Appendix a Energy Units Used in Spectroscopy and Solid-State Physics

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Energy Units Used in Spectroscopy and Solid-State Physics Appendix A Energy Units Used in Spectroscopy and Solid-State Physics The energy of an electron accelerated by a potential of 1 volt is 1 elec- tron volt (eV), a quantity of the order of magnitude of the energies at the atomic scale. The infrared spectroscopists prefer the wavenumber (the num- ber of wavelengths λ per unit length, usually noted ν˜), specially when dealing with vibrational energies. It is commonly expressed in reciprocal centimeter cm−1 . The phonon frequencies are often evaluated in Terahertz. The ab- solute temperature is often used to measure energy in statistical mechanics. The correspondence with macroscopic energies is provided by multiplying the energies in eV by the Avogadro constant NA and evaluating the result in kJ per mole 1J=6.24151 × 1018 eV . The correspondences between the eV and these units is given below. It is derived from E = eV=hc ˜ν = hν = kBT = hc/λ (the Boltzmann constant is noted kB instead of k). − E (eV) ν˜ cm−1 ν (THz) K (Kelvin) kJ mole 1 λ (μm) 1 8065.545 241.7992 11,604.50 96.48534 1.239842 1.239842 × 10−4 1 0.0299792 1.438781 0.0119627 10,000 0.004135667 33.35641 1 47.99237 0.399030 299.792 8.61734 × 10−5 0.695036 0.0208366 1 0.00831444 14,387.8 0.0103643 83.5935 2.50608 120.273 1 119.627 1.239842 10,000 299.792 14,387.81 119.627 1 In the book, 1 cm−1 is taken as 0.1239842meV. In the visible and UV regions of the spectrum, the nanometre (nm) wavelength unit is used (1 A=˚ 0.1 nm). In the IR region of the spectrum, the μm wavelength unit is mostly used above 2500 nm and below 1 mm. 432 Appendix A Values of Selected Physical Constants Recommended by CODATA (2006) −7 Except for the value for c, μ0 =4π × 10 ,andε0, taken as exact, all the physical constants are rounded. Speed c of light in vacuum ms−1 : 299,792,458 −2 −7 Magnetic constant μ0 NA 12.566, 370, 614...× 10 (permeability of vacuum): 2 −1 −12 Electric constant ε0 =1/μ0c Fm 8.854187817...× 10 (permittivity of vacuum): Electron charge e (C): 1.602176487 (10) × 10−19 Planck constant h (J s): 6.62606896 (33) × 10−34 Planck constant h (eV s): 4.13566733 (10) × 10−15 Planck constant over 2π (J s): 1.054571628 (53) × 10−34 Planck constant over 2π (eV s): 6.58211899 (16) × 10−16 Boltzmann constant k JK−1 :1.3806505 (24) × 10−23 B eV K−1 :8.617343 (15) × 10−5 Bohr radius a (m) = ε h2/πm e2 0.529177208 (59) × 10−10 0 0 e −1 Rydberg constant R∞ m 10 973731.568527(73) 4 2 3 = mee / 8ε0h c Rydberg constant converted in eV: 13.60569193(34) 23 Avogadro constant NA (atom per mole): 6.02214179(30) × 10 −31 Electron mass me (kg) 9.10938215 (45) × 10 − Atomic mass constant 1.660538782 × 10 27 m = 1 m 12C (kg) u 12 Bohr magneton μ = e/2m JT−1 927.400915 (23) × 10−26 B e − eVT 1 5.7883817555 × 10−5 In the atomic units (a.u.) system, the permittivity of vacuum is dimen- −1 2 sionless and set equal to (4π) , while a0, e , me,and are set equal to unity. The atomic unit of energy, the Hartree, is equal to two times the Rydberg constant. Appendix B Bravais Lattices, Symmetry and Crystals 3D space can be filled without voids or overlapping by identical prismatic cells with well-defined symmetries, and their types are limited to seven. These units cells can be defined by the lengths of three nonplanar primitive vectors a1, a2 and a3 and by the angles α, β and γ between these vectors. They generate the seven simple crystal systems or classes, defined by the sets of all points taken from a given origin of these cells, that are defined by vectors R =n1a1 +n2a2 +n3a3 (B.1) where n1,n2 and n3 are integers. Table B.1 enumerates these crystal systems and their geometric characteristics. The other crystal lattices can be generated by adding to some of the above- defined cells extra high-symmetry points by the so-called centering method. Table B.2 shows the new systems added to the simple crystal lattices (noted s, or P , for primitive) and the numbers of lattice points in each conventional unit cell. The body-centred lattices are noted bc or I (for German Innenzentrierte), the face-centred, fc or F , and the side-centred or base-centred lattices are noted C (an extra atom at the Centre of the base). These 14 lattice systems are known as the Bravais lattices (noted here