Report on Regional Added Value of Renewable Energy in BSR WP2.3 Fostering Regional Development Through Renewable Energy in BSR

Total Page:16

File Type:pdf, Size:1020Kb

Report on Regional Added Value of Renewable Energy in BSR WP2.3 Fostering Regional Development Through Renewable Energy in BSR Report on regional added value of renewable energy in BSR WP2.3 Fostering regional development through renewable energy in BSR Tartu Regional Energy Agency Tartu, 2018 WP2.3 Fostering regional development via RES The project "Baltic Energy Areas – A Planning Perspective" (BEA-APP) 11 partners from eight countries around the Baltic Sea cooperate to support the transition towards low-carbon energy systems. BEA-APP brings together two perspectives: spatial planning as well as regional energy policy. The project aims at increasing the capacity of regional and renewable energy planning actors by: • Providing adjusted spatial planning instruments targeting renewable energy development, • Developing innovative stakeholder involvement methods and financing systems to increase social acceptance through local ownership, • Applying the developed measures to pilot cases, studying the features of suitable renewable energy production sites and, thereby, setting the scene for concrete projects. BEA-APP is a flagship project under the EU Strategy for the Baltic Sea Region (EUSBSR). This report has been supported by the Interreg Baltic Sea Programme 2014-2020. However, the sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Editor: Antti Roose Contributions: Christina Landt and Tyge Kjær (Roskilde University, Denmark), Jennifer Grünes (EM- M-V, Germany), Hannu Koponen and Virpi Heikkinen (RCCF, Finland), Evija Ērkš ķe (Zemgale Planning Region Administration), Nerijus Pedisius (Lithuanian Energy Institute), Tomasz Furma ńczyk (Regional Office for Spatial Planning of the Westpomeranian Voivodeship), Monika Oredsson and Jenny Rydquist (Region Blekinge, Sweden), Marcus Larsson (Skåne Energy Agency) and Annika Steele (s.Pro - sustainable projects, Germany). Comments on this report are welcome, and should be sent to: Tartu Regional Energy Agency, Narva mnt 3, 51009 Tartu, Estonia, or by e-mail to [email protected] 2 WP2.3 Fostering regional development via RES Contents ABSTRACT ................................................................................................................................................... 4 BEA-APP EXECUTIVE SUMMARY: FOSTERING REGIONAL DEVELOPMENT VIA RES ............... 5 1. INTRODUCTION ................................................................................................................................. 8 2. METHODOLOGY FOR ASSESSING REGIONAL POTENTIALS AND IMPORTANCE OF RES . 9 2.1. FRAMEWORK ................................................................................................................................................................ 9 2.2. PILOT REGIONS ......................................................................................................................................................... 13 2.3. SETTING HEADLINE REGIONAL INDICATORS ..................................................................................................... 14 2.4. CASE STUDY ON REGIONAL RET VALUE CHAINS .............................................................................................. 15 2.5. THE SURVEY ON BSR TIERS , BUSINESS MODELS AND TRADE ....................................................................... 18 3. HEADLINE REGIONAL INDICATORS ........................................................................................... 19 3.1. EUROPE 2020 AND RES INDICATORS ................................................................................................................ 19 3.2. SJÆLLAND .................................................................................................................................................................. 24 3.3. MECKLENBURG -VORPOMMERN ........................................................................................................................... 24 3.4. SOUTHERN ESTONIA ............................................................................................................................................... 26 3.5. ZEMGALE .................................................................................................................................................................... 27 3.6. KAUNAS COUNTY ...................................................................................................................................................... 28 3.7. WEST POMERANIA ................................................................................................................................................... 31 3.8. CENTRAL FINLAND .................................................................................................................................................. 32 3.9. SOUTHERN SWEDEN ................................................................................................................................................ 34 4. REGIONAL MODELS OF RENEWABLE ENERGY TECHNOLOGY............................................. 36 4.1. COMPARATIVE ANALYSIS OF REGIONAL MODELS ............................................................................................. 36 4.2. REGION OF ZEALAND : BIOGAS PRODUCTION & UTILIZATION ...................................................................... 40 4.3. MECKLENBURG -VORPOMMERN : ONSHORE WIND ENERGY ........................................................................... 