EML Application Form Commented-Explained.Docx

Total Page:16

File Type:pdf, Size:1020Kb

EML Application Form Commented-Explained.Docx Application for the inclusion of CLOFAZIMINE in the WHO Model List of Essential Medicines (“EML”), as a reserve second-line drug for the treatment of multidrug-resistant tuberculosis (complementary lists of anti-tuberculosis drugs for use in adults and children) General items 1. Summary statement of the proposal for inclusion, change or deletion This application concerns the updating of section 6.2.4 Antituberculosis medicines in the 2015 editions of both the 19th Model List of Essential Medicines of the World Health Organization (WHO) and the 5th WHO Model List of Essential Medicines for Children(1),(2). The proposal is to add clofazimine - a medicine which is already included on both lists for use in leprosy (6.2.3 Antileprosy medicines) - to the Complementary Lists of antituberculosis medicines in adults and children at the next revision of the Essential Medicines Lists (EMLs) in April 2017. The applicant considers that under the current circumstances clofazimine should be considered an essential medicine for national programmes to have as part of the treatment they offer to patients with rifampicin-resistant (RR-TB), multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) disease. In many low resource settings, patients with these forms of tuberculosis often die or are only partially treated as a result of the limited options in the medicines available to compose an adequate regimen(3). Agents like clofazimine are therefore needed more widely for health care providers to treat M/XDR-TB patients adequately. Unfortunately, access continues to be challenged by several factors, including the limited availability of quality-assured suppliers of the medicine as well as the fact that clofazimine is used either off-label (in countries where the manufacturer registered it with an indication for leprosy) or through other mechanism (when in place) to access non registered drugs. Its listing could encourage more pharmaceutical manufacturers to invest in its production, help counter the unfavourable conditions of the global market for such drugs as numbers of TB cases diminish in the world. The 2011 WHO guidelines on M/XDR-TB treatment included clofazimine in the Group 5 of second-line drugs and recommends its use when other treatment options are not possible(4). This reflects a WHO policy dating since at least 2006 to consider this drug as a reserve anti-tuberculosis agent for drug- resistant strains(5),(6). The role of clofazimine in MDR-TB regimen design has been reviewed by a WHO Guidelines Development Group in November 2015(7). The 2016 update of the WHO policy for the treatment of MDR-TB now conditionally recommends the use of a shorter MDR-TB regimen in which clofazimine is a mainstay second-line drug used throughout its 9 month duration(7). Clofazimine is a mainstay component of shorter regimens which have shown promise to reduce drastically the length of treatment for MDR-TB patients(8),(9),(10),(11); these novel regimens are currently being used in various treatment programmes and their effectiveness and safety are also being studied under randomized controlled (RCT) conditions(12),(13). Moreover, the 2016 update of the WHO treatment guidelines for MDR-TB includes clofazimine as one of the four medicines in “Group C”, making it a core-drug option even for conventional regimens for M/XDR-TB (Table 1). Clofazimine currently the only core second‐line medicine for the treatment of MDR-TB which does not yet feature in the EML as an antituberculosis agent1(7). A major multi-partner initiative to develop the treatment of TB and MDR-TB patients, supported by UNITAID funding up to USD60 million, is now being implemented: it aims to create new regimens using 1 Gatifloxacin is not yet listed either, but moxifloxacin - an alternative later generation fluoroquinolone - is included. A separate application for the inclusion of gatifloxacin in the 20th EML is being submitted concurrently 1 combinations of both new medicines and old ones such as clofazimine(14). This request to the EML is thus very timely and well aligned the position of WHO and the consensus achieved with technical partners and experts on the subject. If approved, it would synergise with their concerted efforts to improve patient access to treatment, ensure more favourable outcomes and reduce avoidable mortality for the 580,000 patients estimated to develop rifampicin-resistant or MDR-TB in the world every year and who would need second-line TB treatment regimens to increase their likelihood of a successful outcome(3). Table 1. Medicines recommended for the treatment of rifampicin-resistant and multidrug-resistant TB as per the 2016 update of WHO policy for the treatment of drug-resistant TB(7)1 A. Fluoroquinolones2 Levofloxacin Lfx Moxifloxacin Mfx Gatifloxacin Gfx B. Second-line injectable agents Amikacin Am Capreomycin Cm Kanamycin Km (Streptomycin)3 (S) C. Other core second-line agents2 Ethionamide / Prothionamide Eto / Pto Cycloserine / Terizidone Cs / Trd Linezolid Lzd Clofazimine Cfz D. Add-on agents