Zincian Greenockite in Stratiform

Total Page:16

File Type:pdf, Size:1020Kb

Zincian Greenockite in Stratiform Canadian Mineralogist Vol. 23, pp. 89-94(1985) ZINCIANGREENOCKITE IN STRATIFORMLEAD_ZINC_SILVER MINERALIZATIONAT LADY LORETTA,NORTHWEST OUEENSLAND DAVID J. PATTERSON Researchand Development Division, Mount Isa Mines Limited, Mount Isa, Queensland4825, Austalia ABSTRAcT INTRODUC"TIoN At the Lady Loretta stratiform lead-zinc-silverdeposit During metallurgical evaluation of the Lady in northwest Queensland,Australia, zincian greenockite Loretta sulfide deposit, tracesof apparently primary occursin a thick, lead-rich,cadmium-anomalous zone in zincian greenockitewere noted in polishedsections laminated sulfide mineralization. It is intergrown with of diamond-drill core. This occurrenceis unusual galena,sphalerite and minor pyrite in galena-richlaminae because primary cadmium sulfides ile seldom microscale and veinlets.Electron-microprobe analyses show ore deposits,and the mineral hasnot significant zinc-for-cadmiumsubstitution in greenockite(7.1 reportedfrom - 18.4mol.Vo ZnS, average13.l 9o);usually cadmium was been previously recorded in the Proterozoic lead- found only in tracesin coexistingsphalerite and was not zinc-silver depositsof northern Australia. In addi- detectedat all in galena.Textural and geochemicalcon- tion, cadmium usually shows a close geochemical siderationssuggest that the cadmium-anomalouszone and coherencewith zinc (Rankama& Sahama1950, p. the occurrenceof zinciangreenockite are primary deposi- 708-714)and typically occursas a trace elementin tional featuresofthe mineralization. This indicatesunusual sphalerite;its occurrencein a separatesulfide phase physicalor chemicalconditions during sulfide deposition, in such a zinc-rich environment is surprising, and resultingin a decouplingof the geochemicalcoherence of suggestsunusual geochemical conditions during for- zinc and cadmium during the formation of a part of the deposit. mation of the deposit. Keywords: cadmium, zinc, lead, greenockite,sphalerite, Gsoloclcel AND CHEMICALSETTING microprobe data, Lady Loretta deposit, Australia. The Lady Loretta deposit is a small but high-grade stratiform lead-zinc-silver deposit of Proterozoic SoMrr4aRs age,situated about 115km northwestof Mount Isa atLat. 19"46' S, Long. 139o03'E in northwest Dans le gisementstratiforme de plomb-zinc-argent de The style,geological setting and ageof Lady Loretta dansle Queenslanddu Nord-Ouest,en Aus- Queensland. tralie, la greenockitezincifdre sepr6sente i I'int6rieur d'une the depositare similar to thoseof other Proterozoic zone 6paisse,riche en plomb et anomaleen cadmium, au stratiform lead-zinc-silver deposits in northern sein d'une min6ralisationde sulfureslamin€s. Elle s'y trouve Australia, suchas Mount Isa, Hilton and McArthur en intercroissanceavec la galdne,la sphal6riteet un peu River. The regionalgeological setting is discussedby de plrite dansdes lamelles et filonnets microscopiquesriches Plumb & Derrick (1975), Plumb e/ a/. (1980)and en galbne.Les analysesi la microsonde6lectronique r6vb- Derrick (1982),and the geologyof the deposit has lent, dansla greenockite,un remplacementnotable du cad- beendescribed by Alcock & Lee (I974) and Loudon - mium par le zinc (7.1 18.4V0mol. de ZnS, 13.190en et al. (1975). Aspects of the geology and isotope moyenne);mais d'ordinairele ne setrouve qu'en cadmium geochemistry depositwere discussed by Carr tracesdans la sphal6ritecontigue, et n'a pas 6t6 d6cel6du of the tout dansla galbne.Sur la foi de consid€rationstexturales & Smith (1977). et g6ochimiques,la zone anomaleen cadmium et la pr6- Hole Pl16 was drilled on section2420N into the sencede la gxeenockitezincifdre seraient des indices de d6pdt easternlimb of the deposit(see Fig. 4 of Loudon el primaire de la min6ralisation.Ces observationssignalent al, 1975); it intersectedtwo zonesof relativelyhigh- desconditions physiques et chimiquesanormales au cours gradelead-zinc mineralization. Down-hole profiles du ddpOtdes sulfures, provoquant une dissociationde la of lead, zinc and cadmium abundancesin mineral- coh6rencegdochimique du zinc et du cadmiumpendant la ized parts of P I 16 (Fig. 1) show a generallyclose cor- partie gisement. formation d'une du respondencebetween zinc and cadmium, exceptin (estimated (Traduit par la R6daction) a 25-m-thicklead-rich zone true thickness about 15 m) in