BLs). A representation of their unit cells can be found in the textbook by Kittel [7]. A primitive cell of a BL is a cell of minimum volume that contains only one lattice point, so that the whole lattice can be generated by all the translations of this cell. This definition allows for different primitive cells for the same BL, but their volumes must be the same. The parallelepiped defined by the three primitive vectors a1, a2,anda3 of a simple BL is a primitive cell of this lattice. The conventional unit cell showing the symmetry of the hexagonal system is that of a right prism, whose height is usually noted c, with a regular hexagon as a base. This cell contains three lattice points, hence three primitive cells consisting in a right prism with a base made of a rhomb with one 120◦ angle. The unit cells of the simple P systems are primitive cells. Primitive cells are not unique and most don’t have the BL symmetry, but it is possible 434 Appendix B Table B.1. The seven 3D simple crystal systems. The conditions on the primitive vectors of the unit cells and on their orientations are indicated. Angle γ is taken as the one between a1 and a2 Restrictions for vectors System lengths and angles Triclinic a1 =a 2 =a 3 α = β = γ Monoclinic a1 =a 2 =a 3 α = γ =90◦ = β Orthorhombic or rhombic a1 =a 2 =a 3 α = β = γ =90◦ Tetragonal a1 =a2 =a 3 α = β = γ =90◦ Hexagonal a1 =a2 =a 3 α = β =90◦,γ= 120◦ Trigonal a1 =a2 =a3 α = β = γ =90 ◦,<120◦ Cubic (isometric) a1 =a2 =a3 α = β = γ =90◦ Table B.2. Number of lattice points in the unit cells of the 14 3D Bravais lattices System Simple (P ) Body-centred Face-centred Base-centred Triclinic 1 – – – Monoclinic 1 – – 2 Orthorhombic 1 2 4 2 Tetragonal 1 2 – – Hexagonal 1 – – – Trigonal 1 – – – Cubic (c) 1 (sc) 2 (bcc) 4 (fcc) – to construct a primitive cell with the symmetry of the BL. The recipe is to connect a given lattice point to its nearest neighbours by straight lines and to intersect these lines at mid-point by perpendicular planes. The inner volume defined by these planes is the volume of the primitive cell known as the Wigner-Seitz cell. In particular, the Wigner-Seitz cell for the hexagonal system is an hexagonal prism whose volume is that of the hexagonal unit cell. Real crystal lattices are made from atoms, atomic or molecular entities associated with lattice points of the BLs or of their combinations. For instance, when they are centred at the lattice points of a fcc BL, entities of two same atoms lying along the diagonal of the unit cell of this BL and separated by one quarter of this diagonal generate the diamond structure (when the two atoms are different, the structure generated is that of sphalerite, also called zinc-blende). B.1 The Reciprocal Lattice 435 B.1 The Reciprocal Lattice When dealing with the interactions of crystals with particles that can display wave-like properties, like photons, phonons or electrons, it is useful to intro- duce a reciprocal lattice associated with the real (or direct) crystal lattice. Let us consider a set of vectors R constituting a given 3D BL and a plane wave eik.r. For special choices of k,itcanbeshownthatk can also display the periodicity of a BL, known as the reciprocal lattice of the direct BL. For all R of the direct BL, the set of all wave vectors G belonging to the reciprocal lattice verify the relation eiG.(r+R) = eiG.r (B.2) for any r. The reciprocal lattice can thus be defined as the set of wave vectors G satisfying eiG.R =1 (B.3) The reciprocal lattice of a BL whose primitive unit cell is defined by three vectors a1, a2 and a3 is generated by three primitive vectors a ∧ a a ∧ a a ∧ a b =2π 2 3 , b =2π 3 1 , b =2π 1 2 (B.4) 1 v 2 v 3 v where v = a1. (a2 ∧ a3) is the volume of the primitive unit cell of the direct lattice (the notation u ∧ v denotes the vector product of vectors u and v). It is clear that the ai and bj satisfy condition B.3 as ai.bj =2πδij where δij is the Kronecker symbol (0 if i =j , 1 if i = j). Similarly, it can be checked that for any vector G =m1b1 +m2b2 +m3b3 (m1,m2 and m3 being integers) of the lattice generated by the bj, condition B.3 is met when R is a vector of the direct lattice. It can be also checked by using expressions B.4 that the reciprocal lattice of the reciprocal lattice is the original direct lattice and that the volume of the primitive unit cell of the reciprocal lattice is (2π)3/v.
