Tun Au Ertcan M Tneralocist

Total Page:16

File Type:pdf, Size:1020Kb

Tun Au Ertcan M Tneralocist Tun Au ERTcANM TNERALocIsT JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol.40 JULY-AUGUST,1955 Nos. 7 and 8 HAWLEYITE, ISOMETRIC CADMIUM SULPHIDE, A NEW MINERAL* R. J. Tnanr aNo R. W. Bovro, GeologicalSuraey oJ Canada, Ottowa. Assrnecr A new mineral identical with isometrjc cadmium sulphide has been found in the Hector- calumet mine, Galena Hill, Yukon Territory. The mineral occurs as a fine-grained, bright yellow, earthy coating on sphalerite and siderite, in vugs and along late fractures. Geo- chemical and mineralogical evidence, together with laboratory studies, suggest that the mineral has been <ieposited from meteoric waters. The name hawleyite is given to this new mineral professor, in honor of J. E. Hawley, Miller Research eueen's university, Kingston; Ontario. Hawleyite is isometric, with space group F43m, a:5.818+0.005 A, and a sphalerite- type structure. Assuming a cell content of 4[cdS], the calculated specific gravity is 4.82. h.rrnooucrroN In 1954, while investigating the lead-zinc-silver deposits in the Keno- Galena Hill area of the Yukon one of the authors (R.w.B.) collected a specimen of sphalerite richly coated with a bright yellow mineral. The specimenwas submitted to the X-ray Laboratory, GeologicalSurvey of Canada,for identification of the yellow mineral. The r-ray powder pattern of the mineral was found to match the pat- tern of B-CdS,the isometric polymorph of cadmium sulphide.A survey of the literature revealedthat this compound has not been reported as occurringin nature. professor The new mineral is named hawleyite in honor of J. E. Hawley of Queen'sUniversity, Kingston, Ontario, who has contributed greatly to Canadian mineralogy as a mineralogistand teacher. IleNrrnrcerrow (R.J.T.) The specimen consists of a mixture of massive siderite and coarsely- crystalline sphalerite, with a bright yellow coating. A microscopic exami- nation revealed that the coating was composedof a bright yellow mineral, * Published by permission of the Deputy Minister, Department of Mines and rechnical Surveys, Ottawa. J.).) 550 R. J. fRAiLL AND R. W' BOTLE now named hawleyite, admixed with lesser amounts of fine-grained sphaleriteand siderite.The grain-sizeof the hawleyite was so small that individual grains could not be discerned. Someof the admixed sphaleriteand sideritewas removedby brushing the coatingthrough a 325-meshscreen' but a sampleof hawleyitesuitable for quantitative chemical analysis and specifi.c-gravity determination could not be obtained. A partly purified sample was analyzed semi- quantitatively by r-ray spectrography and found to contain 50-70 per cent cadmium, 5-10 per cent zinc, and lessthan 5 per cent iron. Selenium could not be detected,indicating that lessthan 0.05 per cent is present. Several *-ray powder photographs of hawleyite were taken using a camera with a diameter of 57.54 mm., and nickel-filteredcopper radi- T-q.nr-n1. Hawr-rvrtn, p-CdS; X-R.qv?omrn P.q.:rrrxx IsometricF43m; a:5.818 A, Z:4 (calc) 1 (Cu) d (meas) d (calc) I (Cu) d (meas) d 10 3.s6A 111 3.364 1.2e8A 420 1.301A ^ 2.90 200 2.9r 1.186 422 1.188 8 2.058 220 2.O57 t.t20 333,511 1.r20 1.028 6 I. /JJ Jll l - /J+ 1 028 440 1 1.680 222 1.680 0 .985 531 0.983 2 r.453 400 r.454 0.918 620 0.920 0.887 1.338 JJI I . J.tJ 0.887 533 ation. The observedintensities and measuredspacings of the hawleyite pattern are listed in Table 1,-togetherwith the spacingscalculated from a lattice constant of 5.818 A. T.t'r. observedintensities and measured spacingsof the r-ray patterns of artificial B-CdS published by Milligan flSS+l and Ulrich & Zachariasen (1925) are reproduced in Table 2. The closeagreement between the patterns of Tables I and 2 clearly establishes the identity of the natural and artificial materials. Hawleyite has a sphalerite-type structure with space gtoup F43m' The lattice constant,o:5.818* 0.005A, was calculatedfrom the powder pattern. Assuminga cell content of 4[CdS],the caiculatedspecific gravity of the mineral is 4.87. OccunnnNco (R.W.B.) The Hector-Calumet mine, from which the hawleyite was obtained, is the largest and most