which cadmium concentrationsare Mots-clds: cadmium, zinc, plomb, greenockite, sphal€rite, consideredhigher than expectedfrom zinc abun- analysed la microsonde,gisernent de Lady Loretta, Aus- dances.A scatterdiagram showsa generallygood tralie. correlation betweenzinc and cadmium throughout 89 90 THE CANADIAN MINERALOGIST Frc. l. Down-holeprofiles of abundancesof lead, zinc and cadmiumin mineralized sectionof drill hole Pl16, Lady Loretta. Samplespacing is I metrewithin metal- rich zones.Shaded zone on cadmium profile is calculatedcontribution of cad- mium containedin sphaleriteover this interual, basedon regressionequation for Fig. 28. the hole, but with severaloutlying points (Fig. 2A). showstypical morphologiesand relationshipsof the Omitting sampleswith over 590 lead, zinc and cad- grains. mium show an excellentlinear relation$hip @ig. 2B), In reflectedlight, greenockitehas a slightly lower but there is no simplerelationship between lead and polishing hardnessand slightly higher reflectance excesscadmium in lead-rich samples(Frg. 3). than the accompanyingsphalerite, and is grey with a distinct blue-greentint; sphaleritehas a faint pink tint in comparison,and this color contrastis accen- OCCURRENCE AND PROPERTIES oF GREENOCKITE tuatedunder oil immersion.Most grainsshow abun- dant and intenseinternal-reflections, mostly clearyel- Only a few sampleswere available from the lead- low with occasionalorange or red tints. rich sectionof drill hole Pl16; greenockitewas first Electron-microprobeanalyses of greenockiteshow observedin one polishedsection from that interval. significant substitution of Zn for Cd, with a com- Subsequentre-examination of all availablematerial positionalrange of 7.1to 18.4mol.Vo ZnS (average from the deposit revealedfurther greenockitein a l3.lt/o; Table l, Fig. 5). Only traces of iron are lead-rich sample from an unknown location. present,and elementsother than cadmium, zinc, iron In both samplesgreenockite occurs in galena-rich and sulfur were not detected;in particular, man- laminaein finely bandedmassive sulfides, and to a ganeseand indium were sought but not found. minor extentin crosscutting,microscale veinlets of Individual grains of greenockiteare homogeneous galena.Greenockite forms disseminatedgrains and within the precision of the analyses. patchesfrom l0 to 1000pm in diameterin galena, X-ray powder-diffraction examinationof a mix- and is commonly intergrown with sphaleriteand fine- ture of greenockiteand its host galenagave a pat- grained euhedralor spheroidalpyrite. Sphaleriteand tern similar to that of synthetichexagonal CdS, with fine-grainedpyrite alsooccur disseminatedthrough- some displacement of lines. Calculated cell- out galena laminae and veinlets. Greenockite- paramereri[a 4.08(1),c 6.64(l) A1 correspondto a sphaleritecontacts are irregular to smoothlycurved, ZnS contentof about 15mol.9o (Hurlbut 1957),in whereas greenockite-galenacontacts vary from good agreement with the range obtained from irregular to planar, with occasional grains of electron-microprobeanalyses. No diffraction lines greenockiteapproaching euhedral forms. Figure 4 attributable to hawleyitewere detected. ZINCIAN GREENOCKITE IN Pb-Zn-Ag MINERALIZATION, QUEENSLAND 9l Sphaleriteintergrown with greenockiteand in iso- 000 b lated grains in laminae of greenockite-bearinggalena o E containsminor amountsof iron and generallyonly qe trace amountsof cadmium. It is similar in composi- 600 tion to sphaleritein nearby sphalerite-richlaminae a (Table l, Fie. 5). Occasionalanalyses of sphalerite revealedover I wt.9o Cd; this may reflectinclusions ao a. aa of greenockiteat or below the surfaceof the polished ' rrt aala sections,although none were seenin the areasana- aa o l.a lyzed. Etching of sphaleritewith l: I HNO, did not o ll-.. revealany patchesthat might be cadmium-enriched (cl, Chen & Dutrbac 1978).Electron-microprobe analyses of galena intergrown with greenockite t0 50 detectedonly lead and sulfur. wt.o.6Zn DIScUSSIoN The Lady Loretta greenockiteis clearly primary with respectto the presentcycle of weathering.It occurswell below the baseof significant oxidation, in samplesshowing no original oxidation or leach- ing, and only slight post-drilling oxidation. Mineral texturesdo not resemblethose of secondarysulfides. Some recrystallizationof sulfides has occurred; sphaleriteand galena show an approach to poly- 'o m 30 lo hedral "foam" textures, sphalerite has planar rt.