Recommended publications
  • Detection of Cds Nanoparticles and Implications for Cadmium Yellow Paint Degradation in Edvard Munch’S the Scream (C
    1910 Microsc. Microanal. 23 (Suppl 1), 2017 doi:10.1017/S1431927617010212 © Microscopy Society of America 2017 Detection of CdS Nanoparticles and Implications for Cadmium Yellow Paint Degradation in Edvard Munch’s The Scream (c. 1910, Munch Museum) Barnaby D.A. Levin1, Kayla X. Nguyen1, Megan E. Holtz1, Marcie B. Wiggins2, Malcolm G. Thomas3, Eva S. Tveit4, Jennifer L. Mass5, Robert Opila6, Thomas Beebe2, David A. Muller1,7. 1. School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA. 2. Department of Chemistry and Biochemistry & UD Surface Analysis Facility, University of Delaware, Newark, DE, USA. 3. Cornell Center for Materials Research, Cornell University, Ithaca, NY, USA. 4. The Munch Museum, Tøyen, Oslo, Norway. 5. Department of Conservation, Rijksmuseum, Amsterdam, NL. 6. Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA. 7. Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, USA. Cadmium sulfide (CdS) based yellow paint is fading, flaking, and discoloring with age in billions of dollars worth of Impressionist through Expressionist masterpieces from the late 19th and early 20th centuries. Characterization of the morphology, chemistry, and crystal structure of paint particles is critical for understanding CdS pigment degradation, and the role of other cadmium compounds in paint synthesis and aging [1]. Here, we use scanning transmission electron microscopy (STEM) to identify nanoparticle structures in a sample of cadmium yellow paint from the Edvard Munch’s The Scream (c. 1910, Munch Museum), taken from a region of flaking yellow paint in the water adjacent to the two background figures on the bridge (Fig. 1a), and prepared for STEM by focused ion beam (FIB) milling.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China
    minerals Article A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China Jianping Liu and Shugen Zhang * Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China; [email protected] * Correspondence: [email protected]; Tel.: +86-731-888-30616 Received: 15 June 2017; Accepted: 26 July 2017; Published: 28 July 2017 Abstract: Zn-Cd-S series minerals not only comprise industrial resources for Zn and Cd, but are also significant mineralogical indicators for hydrothermal ore-forming processes. Due to its unique formation conditions and rare occurrence, our understanding of the formation of zincian greenockite in natural systems is limited. Zincian greenockite was discovered during mineralogical studies in the Saishitang Cu skarn deposit, Qinghai Province, Northwest China. This provided an ideal opportunity to assess the occurrence and formation of zincian greenockite in skarn-type deposits. Ore minerals were observed using reflected-light microscopy, and the zincian greenockite was further analyzed using electron-probe microanalysis (EPMA) and X-ray diffraction (XRD). The zincian greenockite occurs in the bornite–chalcopyrite ores and is composed of subhedral to anhedral grains approximately 50 × 150 µm2 to 200 × 300 µm2 in size, replaces the bornite, and is replaced by native silver. Two phases (I and II) were identified based on back-scattered electron images, X-ray element-distributions maps, and EPMA data. The textural relationship indicated that Phase I was replaced by Phase II. Phase I contained high Zn (14.6 to 21.7 mol % ZnS) and low Cd (72.4 to 82.2 mol % CdS), while Phase II contained low Zn (5.6 to 9.1 mol % ZnS) and high Cd (85.4 to 89.9 mol % CdS).