productive of the lead-zinc-silver mines in the Keno-Galena Hill area, Yukon Territory. This mineral district is in the central Yukon 35 miles northeast of Mayo and some 220 miles due north HAW LEYITE, ISOMETRIC CADMIUM SULPHIDE 557 Trsr'n 2. Anrnrcrel €-CdS; X-Rev Powlrn parmnx IsometricF43m: a:5.820 A. Z:+ Ulrich & Zachariasen(1925) (Milligan 1934) 1 (Cu) 1 (Cu) d (meas) 5 3.3sA 111 10 3.364 1 2.93 200 3 2.90 5 2.062 220 10 2.06 5 1.758 Jll 9 1.756 L_1 2L 1.683 222 1 1.683 1 1.452 400 1 1.456 a aL L-L' I.JJ' 331 z I . JJ.) 17 tt 1.303 420 1 1.302 nl LZ 7.197 422 1.189 ol -2 1.122 333,511 J 1.121 2 1.033 MO 2 1.026 s+ 0 985 531 a o.982 1 0.971 442,600 o1 .d o.922 620 1+ 0.888 533 1 o.879 622 1 Spacings calculated from the g values of Ulrich & Zachariasen. of whitehorse. The district is servedby an all weatherroad from white- horseand by Canadian Pacific Airlines. The consolidated rocks underlying the area are mainry sediments belongingto the Yukon group of precambrian or paleozoicage. They consistof sericitic,chloritic, and graphitic schists,phyllites, and quartz_ ites. conformable sills and lensesof greenstoneoccur throughout the sediments. The lead-zinc-silvervein depositsof Keno and GarenaHills occur in brecciatedfault zonesand sheetedzones. Two types of veins are recog- nized; an early vein type consistingof quartz, pyrite, and arsenopyrite, and a late vein type mineralized with siderite, galena, sphalerite, and argentian tetrahedrite. Both types may occur separately. The early type, however, may be fractured and contain minerals of the secondtype. The veins near the surface are highly oxidized. The depth of oxidation varies but is seldom less than 50 feet. The minerals found in the oxidized zone include limonite, various manganese oxides, calcite, gypsum, smithsonite, cerussite, anglesite, quartz, azurite, malachite, and oxid.es of arsenic and antimony. A marked feature of the veins in both the primary and oxidized parts, 558 R. T. TRAILL AND R. W. BOYLE is the presence of numerous vugs and open spaces in which excellent crystals of galena, sphalerite, siderite, calcite, gypsum' and quartz abound. greenockite' ' oRrGrN The geochemistry of the veins has not been worked out in detail but the mode of occurrenceof the hawleyite suggeststhat it is a secondary mineral which has been deposited from meteoric waters in vugs and along late fractures. Geochemicalwork shows that the sphalerite in the veins contains up to limonite by the meteoric waters with consequent solution and trans- port of the zinc and probably the cadmium as sulphates' Laboratory studies on the precipitation of cadmium sulphide from solutions of cadmium salts have been made by several investigators, and their results have a direct bearing on the origin of the hawleyite. Thus, Biihm & Niclassen (Ig24) first showed by r-tay difiraction that p-CdS is agonalpolymorph, a-CdS, by heating P-CdSin sulphur vapor' Milligan (iSS+)showed that g-CdS is formed at 30oC. when HzSis passedthrough a 0.1 N solutionof cadmium sulphate made acid by the addition of 1 c. c. of cencentrated H2SOato 50 c' c. of solution. Milligan also found that HAWLEYITE, ISOMETRIC CADMIUM SULPHIDE 559 d-CdS is produced from 0.1 N solutions of cadmium nitrate, chloride, bromide, and iodide when treated in the samemanner. Theselaboratory studies indicate clearly that hawleyite is the polymorpb of cadmium sulphide which will be precipitated under reducing conditions from acidic sulphate solutions. Considering the field facts and the knowledge that cadmium follows zinc closelyin its geochemistry,it is logical to assumethat in the zone of oxidation cadmium would be taken into solution by the meteoric waters which contain H2SOa,and be transported downward into the zone oI reduction. HzS, generated by the action of HzSO+on primary sphalerite and other sulphides, would reduce the cadmium sulphate and precipitate hawleyite (B-CdS) as shown by the laboratory studies. Acidic sulphate solutions, from which the hawleyite polymorph of cadmium sulphideprecipitates, are common in sulphide deposits,and it seems probable that hawleyite is more common than its very recent discovery would indicate. Much material, previously identified as greenockite by casual hand-specimenexamination, may prove to be hawleyite when identified by r-ray diffraction. RrrnnBNcns BriHu, J. & Nrcr,rssnx, H. (1924) : Uber amorphe Niederschllige und Sole, Zeits, anorg. Chem.,l32,7. Dawa, J. D. & E. S. (1944): Systemof Mineralogy,l, ed. 7, by C. palache, H. Berman and C. Frondel, New York. Mru,rclN, W. O. (1934): The color and crystal structure of precipitated cadmium sul- phide, -r. Phys. Chem.,38, 797-800. urnrcn, F. & ZecnanrasrN, w. (1925): uber die Kristallstruktur des a- und 0-cds sowie des Wurtzits, Zeits. Krist., 62, 2ffi-27 3..