%zn* annealing-typetwins, and there is somemicroscale Frc. 2. Zinc-cadmium scatterplots for drill hole Pll6' veiningof sphaleritelaminae by galenaa greenock- Lady Loretta. A. All samples;shaded area contains 44 ite + sphalerite.This slight metamorphismis insuffi- points. Least-squatesregression equation is: amountof cient to explain the thick cadmium-anomalouszone, Cd (ppm)= 10.69(Znwt.s/o)+37, correlation coeffi- and equivalentor more intenserecrystallization at cient 0.802.B. Sampleswith lessthan 590Pb; shaded Mount Isa and Hilton has not generatedcadmium areacontains 42 points. Least-squaresregression equa- sr-rlfidesin oresof similar bulk-composition.There- tion is: amount of Cd (ppm)= ll.l2 (Zn wt.t/0)+2, fore, the occurrenceof greenockitein a cadmium- correlation coefficient 0.980. enrichedzone is most likely an original depositional
Recommended publications
  • Laser Raman Spectroscopy As a Technique for Identification Of
    ARTICLE IN PRESS CHEMGE-15589; No of Pages 13 Chemical Geology xxx (2008) xxx–xxx Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals Sheri N. White ⁎ Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02536, USA article info abstract Article history: In situ sensors capable of real-time measurements and analyses in the deep ocean are necessary to fulfill the Received 8 August 2008 potential created by the development of autonomous, deep-sea platforms such as autonomous and remotely Received in revised form 8 November 2008 operated vehicles, and cabled observatories. Laser Raman spectroscopy (a type of vibrational spectroscopy) is an Accepted 10 November 2008 optical technique that is capable of in situ molecular identification of minerals in the deep ocean. The goals of this Available online xxxx work are to determine the characteristic spectral bands and relative Raman scattering strength of hydrothermally- Editor: R.L. Rudnick and cold seep-relevant minerals, and to determine how the quality of the spectra are affected by changes in excitation wavelength and sampling optics. The information learned from this work will lead to the development Keywords: of new, smaller sea-going Raman instruments that are optimized to analyze minerals in the deep ocean. Raman spectroscopy Many minerals of interest at seafloor hydrothermal and cold seep sites are Raman active, such as elemental sulfur, Mineralogy carbonates, sulfates and sulfides. Elemental S8 sulfur is a strong Raman scatterer with dominant bands at ∼219 and Hydrothermal vents 472 Δcm−1.
    [Show full text]
  • Detection of Cds Nanoparticles and Implications for Cadmium Yellow Paint Degradation in Edvard Munch’S the Scream (C
    1910 Microsc. Microanal. 23 (Suppl 1), 2017 doi:10.1017/S1431927617010212 © Microscopy Society of America 2017 Detection of CdS Nanoparticles and Implications for Cadmium Yellow Paint Degradation in Edvard Munch’s The Scream (c. 1910, Munch Museum) Barnaby D.A. Levin1, Kayla X. Nguyen1, Megan E. Holtz1, Marcie B. Wiggins2, Malcolm G. Thomas3, Eva S. Tveit4, Jennifer L. Mass5, Robert Opila6, Thomas Beebe2, David A. Muller1,7. 1. School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA. 2. Department of Chemistry and Biochemistry & UD Surface Analysis Facility, University of Delaware, Newark, DE, USA. 3. Cornell Center for Materials Research, Cornell University, Ithaca, NY, USA. 4. The Munch Museum, Tøyen, Oslo, Norway. 5. Department of Conservation, Rijksmuseum, Amsterdam, NL. 6. Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA. 7. Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, USA. Cadmium sulfide (CdS) based yellow paint is fading, flaking, and discoloring with age in billions of dollars worth of Impressionist through Expressionist masterpieces from the late 19th and early 20th centuries. Characterization of the morphology, chemistry, and crystal structure of paint particles is critical for understanding CdS pigment degradation, and the role of other cadmium compounds in paint synthesis and aging [1]. Here, we use scanning transmission electron microscopy (STEM) to identify nanoparticle structures in a sample of cadmium yellow paint from the Edvard Munch’s The Scream (c. 1910, Munch Museum), taken from a region of flaking yellow paint in the water adjacent to the two background figures on the bridge (Fig. 1a), and prepared for STEM by focused ion beam (FIB) milling.