42 4.4. SOUTHERN ESTONIA : THE WOOD PELLET INDUSTRY ..................................................................................... 50 4.5. ZEMGALE : CHP AND DISTRICT HEATING ........................................................................................................... 53 4.6. KAUNAS REGION : CHP AND DISTRICT HEATING .............................................................................................. 61 4.7. WEST POMERANIAN VOIVODSHIP : ONSHORE WIND ENERGY SECTOR ....................................................... 64 4.8. WEST POMERANIAN VOIVODSHIP : OFFSHORE WIND ENERGY SECTOR ...................................................... 68 4.9. CENTRAL FINLAND : COMBINED HEAT AND POWER ........................................................................................ 74 4.10. BLEKINGE : CHP AND DISTRICT HEATING ..................................................................................................... 79 4.11. SKÅNE : SOLAR POWER ....................................................................................................................................... 82 5. BSR RENEWABLE BUSINESS TIERS AND TRADE ..................................................................... 86 5.1. GERMANY ................................................................................................................................................................... 86 5.2. ESTONIA ..................................................................................................................................................................... 91 5.3. LATVIA ........................................................................................................................................................................ 92 5.4. LITHUANIA ................................................................................................................................................................. 97 5.5. POLAND ...................................................................................................................................................................... 99 5.6. SWEDEN ....................................................................................................................................................................103 5.7. BSR ELECTRICITY TRADE .....................................................................................................................................107 5.8. BSR BIOMASS TRADE ............................................................................................................................................109 6. SYNTHESIS OF REGIONAL PROGRESS AND BENEFITS OF RENEWABLES .......................110 REFERENCES ...........................................................................................................................................114 ANNEX 1. TABLES OF HEADLINE INDICATORS. .............................................................................115 3 WP2.3 Fostering regional development via RES Abstract Delivering regional growth and socio-economic benefits by deployment of renewable energy sources in the BSR The use of renewable energy sources (RES) is seen as a key element in energy policy, reducing the dependence on fuel imported from non-EU countries, reducing emissions from fossil fuel sources, and decoupling energy costs from oil prices. The majority of Baltic Sea region (BSR) countries and regions have reached the 2020 renewable targets. The link between the expansion of RE and the resulting economic benefits has been discussed in numerous surveys with different geographical focuses, tending to downscale from the national to the regional level, and summarising economic and business outcomes of renewables in the BSR level. This report summarises data mining, analysis and assessment of the regional impact of deployment of RES technologies by key indicators, regional profiles of renewable energy technologies and conceptual modelling
Recommended publications
  • BALTIC SUSTAINABLE ENERGY STRATEGY Stockholm Environment Institute Tallinn Centre
    BALTIC SUSTAINABLE ENERGY STRATEGY Stockholm Environment Institute Tallinn Centre Tallinn-Riga-Kaunas, 2008 This strategy is prepared during the project "Baltic-Nordic cooperation for sustainable energy" that is a joint cooperation project of environmental NGOs and experts from Baltic and Nordic countries, North-West Russia and Belarus. The project is financially supported by the Nordic Council of Ministers. Project was coordinated by the Latvian Green Movement (www.zalie.lv). Strategy was prepared by Stockholm Environment Institute Tallinn Centre (www.seit.ee) and was discussed and amended by the participants of the international seminar "Sustainable energy policy for the Baltic Sea region: non-fossil and non-nuclear opportunities" that took place on February 26, 2008 in Riga, Latvia. 2 Table of Contents 1. Introduction ……………………………………………………………………………….6 2. Baltic States power sector developments….……………………………………………8 2.1. General characteristics………………………………………………..…………….....8 2.2. Estonia………………………………………………………………………………..10 2.3. Latvia…………………………………………………………………………………19 2.4. Lithuania………………………………………………………………………….…..26 2.5. Energy intensity of Baltic States..……………………………………………………33 3. Goals for the Energy sector in the Baltic States………………………………………36 4. Sustainable Energy Strategy for Baltic States…………………………………………41 4.1. Sustainable energy indicators………………………………………………………...43 4.2. External costs of energy production………………………………………………….48 4.3. Goals of the Baltic Sustainable Energy Strategy……………………………………..52 4.4. Measures to achieve BSES Goals……………………………………………………53