Pyrazinamide Z (not part of the core MDR-TB regimen) D1 Ethambutol E High-dose isoniazid Hh Bedaquiline Bdq D2 Delamanid Dlm p-aminosalicylic acid PAS Imipenem-cilastatin4 Ipm D3 Meropenem4 Mpm Amoxicillin-clavulanate4 Amx-Clv (Thioacetazone)5 (T) Notes for Table 1 1. This regrouping is intended to guide the design of conventional regimens; for shorter regimens lasting 9-12 months the composition is usually standardised 2. Medicines in Group A and Group C are shown by decreasing order of usual preference for use (subject to other considerations; see Guidelines text) 3. Refer to the Guidelines text for the conditions under which streptomycin may substitute other injectable agents. Resistance to streptomycin alone does not qualify for the definition of extensively drug-resistant TB (XDR-TB) 4. Carbapenems (Imipenem-cilastatin or Meropenem) and clavulanate are meant to be used together; clavulanate is only available in formulations combined with amoxicillin 5. HIV-status must be tested and confirmed to be negative before thioacetazone is started 2. Name of the focal point in WHO submitting or supporting the application (where relevant) The focal point is the Unit of Laboratories, Diagnostics and Drug-resistance of the Global TB Programme of WHO Headquarters (WHO/HTM/GTB/LDR). The technical personnel directly concerned are Dennis FALZON, Tiziana MASINI and Ernesto JARAMILLO. 2 3. Name of the organization(s) consulted and/or supporting the application Dr Kaspars Lunte of Global Drug Facility (GDF) 4. International Nonproprietary Name (INN, generic name) and Anatomical Therapeutic Chemical (ATC) code of the medicine. The WHO INN (generic name) of the medicine concerned is clofazimine (15). The Anatomical Therapeutic Chemical (ATC) code of the medicine concerned is J04BA012. 5. Formulation(s) and strength(s) proposed for inclusion; including adult and paediatric (if appropriate) The formulations proposed, for both adults and children, are the same as those listed in the EML for use in leprosy, namely soft gelatin capsules in dosages of 50 mg and 100 mg. A drug information sheet for clofazimine is at Annex 1. The product package insert is available online(16). Clofazimine has been marketed by its original producer Novartis under the proprietary name Lampren and Lamprene®(16). Other manufacturers produce the product under different trade names: Clofozine, Hansepran, and Lapren. Novartis has stopped the production of the active pharmaceutical ingredient (API) of clofazimine, but other manufacturers have been producing clofazimine API3. Clofazimine is one of three drugs making up the multidrug therapy (MDT) regimen recommended by WHO for the treatment of adults and children with multibacillary leprosy4. The drug is also useful in the management of erythema nodosum leprosum and reversal immunity reactions(17). Clofazimine is still available today for leprosy, its registered indication. As several other medicines under the The drug is also used outside of this indication for the treatment of M/XDR-TB (see above). In early 2012, in the wake of a much-publicized report from India of TB patients with broad patterns of resistance, WHO convened an technical consultation(18),(19). The experts at this meeting recommended that two “Group 5” drugs - clofazimine and linezolid - be made available by the Global Drug Facility (GDF) to countries as a matter of priority. Following this, the 50mg and 100mg formulation of clofazimine can now be purchased through GDF5. The gel capsules do not require extraordinary storage conditions. 6. Whether listing is requested as an individual medicine or as a representative of a pharmacological class This request is for the inclusion of clofazimine as an individual medicine without a square box symbol. Clofazimine is the only riminophenazine with a market authorization for use in the treatment of leprosy in several countries with stringent drug regulatory authorities: Australia, France, Netherlands, Spain, Switzerland, and USA. It is also the only member of this pharmacological class for which there is experience and published information on effectiveness and safety when used in the treatment of drug- resistant TB patients, although other candidates from the same family of medicines may become available in future(20),(21). 2 http://www.whocc.no/atc_ddd_index/?code=J04BA01; accessed 27.06.2016 3 For example : http://www.sangroselabs.com/home.html; accessed 27.06.2016 4 http://www.who.int/lep/mdt/regimens/en/; accessed 27.06.2016 5 http://www.stoptb.org/gdf/drugsupply/pc3.asp?PID=562; accessed 27.06.2016 3 Treatment details, public health relevance and evidence appraisal and synthesis 7. Treatment details (requirements for diagnosis, treatment and monitoring) WHO guidelines recommend clofazimine in the treatment of MDR-TB patients as part of two treatment approaches: 1) Longer (individualized) regimens : A typical MDR-TB regimen is composed of at least 4 second- line anti-TB drugs considered to be effective, including a later-generation fluoroquinolones, a second-line injectable, and two or more of ethionamide (or prothionamide), cycloserine (or terizidone), clofazimine or linezolid(7).