    [Show full text]
  • Both Pestle and Mortar Should Be Sent to a Commercial Heat Treating House to Be Carburized to a Depth of at Least $ Inch and Hardened to 62-64 Rockwell C
    NOTES AND NEWS 165 Both pestle and mortar should be sent to a commercial heat treating house to be carburized to a depth of at least $ inch and hardened to 62-64 Rockwell C. It is not necessaryto harden the sleeve although it may be cyanided. After heat treating the mortar is chucked in the lathe and the diameter of the projection is ground with a tool post grinder to a tight, but re- movable, fi.t to the sleeve. The face of the projection should be ground true to the side at the same chucking. The pestle is also chucked and the diameter of the grinding end reduced about .005 inch, or a working fit in the sleeve.The face of the pestle should also be ground true with the side. A NEW LOCALITY FOR GREENOCKITE CRYSTALS IN BOLIVIA FnBoBnrco Aur,rnr,o, C ochabambo, Bol'ivia. Greenockite is a rare mineral in the Bolivian tin deposits' It has been describedonly from Llallagua by S. Gordon (1). The mineral forms coat- ings of minute red crystals, resembling vanadinite in colour, upon quartz' marcasite, cassiteriteand on the wall rock, almost always associatedwith wavellite. The crystals are exceedinglyminute, rarely measuring as much as 0.1 mm. They vary greatly in habit from pyramidal to thick tabular and prismatic. Cyclic twins are common. Gordon ascribesthe formation of the mineral to supergenesolutions. The source of the cadmium may have been from the wurtzite or sphalerite which has relaced pyrrhotite. 166 NOTESAND NEWS Recently I found a secondoccurrence of greenockite in Bolivia, which is remarkable for the larger size and the rich red colour of the crystals.
    [Show full text]
  • Zincian Greenockite in Stratiform
    Canadian Mineralogist Vol. 23, pp. 89-94(1985) ZINCIANGREENOCKITE IN STRATIFORMLEAD_ZINC_SILVER MINERALIZATIONAT LADY LORETTA,NORTHWEST OUEENSLAND DAVID J. PATTERSON Researchand Development Division, Mount Isa Mines Limited, Mount Isa, Queensland4825, Austalia ABSTRAcT INTRODUC"TIoN At the Lady Loretta stratiform lead-zinc-silverdeposit During metallurgical evaluation of the Lady in northwest Queensland,Australia, zincian greenockite Loretta sulfide deposit, tracesof apparently primary occursin a thick, lead-rich,cadmium-anomalous zone in zincian greenockitewere noted in polishedsections laminated sulfide mineralization. It is intergrown with of diamond-drill core. This occurrenceis unusual galena,sphalerite and minor pyrite in galena-richlaminae because primary cadmium sulfides ile seldom microscale and veinlets.Electron-microprobe analyses show ore deposits,and the mineral hasnot significant zinc-for-cadmiumsubstitution in greenockite(7.1 reportedfrom - 18.4mol.Vo ZnS, average13.l 9o);usually cadmium was been previously recorded in the Proterozoic lead- found only in tracesin coexistingsphalerite and was not zinc-silver depositsof northern Australia. In addi- detectedat all in galena.Textural and geochemicalcon- tion, cadmium usually shows a close geochemical siderationssuggest that the cadmium-anomalouszone and coherencewith zinc (Rankama& Sahama1950, p. the occurrenceof zinciangreenockite are primary deposi- 708-714)and typically occursas a trace elementin tional featuresofthe mineralization. This indicatesunusual sphalerite;its occurrencein a separatesulfide phase physicalor chemicalconditions during sulfide deposition, in such a zinc-rich environment is surprising, and resultingin a decouplingof the geochemicalcoherence of suggestsunusual geochemical conditions during for- zinc and cadmium during the formation of a part of the deposit. mation of the deposit. Keywords: cadmium, zinc, lead, greenockite,sphalerite, Gsoloclcel AND CHEMICALSETTING microprobe data, Lady Loretta deposit, Australia.