    [Show full text]
  • Offshore Wind in Europe – Key Trends and Statistics 2020
    Offshore Wind in Europe Key trends and statistics 2020 Offshore Wind in Europe Key trends and statistics 2020 Published in February 2021 windeurope.org This report summarises construction and financing activity in European offshore wind farms from 1 January to 31 December 2020. WindEurope regularly surveys the industry to determine the level of installations of foundations and turbines, and the subsequent dispatch of first power to the grid. The data includes demonstration sites and factors in decommissioning where it has occurred. Annual installations are expressed in gross figures while cumulative capacity represents net installations per site and country. Rounding of figures is at the discretion of the author. DISCLAIMER This publication contains information collected on a regular basis throughout the year and then verified with relevant members of the industry ahead of publication. Neither WindEurope nor its members, nor their related entities are, by means of this publication, rendering professional advice or services. Neither WindEurope nor its members shall be responsible for any loss whatsoever sustained by any person who relies on this publication. TEXT AND ANALYSIS: Lizet Ramírez, WindEurope Daniel Fraile, WindEurope Guy Brindley, WindEurope EDITOR: Rory O’Sullivan, WindEurope DESIGN: Laia Miró, WindEurope Lin Van de Velde, Drukvorm FINANCE DATA: Clean Energy Pipeline and IJ Global All currency conversions made at EUR/ GBP 0.8897 and EUR/USD 1.1422. Figures include estimates for undisclosed values. PHOTO COVER: Kriegers Flak
    [Show full text]
  • GWEC – Global Wind Report | Annual Market Update 2014
    GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2014 Navigating the global wind power market The Global Wind Energy Council is the international trade association for the wind power industry – communicating the benefits of wind power to national governments, policy makers and international institutions. GWEC provides authoritative research and analysis on the wind power industry in more than 80 countries around the world. Keep up to date with the most recent market insights: Global Wind Statistics 2014 February 2015 Global Wind Report 2014 March 2015 Global Wind Energy Outlook 2014 October 2014 Offshore Wind Policy and Market Assessment – A Global Outlook February 2015 Our mission is to ensure that wind power establishes itself as the answer to today‘s energy challenges, providing substantial venvironmental and economic benefits. GWEC represents the industry with or at the UNFCCC, the IEA, international financial institutions, the IPCC and IRENA. GWEC – opening up the frontiers follow us on TABLE OF CONTENTS Foreword. 4 Making the Commitment to Renewable Energy. 5 Global Status of Wind Power in 2014 . 6 Market Forecast for 2015 – 2019. 16 Green bonds offer exciting opportunities for the wind sector . .22 Emerging Africa . .26 Australia . .30 Brazil . 32 Canada. .34 Chile . .36 PR China . .38 Denmark . .42 The European Union . .44 France . .46 Germany. .48 Global offshore . 52 India . .58 Italy . .60 Japan . .62 Mexico . .64 Poland . .66 South Africa . .68 Sweden . 70 Turkey . 72 United Kingdom. 74 United States . 76 About GWEC . 78 GWEC – Global Wind 2014 Report 3 FOREWORD 014 was a great year for the wind industry, setting a The two big stories in 2014 and going forward continue 2new record of more than 51 GW installed in a single to be the precipitous drop in the price of oil, and growing year, bringing the global total close to 370 GW.
    [Show full text]
  • Environmental Noise Management in Latvia
    UNIVERSITY OF LATVIA FACULTY OF GEOGRAPHY AND EARTH SCIENCES Zanda Krūkle ENVIRONMENTAL NOISE MANAGEMENT IN LATVIA DOCTORAL THESIS Submitted for the scientific doctor's degree - doctor of science (Ph.D.) in earth sciences, physical geography, environmental sciences Scientific advisor: Assist. Prof., Dr. phys. Rūta Bendere Rīga, 2020 1 The doctoral thesis was carried out in the Department of Environmental Science, Faculty of Geography and Earth Sciences over the period from 2010 to 2020. Scientific advisor: Dr. phys., Assist. Prof. Rūta Bendere, University of Latvia Reviewers: Dr. geogr., Assoc. Prof. Iveta Šteinberga, University of Latvia Dr. sc. ing., Prof. Ritvars Sudārs, Latvia University of Life Sciences and Technologies Dr. techn., Prof. Linas Kliučininkas, Kaunas University of Technology Doctoral Committee: Dr. biol., Prof. Viesturs Melecis, University of Latvia, chairman of the Committee Dr. geogr., Prof. Oļģerts Nikodemus, University of Latvia Dr. habil. chem., Prof. Māris Kļaviņš, University of Latvia Dr. geogr., Assoc. Prof. Iveta Šteinberga, University of Latvia Dr. habil. paed., Prof. Raimonds Ernšteins, University of Latvia Dr. sc. ing., Prof. Gatis Bažbauers, Rīga Technical university Dr. geog., Assist. Prof. Oskars Purmalis, University of Latvia, secretary of the Committee The defence of the doctoral thesis will be held on the 12th of June, 2020 at 12:00 in a public session of the Doctoral Committee at the Faculty of Geography and Earth Sciences of the University of Latvia, 1 Jelgavas iela, Rīga. The dissertation is available at the Scientific Library of the University of Latvia, 4 Kalpaka blvd. References should be addressed to Dr. biol. Viesturs Melecis, University of Latvia, Faculty of Geography and Earth Sciences, 19 Raiņa blvd, LV-1586, Rīga.