    [Show full text]
  • C01g - 2021.08
    CPC - C01G - 2021.08 C01G COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F (metal hydrides {monoborane, diborane or addition complexes thereof} C01B 6/00; salts of oxyacids of halogens C01B 11/00; peroxides, salts or peroxyacids C01B 15/00; thiosulfates, dithionites, polythionates C01B 17/64; compounds containing selenium, or tellurium C01B 19/00; binary compounds of nitrogen with metals C01B 21/06; azides C01B 21/08; {compounds containing nitrogen, other non-metals and metal C01B 21/082}; metal amides C01B 21/092; nitrites C01B 21/50; {compounds of noble gases C01B 23/0005}; phosphides C01B 25/08; salts of oxyacids of phosphorus C01B 25/16; carbides C01B 32/90; compounds containing silicon C01B 33/00; compounds containing boron C01B 35/00; compounds having molecular sieve properties but not having base-exchange properties C01B 37/00; compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites, C01B 39/00; cyanides C01C 3/08; salts of cyanamide C01C 3/16; thiocyanates C01C 3/20) Definition statement This place covers: Inorganic compounds or salts containing metals like Cu,Ag,Au,Zn,Cd,Hg, Ga, In,Tl,Ge,Sn,Pb,Ti,Zr,Hf,As,Bi,Sb,V,Nb,Ta,cr,mo,W,,U,Mn,Re,Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt and the transuranic elements (Np, Pu,Am,Cm,Bk ,Cf,Es,Fm,Md,No,Lr) Relationships with other classification places MULTIPLE CLASSIFICATION Biocidal, pest repellant, pest attractant, or plant growth regulatory activity of chemical compounds or preparations is further classified in A01P. Therapeutic activity of chemical compounds or medicinal preparations is further classified in subclass A61P.
    [Show full text]
  • Mineralogy of Sulfides
    This is a repository copy of Mineralogy of sulfides. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113362/ Version: Published Version Article: Vaughan, D.J. and Corkhill, C.L. orcid.org/0000-0002-7488-3219 (2017) Mineralogy of sulfides. Elements , 13 (2). pp. 81-87. ISSN 1811-5209 https://doi.org/10.2113/gselements.13.2.81 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mineralogy of Sulfides David J. Vaughan1 and Claire L. Corkhill2 1811-5209/17/0013-0081$2.50 DOI: 10.2113/gselements.13.2.81 etal sulfides are the most important group of ore minerals. Here, we The literature on sulfide minerals review what is known about their compositions, crystal structures, is extensive, with a number of overview textbooks and Mphase relations and parageneses. Much less is known about their monographs. Comprehensive surface chemistry, their biogeochemistry, or the formation and behaviour of reviews can be found in Ribbe ‘nanoparticle’ sulfides, whether formed abiotically or biogenically.