Recommended publications
  • Detection of Cds Nanoparticles and Implications for Cadmium Yellow Paint Degradation in Edvard Munch’S the Scream (C
    1910 Microsc. Microanal. 23 (Suppl 1), 2017 doi:10.1017/S1431927617010212 © Microscopy Society of America 2017 Detection of CdS Nanoparticles and Implications for Cadmium Yellow Paint Degradation in Edvard Munch’s The Scream (c. 1910, Munch Museum) Barnaby D.A. Levin1, Kayla X. Nguyen1, Megan E. Holtz1, Marcie B. Wiggins2, Malcolm G. Thomas3, Eva S. Tveit4, Jennifer L. Mass5, Robert Opila6, Thomas Beebe2, David A. Muller1,7. 1. School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA. 2. Department of Chemistry and Biochemistry & UD Surface Analysis Facility, University of Delaware, Newark, DE, USA. 3. Cornell Center for Materials Research, Cornell University, Ithaca, NY, USA. 4. The Munch Museum, Tøyen, Oslo, Norway. 5. Department of Conservation, Rijksmuseum, Amsterdam, NL. 6. Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA. 7. Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, USA. Cadmium sulfide (CdS) based yellow paint is fading, flaking, and discoloring with age in billions of dollars worth of Impressionist through Expressionist masterpieces from the late 19th and early 20th centuries. Characterization of the morphology, chemistry, and crystal structure of paint particles is critical for understanding CdS pigment degradation, and the role of other cadmium compounds in paint synthesis and aging [1]. Here, we use scanning transmission electron microscopy (STEM) to identify nanoparticle structures in a sample of cadmium yellow paint from the Edvard Munch’s The Scream (c. 1910, Munch Museum), taken from a region of flaking yellow paint in the water adjacent to the two background figures on the bridge (Fig. 1a), and prepared for STEM by focused ion beam (FIB) milling.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China
    minerals Article A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China Jianping Liu and Shugen Zhang * Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China; [email protected] * Correspondence: [email protected]; Tel.: +86-731-888-30616 Received: 15 June 2017; Accepted: 26 July 2017; Published: 28 July 2017 Abstract: Zn-Cd-S series minerals not only comprise industrial resources for Zn and Cd, but are also significant mineralogical indicators for hydrothermal ore-forming processes. Due to its unique formation conditions and rare occurrence, our understanding of the formation of zincian greenockite in natural systems is limited. Zincian greenockite was discovered during mineralogical studies in the Saishitang Cu skarn deposit, Qinghai Province, Northwest China. This provided an ideal opportunity to assess the occurrence and formation of zincian greenockite in skarn-type deposits. Ore minerals were observed using reflected-light microscopy, and the zincian greenockite was further analyzed using electron-probe microanalysis (EPMA) and X-ray diffraction (XRD). The zincian greenockite occurs in the bornite–chalcopyrite ores and is composed of subhedral to anhedral grains approximately 50 × 150 µm2 to 200 × 300 µm2 in size, replaces the bornite, and is replaced by native silver. Two phases (I and II) were identified based on back-scattered electron images, X-ray element-distributions maps, and EPMA data. The textural relationship indicated that Phase I was replaced by Phase II. Phase I contained high Zn (14.6 to 21.7 mol % ZnS) and low Cd (72.4 to 82.2 mol % CdS), while Phase II contained low Zn (5.6 to 9.1 mol % ZnS) and high Cd (85.4 to 89.9 mol % CdS).