    [Show full text]
  • 23082010102526 Norberg (Library).Pdf
    Impact of Russia’s foreign energy policy on small European states’ security Case study: the Baltic States Liene Norberg A dissertation presented to the Faculty of Arts in the University of Malta for the degree of Master in Contemporary Diplomacy July 2009 Declaration I hereby declare that this dissertation is my own original work. Liene Norberg 31 July 2009, Riga, Latvia 2 Abstract Russia is the main energy supplier for Europe and Europe is the biggest market for Russian energy sources. This interdependency is the main cause for complicated energy relations between the EU, that is struggling to merge divergent interests of its 27 unequal members on one side, and Russia, that has gained new confidence in its energy power, on the other. It is particularly difficult for small, economically and politically weak European states that are heavily dependent on Russian energy sources, like the Baltic countries, to face the global energy challenges and increasing Russian energy leverage. During the last years Russia has been using its energy as political weapon and applied coercive approach towards the countries of the ex-Soviet block, causing threat to their national security. These assertive actions have urged them and the European Union to reform their Energy Strategies and come up with several projects and activities aimed at decreasing Russia’s growing influence in the region. 3 Table of Contents List of abbreviations and acronyms ............................................................................. 6 List of Tables, Figures and Illustrations
    [Show full text]
  • Wind Power a Victim of Policy and Politics
    NNoottee ddee ll’’IIffrrii Wind Power A Victim of Policy and Politics ______________________________________________________________________ Maïté Jauréguy-Naudin October 2010 . Gouvernance européenne et géopolitique de l’énergie The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-86592-780-7 © All rights reserved, Ifri, 2010 IFRI IFRI-BRUXELLES 27, RUE DE LA PROCESSION RUE MARIE-THERESE, 21 75740 PARIS CEDEX 15 – FRANCE 1000 – BRUXELLES – BELGIQUE Tel: +33 (0)1 40 61 60 00 Tel: +32 (0)2 238 51 10 Fax: +33 (0)1 40 61 60 60 Fax: +32 (0)2 238 51 15 Email: [email protected] Email: [email protected] WEBSITE: Ifri.org Executive Summary In December 2008, as part of the fight against climate change, the European Union adopted the Energy and Climate package that endorsed three objectives toward 2020: a 20% increase in energy efficiency, a 20% reduction in GHG emissions (compared to 1990), and a 20% share of renewables in final energy consumption.
    [Show full text]
  • Jelgava SEAP
    APPROVED by the decision of Jelgava City Council No. 14/4 dated 25.11.2010. SUSTANABLE ENERGY ACTION PLAN of Jelgava City for the years 2010 – 2020 Jelgava 2010 SUSTAINABLE ENERGY ACTION PLAN OF JELGAVA CITY FOR YEARS 2010-2020 Jelgavas pilsētas Ilgtspējīgas enerģētikas rīcības plāns 2010. – 2020. gadam CONTENTS 1. INTRODUCTION 3 1.1. EU main approaches for implementation of sustainable energy policy in the cities 4 1.2. Linkage of the Action Plan with the strategic planning documents of Jelgava city 5 1.3. Long – term vision of Jelgava city for development of sustainable energy policy 6 1.4. Overall CO2 reduction target 6 2. CHARACTERISTICS OF JELGAVA CITY 8 2.1. Location, business profile and demographical situation 8 2.2. Buildings 10 2.3. Characteristics of primary resources 13 2.4. Heat supply 18 2.5. Electricity supply 21 2.6. Transport 25 3. CONDITIONS FOR CALCULTATION OF EMISSIONS 27 3.1. Methodology of calculation of emissions 27 3.2. Data for calculations of emissions 29 3.3. Calculation results of Jelgava CO2 emissions for time period of 1995-2008 and 30 choice of a baseline year 3.3.1. Energy production and consumption in Jelgava city in 2005 31 3.3.2. Measures for improvement of energy efficiency 32 3.3.3. Heat supply 35 3.3.4. Electricity supply 38 3.3.5. Transport 39 4. MEASURES OF REDUCTION OF ENERGY CONSUMPTION, IMPROVEMENT OF ENERGY EEFICIENCY AND USAGE OF RENEWABLE ENERG FOR 2010 - 2020 41 5. ESTIMATES OF CO2 EMISSIONS FOR 2010.–2020 AND MEASURES FOR REDUCTION OF THE EMISSIONS 48 6.
