with rational mechanics played a pivotal role in the search for formal models in economics. In the period between the two world wars, a small group of mathematical economists tried to extend this view from statics to dynamics. The main result was the extensive application of calculus of variations to obtain a dynamic representation of economic variables. This approach began with the contributions put forward by Griffith C.Evans, a mathematician who in the first phase of his scientific career published widely in economics. Evans' research was further developed by his student, Charles Roos. At the international level, this dynamic approach found its main followers in Italy, within the Paretian tradition. During the 1930s, Luigi Amoroso, the leading exponent of the Paretian School, made major contributions along with his student, Giulio La Volpe that anticipated the concept of temporary equilibrium. The analysis of the application of the calculus of variations to economic dynamics in the interwar period raises a set of questions on the application of mathematics designed to study mechanics and physics to economics *Department of Economics, University of Padua, Padova, Italy. Email: [email protected] This “preprint” is the peer-reviewed and accepted typescript of an article that is forthcoming in revised form, after minor editorial changes, in the Journal of the History of Economic Thought (ISSN: 1053-8372), volume 40 (2018), issue TBA. Copyright to the journal’s articles is held by the History of Economics Society (HES), whose exclusive licensee and publisher for the journal is Cambridge University Press (https://www.cambridge.org/core/journals/journal-of-the-history- of-economic-thought ). -
Science and Fascism
Science and Fascism Scientific Research Under a Totalitarian Regime Michele Benzi Department of Mathematics and Computer Science Emory University Outline 1. Timeline 2. The ascent of Italian mathematics (1860-1920) 3. The Italian Jewish community 4. The other sciences (mostly Physics) 5. Enter Mussolini 6. The Oath 7. The Godfathers of Italian science in the Thirties 8. Day of infamy 9. Fascist rethoric in science: some samples 10. The effect of Nazism on German science 11. The aftermath: amnesty or amnesia? 12. Concluding remarks Timeline • 1861 Italy achieves independence and is unified under the Savoy monarchy. Venice joins the new Kingdom in 1866, Rome in 1870. • 1863 The Politecnico di Milano is founded by a mathe- matician, Francesco Brioschi. • 1871 The capital is moved from Florence to Rome. • 1880s Colonial period begins (Somalia, Eritrea, Lybia and Dodecanese). • 1908 IV International Congress of Mathematicians held in Rome, presided by Vito Volterra. Timeline (cont.) • 1913 Emigration reaches highest point (more than 872,000 leave Italy). About 75% of the Italian popu- lation is illiterate and employed in agriculture. • 1914 Benito Mussolini is expelled from Socialist Party. • 1915 May: Italy enters WWI on the side of the Entente against the Central Powers. More than 650,000 Italian soldiers are killed (1915-1918). Economy is devastated, peace treaty disappointing. • 1921 January: Italian Communist Party founded in Livorno by Antonio Gramsci and other former Socialists. November: National Fascist Party founded in Rome by Mussolini. Strikes and social unrest lead to political in- stability. Timeline (cont.) • 1922 October: March on Rome. Mussolini named Prime Minister by the King.