    [Show full text]
  • C01g - 2021.08
    CPC - C01G - 2021.08 C01G COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F (metal hydrides {monoborane, diborane or addition complexes thereof} C01B 6/00; salts of oxyacids of halogens C01B 11/00; peroxides, salts or peroxyacids C01B 15/00; thiosulfates, dithionites, polythionates C01B 17/64; compounds containing selenium, or tellurium C01B 19/00; binary compounds of nitrogen with metals C01B 21/06; azides C01B 21/08; {compounds containing nitrogen, other non-metals and metal C01B 21/082}; metal amides C01B 21/092; nitrites C01B 21/50; {compounds of noble gases C01B 23/0005}; phosphides C01B 25/08; salts of oxyacids of phosphorus C01B 25/16; carbides C01B 32/90; compounds containing silicon C01B 33/00; compounds containing boron C01B 35/00; compounds having molecular sieve properties but not having base-exchange properties C01B 37/00; compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites, C01B 39/00; cyanides C01C 3/08; salts of cyanamide C01C 3/16; thiocyanates C01C 3/20) Definition statement This place covers: Inorganic compounds or salts containing metals like Cu,Ag,Au,Zn,Cd,Hg, Ga, In,Tl,Ge,Sn,Pb,Ti,Zr,Hf,As,Bi,Sb,V,Nb,Ta,cr,mo,W,,U,Mn,Re,Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt and the transuranic elements (Np, Pu,Am,Cm,Bk ,Cf,Es,Fm,Md,No,Lr) Relationships with other classification places MULTIPLE CLASSIFICATION Biocidal, pest repellant, pest attractant, or plant growth regulatory activity of chemical compounds or preparations is further classified in A01P. Therapeutic activity of chemical compounds or medicinal preparations is further classified in subclass A61P.
    [Show full text]
  • Mineralogy of Sulfides
    This is a repository copy of Mineralogy of sulfides. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113362/ Version: Published Version Article: Vaughan, D.J. and Corkhill, C.L. orcid.org/0000-0002-7488-3219 (2017) Mineralogy of sulfides. Elements , 13 (2). pp. 81-87. ISSN 1811-5209 https://doi.org/10.2113/gselements.13.2.81 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mineralogy of Sulfides David J. Vaughan1 and Claire L. Corkhill2 1811-5209/17/0013-0081$2.50 DOI: 10.2113/gselements.13.2.81 etal sulfides are the most important group of ore minerals. Here, we The literature on sulfide minerals review what is known about their compositions, crystal structures, is extensive, with a number of overview textbooks and Mphase relations and parageneses. Much less is known about their monographs. Comprehensive surface chemistry, their biogeochemistry, or the formation and behaviour of reviews can be found in Ribbe ‘nanoparticle’ sulfides, whether formed abiotically or biogenically.