    [Show full text]
  • Wind Power Research in Wikipedia
    Scientometrics Wind power research in Wikipedia: Does Wikipedia demonstrate direct influence of research publications and can it be used as adequate source in research evaluation? --Manuscript Draft-- Manuscript Number: SCIM-D-17-00020R2 Full Title: Wind power research in Wikipedia: Does Wikipedia demonstrate direct influence of research publications and can it be used as adequate source in research evaluation? Article Type: Manuscript Keywords: Wikipedia references; Wikipedia; Wind power research; Web of Science records; Research evaluation; Scientometric indicators Corresponding Author: Peter Ingwersen, PhD, D.Ph., h.c. University of Copenhagen Copenhagen S, DENMARK Corresponding Author Secondary Information: Corresponding Author's Institution: University of Copenhagen Corresponding Author's Secondary Institution: First Author: Antonio E. Serrano-Lopez, PhD First Author Secondary Information: Order of Authors: Antonio E. Serrano-Lopez, PhD Peter Ingwersen, PhD, D.Ph., h.c. Elias Sanz-Casado, PhD Order of Authors Secondary Information: Funding Information: This research was funded by the Spanish Professor Elias Sanz-Casado Ministry of Economy and Competitiveness (CSO 2014-51916-C2-1-R) Abstract: Aim: This paper is a result of the WOW project (Wind power On Wikipedia) which forms part of the SAPIENS (Scientometric Analyses of the Productivity and Impact of Eco-economy of Spain) Project (Sanz-Casado et al., 2013). WOW is designed to observe the relationship between scholarly publications and societal impact or visibility through the mentions
    [Show full text]
  • Sustainability and Annual Report Is Published on a Yearly Basis
    | About Latvenergo Group| Corporate Governance | Operating Segments | Performance Indicators | Annexes to the Sustainability Report | Annual Report Enerģijas ražošana sākas no attiecībām ar dabu. Atbildīgi izmantojot vides dotās iespējas un nodrošinot efektīvu energoapgādi mūsdienīgos veidos, SUSTAINABILITY panākam ilgtspējīgu izaugsmi vides un klientu labklājībai. AND ANNUAL REPORT | About Latvenergo Group| Corporate Governance | Operating Segments | Performance Indicators | Annexes to the Sustainability Report | Annual Report Energy production starts with a relationship with nature. By using opportunities provided by the environment responsibly and ensuring an efficient and up-to-date energy supply, we achieve sustainable growth for the wellbeing of our environment and customers. | About Latvenergo Group| Corporate Governance | Operating Segments | Performance Indicators | Annexes to the Sustainability Report | Annual Report CONTENTS ABOUT LATVENERGO GROUP CORPORATE GOVERNANCE OPERATING SEGMENTS 1.1. Foreword 6 2.1. Corporate Governance Model 18 3.1. Generation and Trade 38 1.2. About the Report 8 2.2. Governance Bodies 19 3.1.1. Generation 39 1.3. About the Group 9 2.3. Group Management 25 3.1.2. Trade 43 1.4. Group Strategy 12 2.4. Internal Control System and Risk Management 26 3.1.3. Mandatory Procurement 44 1.5. Corporate Social Responsibility 14 2.5. Group Procurement 28 3.2. Distribution 45 1.6. Awards 16 2.6. Stakeholder Engagement 30 3.3. Lease of Transmission System Assets 47 2.7. Corporate Governance Report 35 2.8. Audit Committee Report 35 LATVENERGO GROUP CONSOLIDATED PERFORMANCE INDICATORS ANNEXES TO THE SUSTAINABILITY REPORT AND LATVENERGO AS ANNUAL REPORT 4.1. Materiality Assessment 50 5.1. Green Bond Report 74 Key Figures 84 4.2.