    [Show full text]
  • UNIT-CELL EDGES of NATURAL and SYNTHETIC SPHALERITES* Bnrenj
    THE AMERICAN MINERALOGIST, VOL. 46, NOVEMBER_DECEMBER, 1961 UNIT-CELL EDGES OF NATURAL AND SYNTHETIC SPHALERITES* BnreNJ. SrrNNon,U. S. GeologicalSurvey, Washington, D. C. ABSTRAcT The unit-cell edges of a number of synthetic Fe-, Mn-, and cd-bearing spharerites have been measured. The efiects of the components in solid solution on the unit-cell edge of sphalerite are linear and additive. The unit-cell edge of a sphalerite can be expressed in terms of its composition by the function o:5.4093*0.000456x+0.00424y+0.oo2022, where X, Y, and Z are the contents of FeS, CdS, and MnS in mol per cent and a is in Angstroms. Measurements of nineteen analyzed natural sphalerites show good agreement with the synthetic materials. INtnopucrroN Sphalerite (ZnS) is cubic, space group F43nt, Z:4, with a unit-cell edge (o) at 25oC. of 5.4093+0.0002A 1skiott.. and Barton, 195gand 1960). Sphalerite does not deviate measurably from the stoichiometric formula, although it can tolerate extensive solid solutions in which the zinc is replacedby other cationssuch as iron, manganese,cadmium, and copper (Kullerud, 1953).Anionic substitutionsmay also occur, whereby elementssuch as seleniumand oxygen (Skinner and Barton, 1960)may replace the sulfur. rn the present study care has been exercisedto prevent any anionic substitutions. The individual substitutions of iron, manganese, and cadmium for zinc in the sphaleritestructure have been studied in the past, the most detailed and recent study being that of Kullerud (1953), and for the effect of iron alone, Skinner et al. (1959). In these studies it has been amply demonstrated that a precise determination of the cell edge of sphalerite provides a sensitive measure of composition.
    [Show full text]
  • Densitie @F Minerals , and ~Ela I Ed
    Selecte,d , ~-ray . ( I Crystallo ~raphic Data Molar· v~ lumes,.and ~ Densitie @f Minerals , and ~ela i ed. Substances , GEO ,LOGICAL ~"l!JRVEY BULLETIN 1248 I ' " \ f • . J ( \ ' ' Se Iecte d .L\.-ray~~~T Crystallo:~~raphic Data Molar v·olumes, and Densities of Minerals and Related Substances By RICHARD A. ROBIE, PHILIP M. BETHKE, and KEITH M. BEARDSLEY GEOLOGICAL SURVEY BULLETIN 1248 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 67-276 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 3 5 cents (paper cover) OC)NTENTS Page Acknowledgments ________ ·-·· ·- _____________ -· ___ __ __ __ __ __ _ _ __ __ __ _ _ _ IV Abstract___________________________________________________________ 1 Introduction______________________________________________________ 1 Arrangement of data _______ .. ________________________________________ 2 X-ray crystallographic data of minerals________________________________ 4 Molar volumes and densities. of minerals_______________________________ 42 References_________________________________________________________ 73 III ACKNOWLEDGMENTS We wish to acknowledge the help given in the preparation of these tables by our colleagues at the U.S. Geological Survey, particularly Mrs. Martha S. Toulmin who aided greatly in compiling and checking the unit-cell parameters of the sulfides and related minerals and Jerry L. Edwards who checked most of the other data and prepared the bibliography. Wayne Buehrer wrote the computer program for the calculation of the cell volumes, molar volumes, and densities. We especially wish to thank Ernest L. Dixon who wrote the control programs for the photo composing machine. IV SELECTED X-RAY CRYSTALLOGRAPHIC DATA, MOLAR VOLUMES, AND DENSITIES OF !'.IINERALS AND RELATED SUBSTANCES By RICHARD A.