    [Show full text]
  • UNIT-CELL EDGES of NATURAL and SYNTHETIC SPHALERITES* Bnrenj
    THE AMERICAN MINERALOGIST, VOL. 46, NOVEMBER_DECEMBER, 1961 UNIT-CELL EDGES OF NATURAL AND SYNTHETIC SPHALERITES* BnreNJ. SrrNNon,U. S. GeologicalSurvey, Washington, D. C. ABSTRAcT The unit-cell edges of a number of synthetic Fe-, Mn-, and cd-bearing spharerites have been measured. The efiects of the components in solid solution on the unit-cell edge of sphalerite are linear and additive. The unit-cell edge of a sphalerite can be expressed in terms of its composition by the function o:5.4093*0.000456x+0.00424y+0.oo2022, where X, Y, and Z are the contents of FeS, CdS, and MnS in mol per cent and a is in Angstroms. Measurements of nineteen analyzed natural sphalerites show good agreement with the synthetic materials. INtnopucrroN Sphalerite (ZnS) is cubic, space group F43nt, Z:4, with a unit-cell edge (o) at 25oC. of 5.4093+0.0002A 1skiott.. and Barton, 195gand 1960). Sphalerite does not deviate measurably from the stoichiometric formula, although it can tolerate extensive solid solutions in which the zinc is replacedby other cationssuch as iron, manganese,cadmium, and copper (Kullerud, 1953).Anionic substitutionsmay also occur, whereby elementssuch as seleniumand oxygen (Skinner and Barton, 1960)may replace the sulfur. rn the present study care has been exercisedto prevent any anionic substitutions. The individual substitutions of iron, manganese, and cadmium for zinc in the sphaleritestructure have been studied in the past, the most detailed and recent study being that of Kullerud (1953), and for the effect of iron alone, Skinner et al. (1959). In these studies it has been amply demonstrated that a precise determination of the cell edge of sphalerite provides a sensitive measure of composition.
    [Show full text]
  • Densitie @F Minerals , and ~Ela I Ed
    Selecte,d , ~-ray . ( I Crystallo ~raphic Data Molar· v~ lumes,.and ~ Densitie @f Minerals , and ~ela i ed. Substances , GEO ,LOGICAL ~"l!JRVEY BULLETIN 1248 I ' " \ f • . J ( \ ' ' Se Iecte d .L\.-ray~~~T Crystallo:~~raphic Data Molar v·olumes, and Densities of Minerals and Related Substances By RICHARD A. ROBIE, PHILIP M. BETHKE, and KEITH M. BEARDSLEY GEOLOGICAL SURVEY BULLETIN 1248 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 67-276 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 3 5 cents (paper cover) OC)NTENTS Page Acknowledgments ________ ·-·· ·- _____________ -· ___ __ __ __ __ __ _ _ __ __ __ _ _ _ IV Abstract___________________________________________________________ 1 Introduction______________________________________________________ 1 Arrangement of data _______ .. ________________________________________ 2 X-ray crystallographic data of minerals________________________________ 4 Molar volumes and densities. of minerals_______________________________ 42 References_________________________________________________________ 73 III ACKNOWLEDGMENTS We wish to acknowledge the help given in the preparation of these tables by our colleagues at the U.S. Geological Survey, particularly Mrs. Martha S. Toulmin who aided greatly in compiling and checking the unit-cell parameters of the sulfides and related minerals and Jerry L. Edwards who checked most of the other data and prepared the bibliography. Wayne Buehrer wrote the computer program for the calculation of the cell volumes, molar volumes, and densities. We especially wish to thank Ernest L. Dixon who wrote the control programs for the photo composing machine. IV SELECTED X-RAY CRYSTALLOGRAPHIC DATA, MOLAR VOLUMES, AND DENSITIES OF !'.IINERALS AND RELATED SUBSTANCES By RICHARD A.