    [Show full text]
  • Gwec – Global Wind Report | Annual Market Update 2015
    GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2015 Opening up new markets for business “It’s expensive for emerging companies to enter new markets like China. The risk of failure is high leading to delays and high costs of sales. GWEC introduced us to the key people we needed to know, made the personal contacts on our behalf and laid the groundwork for us to come into the market. Their services were excellent and we are a terrific referenceable member and partner.” ED WARNER, CHIEF DIGITAL OFFICER, SENTIENT SCIENCE Join GWEC today! www.gwec.net Global Report 213x303 FP advert v2.indd 2 8/04/16 8:37 pm TABLE OF CONTENTS Foreword 4 Preface 6 Global Status of Wind Power in 2015 8 Market Forecast 2016-2020 20 Australia 26 Brazil 28 Canada 30 PR China 32 The European Union 36 Egypt 38 Finland 40 France 42 Germany 44 Offshore Wind 46 India 54 Japan 56 Mexico 58 Netherlands 60 Poland 62 South Africa 64 Turkey 66 Uruguay 68 United Kingdom 70 United States 72 About GWEC 74 GWEC – Global Wind 2015 Report 3 FOREWORD 015 was a stellar year for the wind industry and for Elsewhere in Asia, India is the main story, which has now the energy revolution, culminating with the landmark surpassed Spain to move into 4th place in the global 2Paris Agreement in December An all too rare triumph of cumulative installations ranking, and had the fifth largest multilateralism, 186 governments have finally agreed on market last year Pakistan, the Philippines, Viet Nam, where we need to get to in order to protect the climate Thailand, Mongolia and now Indonesia are all ripe
    [Show full text]
  • Europe Disclaimer
    World Small Hydropower Development Report 2019 Europe Disclaimer Copyright © 2019 by the United Nations Industrial Development Organization and the International Center on Small Hydro Power. The World Small Hydropower Development Report 2019 is jointly produced by the United Nations Industrial Development Organization (UNIDO) and the International Center on Small Hydro Power (ICSHP) to provide development information about small hydropower. The opinions, statistical data and estimates contained in signed articles are the responsibility of the authors and should not necessarily be considered as reflecting the views or bearing the endorsement of UNIDO or ICSHP. Although great care has been taken to maintain the accuracy of information herein, neither UNIDO, its Member States nor ICSHP assume any responsibility for consequences that may arise from the use of the material. This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as ‘developed’, ‘industrialized’ and ‘developing’ are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. This document may be freely quoted or reprinted but acknowledgement is requested.
    [Show full text]
  • Lietuvos Vėjo Energetikos Klasterio Formavimas
    Strategin ė savivalda ISSN 1648-5815 Strategic Self-Management 2005 Nr.1(2) www.eksponente.lt/ssz Stasys Paulauskas, Aleksandras Paulauskas LIETUVOS V ĖJO ENERGETIKOS KLASTERIO FORMAVIMAS FORMATION OF LITHUANIAN WIND ENERGY CLUSTER Naujadaros straipsnis / Innovations‘ article Lietuvos v ėjo energetikos klasterio formavimas Doc. dr. Stasys PAULAUSKAS. Strategin ės savivaldos instituto direktorius. Pagrindin ės mokslini ų tyrim ų kryptys: savivaldos teorija, strateginio valdymo metodologija, energetikos, j ūrų ūkio, švietimo pl ėtra, saviugdos informacin ės technologijos. Adresas: Baltijos pr. 123-61, LT-93224 Klaip ėda. Tel.:+37046350560, e-mail: [email protected] Assoc. Prof. dr. Stasys PAULAUSKAS. Director of Public institution Strategic Self-Management institute. Main areas of scientific research: theory of self-management, methodology of strategic management; development of energy, maritime economy, education, self-improvement information technologies. Address: Baltijos pr. 123-61, LT-93224 Klaipeda. Phone: +37046350560, e-mail: [email protected] Mgr. Aleksandras PAULAUSKAS. Lietuvos energetikos instituto doktorantas. Lietuvos v ėjo energetik ų asociacijos direktorius. Pagrindin ės naujadaros sritys: v ėjo energetikos technologijos, regionin ė pl ėtra. Adresas: Baltijos pr. 123-61. LT-93224 Klaip ėda. Tel.:+37046350560, e-mail: [email protected] Mgr. Aleksandras PAULAUSKAS. Post Graduate Student of Lithuanian Energy Institute. Director of Lithuanian wind energy association. Main areas of innovations: wind energy technologies, regional
    [Show full text]