    [Show full text]
  • CPY Document
    eADMIUM AN eADMIUM COMPOUNDS Cadmium and cadmium compounds were considered by previous working groups, in 1972,1975 and 1987 (lARC, 1973, 1976, 1987a). New data have since become available, and these are included in the present monograph and have been taken into consideration in the evaluation. The agents considered are metallic cadmium, cadmium alloys and sorne cadmium compounds. 1. Exposure Data 1.1 Chemical and physical data and analysis 1.1.1 Synonyms, trade names and molecular formulae Synonyms, trade names and molecular formulae for cadmium, cadmium-copper alloy and some cadmium compounds are presented in Thble 1. The cadmium compounds shown are those for which data on carcinogenicity or mutagenicity were available or which are commercially important compounds. It is not an exhaustive list and does not necessarily include all of the most commercially important cadmium-containing substances. Table 1. Synonyms (Chemical Abstracts Servce (CAS) names are in italics), trade names and atomic or molecular fonnulae of cadmium and cadmium compounds Chemical name CAS Reg. No. a Synonyms and trade names Formula Cadmium 744-43-9 Cadmium metal; CI 77180 Cd Cadmium acetate 543-90-8 Acetic acid, cadmium salt; bis(acetoxy)- Cd(CH3COO)i (24558-49-4; cadmium; cadmium(II) acetate; cadmium 29398-76-3) diacetate; cadmium ethanoate; CI 77185 Cadmium carbnate 513-78-0 Carbomc acid, cadmium salt; cadmium CdC03 (93820-02-1) carbnate (CdC03); cadmium mono- carbnate; chemcarb; kalcit; mikokalcit; supermikokalcit Cadmium ch/oride 10108-64-2 Cadmium dichloride;
    [Show full text]
  • Hawleyite Cds C 2001-2005 Mineral Data Publishing, Version 1
    Hawleyite CdS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Very fine-grained powdery coatings. Physical Properties: Hardness = n.d. VHN = n.d. D(meas.) = n.d. D(calc.) = 4.87 Optical Properties: Opaque to subtranslucent. Color: Bright yellow. R: n.d. Cell Data: Space Group: F 43m. a = 5.818 Z = 4 X-ray Powder Pattern: Hector-Calumet mine, Galena Hill, Canada. 3.36 (100), 2.058 (80), 1.753 (60), 2.90 (40), 1.337 (30), 1.186 (30), 1.120 (30) Chemistry: Composition established by semiquantitative spectroscopic analysis. Polymorphism & Series: Dimorphous with greenockite. Mineral Group: Sphalerite group. Occurrence: As coatings on fine-grained sphalerite and siderite in vugs; probably of secondary origin, deposited from meteoric waters in vugs and along late fractures. Association: Sphalerite, siderite, greenockite. Distribution: In Canada, in the Hector-Calumet mine, Keno-Galena Hill area, Yukon Territory [TL], and in the Strathcona mine, Sudbury, Ontario. In the USA, near Hanover, Grant Co., New Mexico; at the Crestmore quarry, Riverside Co., California; from near Bethel Church, Pike Co., Indiana; and at Franklin, Sussex Co., New Jersey. From near Komna, Czech Republic. In the Los Blancos mine, Sierra de Cartagena, Murcia Province, Spain. From Ragada, Greece. At Tynagh, near Killimor, Co. Galway, Ireland. In the Fall Hill quarry, Ashover, Derbyshire, England. From the Noril’sk region, western Siberia, Russia. In the Coquimbana mine, Cerro Blanco district, Chile. From the Tui mine, Mt. Te Aroha, New Zealand. In the Kolar Gold Fields, Karnataka, India. Likely yet to be discovered at additional localities, as easily mistaken for greenockite.
    [Show full text]
  • Investigation of the Structural and Electronic Properties of Cds Under High Pressure: an Ab Initio Study
    Canadian Journal of Physics Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study Journal: Canadian Journal of Physics ManuscriptFor ID cjp-2017-0257.R1 Review Only Manuscript Type: Article Date Submitted by the Author: 20-Jun-2017 Complete List of Authors: Yamçıçıer, C.; Gazi Universitesi Merdan, Z.; Gazi Universitesi Kürkçü, C.; Ahi Evran Universitesi Keyword: CdS, ab-initio, Intermediate states, Phase transitions, pressure Is the invited manuscript for consideration in a Special N/A Issue? : https://mc06.manuscriptcentral.com/cjp-pubs Page 1 of 23 Canadian Journal of Physics Investigation of the structural and electronic properties of CdS under high pressure: an ab initio study C. Yamciciera, Z. Merdanb and C. Kurkcuc* aInstitute of Science, Gazi University, Ankara, Turkey bScience Faculty, Gazi University, Ankara, Turkey cFaculty of Arts and Sciences, Ahi Evran University, Kirsehir, Turkey An ab initio constant pressure study is carried out to explore the behaviour of cadmium sulfide (CdS) under high hydrostatic pressure. We have studied the structural properties of CdS using density functionalFor theory Review (DFT) under pressure Only up to 200 GPa. CdS crystallizes in a wurtzite (WZ)-type structure under ambient conditions. CdS undergoes a structural phase transition from the hexagonal WZ-type structure with space group P6ͧmc to cubic NaCl-type structure with space group Fm3Ŭm. Another phase transition is obtained from NaCl-type structure to the orthorhombic CdS-III-type structure with space group Pmmn. The first transformation proceeds via seven intermediate states with space group Cmc21, P21, Pmn21, P21/m, Pmmn, I4/mmm and Cmcm.