    [Show full text]
  • STOICHIOMETRIC ARSENOPYRITE, Feass, from LA ROCHE-BALUE QUARRY, LOIRE-ATLANTIQUE, FRANCE: CRYSTAL STRUCTURE and MÖSSBAUER STUDY
    471 The Canadian Mineralogist Vol. 50, pp. 471-479 (2012) DOI : 10.3749/canmin.50.2.471 STOICHIOMETRIC ARSENOPYRITE, FeAsS, FROM LA ROCHE-BALUE QUARRY, LOIRE-ATLANTIQUE, FRANCE: CRYSTAL STRUCTURE AND MÖSSBAUER STUDY LUCA BINDI Museo di Storia Naturale, Sezione di Mineralogia – Università di Firenze, via La Pira 4, I–50121 Firenze, Italy, and C.N.R., Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via La Pira 4, I–50121 Firenze, Italy YVES MOËLO§, PHILIPPE LÉONE AND MICHEL SUCHAUD Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2, rue de la Houssinière, BP 32229, F–44322 Nantes Cedex 3, France ABSTRACT Arsenopyrite from La Roche-Balue quarry (Loire-Atlantique department, France), with the stoichiometric composition FeAsS, has been studied by X-ray single-crystal diffraction and 57Fe Mössbauer spectroscopy. Its unit cell is a 5.7612(8), b 5.6841(7), c 5.7674(8) Å, b 111.721(8)°, and V 175.46(4) Å3 (Z = 4). Taking into account very fine ubiquitous twinning on {101}, its crystal structure has been refined in the space group P21/c on the basis of 758 unique reflections F[ o > 4s(Fo)] to R1 = 0.0298. Within uncertainty limits, it indicates three unmixed Fe, As and S positions. The 57Fe Mössbauer spectrum of this arsenopyrite shows two broad absorption peaks that were fitted using the superposition of three doublets denoted as A, B and C, with parameters relative to area S, isomer shift d, and quadrupole splitting DEQ, as follows: SA 82.2%, dA 0.24(1) mm/s, DEQA 1.12(2) mm/s; SB 8.5%, dB 0.25(1) mm/s, DEQB 0.69(2) mm/s; SC 9.3%, dC 0.26(1) mm/s, DEQC 1.49(2) mm/s.
    [Show full text]
  • Se2 Nanoparticles for Screen Printing Application
    nanomaterials Article Large-Scale Synthesis of Semiconducting Cu(In,Ga)Se2 Nanoparticles for Screen Printing Application Bruna F. Gonçalves 1,2,3 , Alec P. LaGrow 1 , Sergey Pyrlin 2, Bryan Owens-Baird 4,5 , Gabriela Botelho 3 , Luis S. A. Marques 2, Marta M. D. Ramos 2, Kirill Kovnir 4,5 , Senentxu Lanceros-Mendez 2,6,7 and Yury V. Kolen’ko 1,* 1 International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; [email protected] (B.F.G.); [email protected] (A.P.L.) 2 Center of Physics, University of Minho, 4710-057 Braga, Portugal; pyrlinsv@fisica.uminho.pt (S.P.); lsam@fisica.uminho.pt (L.S.A.M.); marta@fisica.uminho.pt (M.M.D.R.); [email protected] (S.L.-M.) 3 Center of Chemistry, University of Minho, 4710-057 Braga, Portugal; [email protected] 4 Department of Chemistry, Iowa State University, Ames, IA 50011, USA; [email protected] (B.O.-B.); [email protected] (K.K.) 5 Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA 6 BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain 7 Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain * Correspondence: [email protected] Citation: Gonçalves, B.F.; LaGrow, A.P.; Pyrlin, S.; Owens-Baird, B.; Abstract: During the last few decades, the interest over chalcopyrite and related photovoltaics has Botelho, G.; Marques, L.S.A.; Ramos, been growing due the outstanding structural and electrical properties of the thin-film Cu(In,Ga)Se2 M.M.D.; Kovnir, K.; photoabsorber.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • A Comprehensive Review of Zno Materials and Devices Ü
    Virginia Commonwealth University VCU Scholars Compass Electrical and Computer Engineering Publications Dept. of Electrical and Computer Engineering 2005 A comprehensive review of ZnO materials and devices Ü. Özgür Virginia Commonwealth University, [email protected] Ya. I. Alivov Virginia Commonwealth University C. Liu Virginia Commonwealth University See next page for additional authors Follow this and additional works at: http://scholarscompass.vcu.edu/egre_pubs Part of the Electrical and Computer Engineering Commons Ozgur, U., Alivov, Y. I., Liu, C., et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301 (2005). Copyright © 2005 AIP Publishing LLC. Downloaded from http://scholarscompass.vcu.edu/egre_pubs/174 This Article is brought to you for free and open access by the Dept. of Electrical and Computer Engineering at VCU Scholars Compass. It has been accepted for inclusion in Electrical and Computer Engineering Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, Vitaliy Avrutin, S.