    [Show full text]
  • CPY Document
    eADMIUM AN eADMIUM COMPOUNDS Cadmium and cadmium compounds were considered by previous working groups, in 1972,1975 and 1987 (lARC, 1973, 1976, 1987a). New data have since become available, and these are included in the present monograph and have been taken into consideration in the evaluation. The agents considered are metallic cadmium, cadmium alloys and sorne cadmium compounds. 1. Exposure Data 1.1 Chemical and physical data and analysis 1.1.1 Synonyms, trade names and molecular formulae Synonyms, trade names and molecular formulae for cadmium, cadmium-copper alloy and some cadmium compounds are presented in Thble 1. The cadmium compounds shown are those for which data on carcinogenicity or mutagenicity were available or which are commercially important compounds. It is not an exhaustive list and does not necessarily include all of the most commercially important cadmium-containing substances. Table 1. Synonyms (Chemical Abstracts Servce (CAS) names are in italics), trade names and atomic or molecular fonnulae of cadmium and cadmium compounds Chemical name CAS Reg. No. a Synonyms and trade names Formula Cadmium 744-43-9 Cadmium metal; CI 77180 Cd Cadmium acetate 543-90-8 Acetic acid, cadmium salt; bis(acetoxy)- Cd(CH3COO)i (24558-49-4; cadmium; cadmium(II) acetate; cadmium 29398-76-3) diacetate; cadmium ethanoate; CI 77185 Cadmium carbnate 513-78-0 Carbomc acid, cadmium salt; cadmium CdC03 (93820-02-1) carbnate (CdC03); cadmium mono- carbnate; chemcarb; kalcit; mikokalcit; supermikokalcit Cadmium ch/oride 10108-64-2 Cadmium dichloride;
    [Show full text]
  • Hawleyite Cds C 2001-2005 Mineral Data Publishing, Version 1
    Hawleyite CdS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Very fine-grained powdery coatings. Physical Properties: Hardness = n.d. VHN = n.d. D(meas.) = n.d. D(calc.) = 4.87 Optical Properties: Opaque to subtranslucent. Color: Bright yellow. R: n.d. Cell Data: Space Group: F 43m. a = 5.818 Z = 4 X-ray Powder Pattern: Hector-Calumet mine, Galena Hill, Canada. 3.36 (100), 2.058 (80), 1.753 (60), 2.90 (40), 1.337 (30), 1.186 (30), 1.120 (30) Chemistry: Composition established by semiquantitative spectroscopic analysis. Polymorphism & Series: Dimorphous with greenockite. Mineral Group: Sphalerite group. Occurrence: As coatings on fine-grained sphalerite and siderite in vugs; probably of secondary origin, deposited from meteoric waters in vugs and along late fractures. Association: Sphalerite, siderite, greenockite. Distribution: In Canada, in the Hector-Calumet mine, Keno-Galena Hill area, Yukon Territory [TL], and in the Strathcona mine, Sudbury, Ontario. In the USA, near Hanover, Grant Co., New Mexico; at the Crestmore quarry, Riverside Co., California; from near Bethel Church, Pike Co., Indiana; and at Franklin, Sussex Co., New Jersey. From near Komna, Czech Republic. In the Los Blancos mine, Sierra de Cartagena, Murcia Province, Spain. From Ragada, Greece. At Tynagh, near Killimor, Co. Galway, Ireland. In the Fall Hill quarry, Ashover, Derbyshire, England. From the Noril’sk region, western Siberia, Russia. In the Coquimbana mine, Cerro Blanco district, Chile. From the Tui mine, Mt. Te Aroha, New Zealand. In the Kolar Gold Fields, Karnataka, India. Likely yet to be discovered at additional localities, as easily mistaken for greenockite.
    [Show full text]
  • Investigation of the Structural and Electronic Properties of Cds Under High Pressure: an Ab Initio Study
    Canadian Journal of Physics Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study Journal: Canadian Journal of Physics ManuscriptFor ID cjp-2017-0257.R1 Review Only Manuscript Type: Article Date Submitted by the Author: 20-Jun-2017 Complete List of Authors: Yamçıçıer, C.; Gazi Universitesi Merdan, Z.; Gazi Universitesi Kürkçü, C.; Ahi Evran Universitesi Keyword: CdS, ab-initio, Intermediate states, Phase transitions, pressure Is the invited manuscript for consideration in a Special N/A Issue? : https://mc06.manuscriptcentral.com/cjp-pubs Page 1 of 23 Canadian Journal of Physics Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study C. Yamciciera, Z. Merdanb and C. Kurkcuc* aInstitute of Science, Gazi University, Ankara, Turkey bScience Faculty, Gazi University, Ankara, Turkey cFaculty of Arts and Sciences, Ahi Evran University, Kirsehir, Turkey An ab initio constant pressure study is carried out to explore the behaviour of cadmium sulfide (CdS) under high hydrostatic pressure. We have studied the structural properties of CdS using density functionalFor theory Review (DFT) under pressure Only up to 200 GPa. CdS crystallizes in a wurtzite (WZ)-type structure under ambient conditions. CdS undergoes a structural phase transition from the hexagonal WZ-type structure with space group P6ͧmc to cubic NaCl-type structure with space group Fm3Ŭm. Another phase transition is obtained from NaCl-type structure to the orthorhombic CdS-III-type structure with space group Pmmn. The first transformation proceeds via seven intermediate states with space group Cmc21, P21, Pmn21, P21/m, Pmmn, I4/mmm and Cmcm.