    [Show full text]
  • Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite
    minerals Article Coupled Substitutions of Minor and Trace Elements in Co-Existing Sphalerite and Wurtzite Allan Pring 1,*, Benjamin Wade 2, Aoife McFadden 2,3, Claire E. Lenehan 1 and Nigel J. Cook 4 1 College of Science and Engineering, Flinders University, Adelaide 5001, South Australia, Australia; claire.lenehan@flinders.edu.au 2 Adelaide Microscopy, The University of Adelaide, Adelaide 5005, South Australia, Australia; [email protected] (B.W.); [email protected] (A.M.) 3 Flinders Microscopy, Flinders University, Adelaide 5001, South Australia, Australia 4 School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, South Australia, Australia; [email protected] * Correspondence: allan.pring@flinders.edu.au; Tel.: +618-8201-5570 Received: 28 November 2019; Accepted: 6 February 2020; Published: 9 February 2020 Abstract: The nature of couple substitutions of minor and trace element chemistry of expitaxial intergrowths of wurtzite and sphalerite are reported. EPMA and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses display significant differences in the bulk chemistries of the two epitaxial intergrowth samples studied. The sample from the Animas-Chocaya Mine complex of Bolivia is Fe-rich with mean Fe levels of 4.8 wt% for wurztite-2H and 2.3 wt% for the sphalerite component, while the sample from Merelani Hills, Tanzania, is Mn-rich with mean Mn levels in wurztite-4H of 9.1 wt% and for the sphalerite component 7.9 wt% In both samples studied the wurtzite polytype is dominant over sphalerite. LA-ICP-MS line scans across the boundaries between the wurtzite and sphalerite domains within the two samples show significant variation in the trace element chemistries both between and within the two coexisting polytypes.
    [Show full text]
  • Mineralogy of Sulfides
    Mineralogy of Sulfides David J. Vaughan1 and Claire L. Corkhill2 1811-5209/17/0013-0081$2.50 DOI: 10.2113/gselements.13.2.81 etal sulfides are the most important group of ore minerals. Here, we The literature on sulfide minerals review what is known about their compositions, crystal structures, is extensive, with a number of overview textbooks and Mphase relations and parageneses. Much less is known about their monographs. Comprehensive surface chemistry, their biogeochemistry, or the formation and behaviour of reviews can be found in Ribbe ‘nanoparticle’ sulfides, whether formed abiotically or biogenically. (1974), Vaughan and Craig (1978), and, most recently, in Vaughan KEYWORDS: metal sulfides, crystal structures, paragenesis, surface chemistry, (2006). The present article biogeochemistry provides a brief overview of the compositions and crystal struc- INTRODUCTION tures of the major sulfide minerals, aspects of their chemistries (bulk and surface) and their Sulfide minerals are compounds in which sulfur is combined occurrence. In addition to the sulfides mentioned above, as an anion with a metal (or semi-metal) cation or cations. pentlandite [(Fe,Ni)9S8] and its alteration product, violarite The definition is commonly widened to include minerals (FeNi2S4), are important as the major ore minerals of nickel; in which the anion is As or Sb, sometimes together with bornite (Cu5FeS4) and chalcocite (Cu2S) as major copper S, and to include Se and Te minerals. The sulfosalts are a minerals; and molybdenite (MoS2) is the primary source of special group of the sulfide minerals that have a general molybdenum. Tetrahedrite (Cu12Sb4S13) is notable because formula AmTnXp and in which the common elements are A of the large range of metals, silver in particular, which can = Ag, Cu, Pb; T = As, Sb, Bi; X = S.
    [Show full text]