-J. Cho, and H. Morkoç This article is available at VCU Scholars Compass: http://scholarscompass.vcu.edu/egre_pubs/174 JOURNAL OF APPLIED PHYSICS 98, 041301 ͑2005͒ APPLIED PHYSICS REVIEWS A comprehensive review of ZnO materials and devices ͒ ͒ ͒ Ü. Özgür,a Ya. I. Alivov, C. Liu, A. Teke,b M. A. Reshchikov, S. Doğan,c V. Avrutin, ͒ S.-J. Cho, and H. Morkoçd Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-3072 ͑Received 2 February 2005; accepted 13 June 2005; published online 30 August 2005͒ The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy ͑60 meV͒ which could lead to lasing action based on exciton recombination even above room temperature.
    [Show full text]
  • Structural Characterization Studies on Semiconducting Znsnn2 Films Using Synchrotron X-Ray Diffraction
    Structural Characterization Studies on Semiconducting ZnSnN2 Films using Synchrotron X-ray Diffraction by Nancy Senabulya A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Physics) in The University of Michigan 2017 Doctoral Committee: Professor Roy Clarke, Chair Professor Steven M. Durbin Assistant Professor Emmanouil Kioupakis Professor Cagliyan Kurdak [email protected] ORCID ID: 0000-0002-3394-5452 © Nancy Senabulya All Rights Reserved To Andrew, Jordan and Elise ii ACKNOWLEDGEMENTS I would like to thank my mom who sacrificed everything for my siblings and I to get the best education in Uganda. For some reason, she always believed I would get a PhD and I never believed her until now. Her love and support helping me look after our kids in the first six months of their lives, when I had them in graduate school is the reason I could complete this PhD in record time. My sister and friend Donna has been an important source of inspiration for me since childhood. Her passion for Math and Science and subsequent successful career in Telecommunications Engineering have allowed me to dream beyond my wildest dreams the things I could accomplish as a woman from a developing country. Thank you, Donna, for not allowing to be limited by circumstances. You worked hard and set a good example for all of us to follow. I am proud to be your sister. Diana, Ivan, Penny, Jenna, Martin, I love you guys so much. Thanks for rooting for me throughout this whole process, I have enjoyed our conversations on skype and been so proud of all you have accomplished the last few years.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China
    minerals Article A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China Jianping Liu and Shugen Zhang * Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China; [email protected] * Correspondence: [email protected]; Tel.: +86-731-888-30616 Received: 15 June 2017; Accepted: 26 July 2017; Published: 28 July 2017 Abstract: Zn-Cd-S series minerals not only comprise industrial resources for Zn and Cd, but are also significant mineralogical indicators for hydrothermal ore-forming processes. Due to its unique formation conditions and rare occurrence, our understanding of the formation of zincian greenockite in natural systems is limited. Zincian greenockite was discovered during mineralogical studies in the Saishitang Cu skarn deposit, Qinghai Province, Northwest China. This provided an ideal opportunity to assess the occurrence and formation of zincian greenockite in skarn-type deposits. Ore minerals were observed using reflected-light microscopy, and the zincian greenockite was further analyzed using electron-probe microanalysis (EPMA) and X-ray diffraction (XRD). The zincian greenockite occurs in the bornite–chalcopyrite ores and is composed of subhedral to anhedral grains approximately 50 × 150 µm2 to 200 × 300 µm2 in size, replaces the bornite, and is replaced by native silver. Two phases (I and II) were identified based on back-scattered electron images, X-ray element-distributions maps, and EPMA data. The textural relationship indicated that Phase I was replaced by Phase II. Phase I contained high Zn (14.6 to 21.7 mol % ZnS) and low Cd (72.4 to 82.2 mol % CdS), while Phase II contained low Zn (5.6 to 9.1 mol % ZnS) and high Cd (85.4 to 89.9 mol % CdS).
    [Show full text]