    [Show full text]
  • Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite
    minerals Article Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite Allan Pring 1,*, Benjamin Wade 2, Aoife McFadden 2,3, Claire E. Lenehan 1 and Nigel J. Cook 4 1 College of Science and Engineering, Flinders University, Adelaide 5001, South Australia, Australia; claire.lenehan@flinders.edu.au 2 Adelaide Microscopy, The University of Adelaide, Adelaide 5005, South Australia, Australia; [email protected] (B.W.); [email protected] (A.M.) 3 Flinders Microscopy, Flinders University, Adelaide 5001, South Australia, Australia 4 School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, South Australia, Australia; [email protected] * Correspondence: allan.pring@flinders.edu.au; Tel.: +618-8201-5570 Received: 28 November 2019; Accepted: 6 February 2020; Published: 9 February 2020 Abstract: The nature of couple substitutions of minor and trace element chemistry of expitaxial intergrowths of wurtzite and sphalerite are reported. EPMA and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses display significant differences in the bulk chemistries of the two epitaxial intergrowth samples studied. The sample from the Animas-Chocaya Mine complex of Bolivia is Fe-rich with mean Fe levels of 4.8 wt% for wurztite-2H and 2.3 wt% for the sphalerite component, while the sample from Merelani Hills, Tanzania, is Mn-rich with mean Mn levels in wurztite-4H of 9.1 wt% and for the sphalerite component 7.9 wt% In both samples studied the wurtzite polytype is dominant over sphalerite. LA-ICP-MS line scans across the boundaries between the wurtzite and sphalerite domains within the two samples show significant variation in the trace element chemistries both between and within the two coexisting polytypes.
    [Show full text]
  • Mineralogy of Sulfides
    Mineralogy of Sulfides David J. Vaughan1 and Claire L. Corkhill2 1811-5209/17/0013-0081$2.50 DOI: 10.2113/gselements.13.2.81 etal sulfides are the most important group of ore minerals. Here, we The literature on sulfide minerals review what is known about their compositions, crystal structures, is extensive, with a number of overview textbooks and Mphase relations and parageneses. Much less is known about their monographs. Comprehensive surface chemistry, their biogeochemistry, or the formation and behaviour of reviews can be found in Ribbe ‘nanoparticle’ sulfides, whether formed abiotically or biogenically. (1974), Vaughan and Craig (1978), and, most recently, in Vaughan KEYWORDS: metal sulfides, crystal structures, paragenesis, surface chemistry, (2006). The present article biogeochemistry provides a brief overview of the compositions and crystal struc- INTRODUCTION tures of the major sulfide minerals, aspects of their chemistries (bulk and surface) and their Sulfide minerals are compounds in which sulfur is combined occurrence. In addition to the sulfides mentioned above, as an anion with a metal (or semi-metal) cation or cations. pentlandite [(Fe,Ni)9S8] and its alteration product, violarite The definition is commonly widened to include minerals (FeNi2S4), are important as the major ore minerals of nickel; in which the anion is As or Sb, sometimes together with bornite (Cu5FeS4) and chalcocite (Cu2S) as major copper S, and to include Se and Te minerals. The sulfosalts are a minerals; and molybdenite (MoS2) is the primary source of special group of the sulfide minerals that have a general molybdenum. Tetrahedrite (Cu12Sb4S13) is notable because formula AmTnXp and in which the common elements are A of the large range of metals, silver in particular, which can = Ag, Cu, Pb; T = As, Sb, Bi; X = S.
    [Show full text]