Recommended publications
  • Successful Treatment of Rifampicin Resistant Case of Leprosy by WHO Recommended Ofloxacin and Minocycline Regimen
    Lepr Rev (2019) 90, 456–459 CASE REPORT Successful treatment of rifampicin resistant case of leprosy by WHO recommended ofloxacin and minocycline regimen MALLIKA LAVANIAa, JOYDEEPA DARLONGb, ABHISHEK REDDYb, MADHVI AHUJAa, ITU SINGHa, R.P. TURANKARa & U. SENGUPTAa aStanley Browne Laboratory, The Leprosy Mission Community Hospital, Nand Nagri, New Delhi 110093, India bThe Leprosy Mission Hospital, Purulia, West Bengal 723101, India Accepted for publication 15 July 2019 Summary A 25-year-old male treated for leprosy at the age of 15, with MDT, visited TLM Purulia Hospital in July 2017. He was provisionally diagnosed as a lepromatous relapse with ENL reaction. A biopsy was done to test for drug resistance. Drug resistance testing showed resistance to rifampicin. Second line drug regimen recommended by WHO for rifampicin-resistance was started. Within 6 months of taking medication the clinical signs and symptoms improved rapidly and the BI dropped by 1·66 log within 6 months. This case highlights the need for investigations in cases of relapse and the efficacy of WHO recommended second line drug regimen treatment in rifampicin-resistant leprosy cases. Keywords: leprosy, rifampicin-resistance, second-line treatment Introduction Leprosy, also known as Hansen’s disease (HD), is a chronic infectious disease caused by the bacterium Mycobacterium leprae or Mycobacterium lepromatosis.1,2 Leprosy is curable with administration of a rifampicin, clofazimine and dapsone known as multidrug therapy (MDT). Since the introduction of MDT in 1983 the prevalence
    [Show full text]
  • Clofazimine As a Treatment for Multidrug-Resistant Tuberculosis: a Review
    Scientia Pharmaceutica Review Clofazimine as a Treatment for Multidrug-Resistant Tuberculosis: A Review Rhea Veda Nugraha 1 , Vycke Yunivita 2 , Prayudi Santoso 3, Rob E. Aarnoutse 4 and Rovina Ruslami 2,* 1 Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia; [email protected] 2 Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia; [email protected] 3 Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran—Hasan Sadikin Hospital, Bandung 40161, Indonesia; [email protected] 4 Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, 6255HB Nijmegen, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Multidrug-resistant tuberculosis (MDR-TB) is an infectious disease caused by Mycobac- terium tuberculosis which is resistant to at least isoniazid and rifampicin. This disease is a worldwide threat and complicates the control of tuberculosis (TB). Long treatment duration, a combination of several drugs, and the adverse effects of these drugs are the factors that play a role in the poor outcomes of MDR-TB patients. There have been many studies with repurposed drugs to improve MDR-TB outcomes, including clofazimine. Clofazimine recently moved from group 5 to group B of drugs that are used to treat MDR-TB. This drug belongs to the riminophenazine class, which has lipophilic characteristics and was previously discovered to treat TB and approved for leprosy. This review discusses the role of clofazimine as a treatment component in patients with MDR-TB, and Citation: Nugraha, R.V.; Yunivita, V.; the drug’s properties.
    [Show full text]
  • Analysis of Mutations Leading to Para-Aminosalicylic Acid Resistance in Mycobacterium Tuberculosis
    www.nature.com/scientificreports OPEN Analysis of mutations leading to para-aminosalicylic acid resistance in Mycobacterium tuberculosis Received: 9 April 2019 Bharati Pandey1, Sonam Grover2, Jagdeep Kaur1 & Abhinav Grover3 Accepted: 31 July 2019 Thymidylate synthase A (ThyA) is the key enzyme involved in the folate pathway in Mycobacterium Published: xx xx xxxx tuberculosis. Mutation of key residues of ThyA enzyme which are involved in interaction with substrate 2′-deoxyuridine-5′-monophosphate (dUMP), cofactor 5,10-methylenetetrahydrofolate (MTHF), and catalytic site have caused para-aminosalicylic acid (PAS) resistance in TB patients. Focusing on R127L, L143P, C146R, L172P, A182P, and V261G mutations, including wild-type, we performed long molecular dynamics (MD) simulations in explicit solvent to investigate the molecular principles underlying PAS resistance due to missense mutations. We found that these mutations lead to (i) extensive changes in the dUMP and MTHF binding sites, (ii) weak interaction of ThyA enzyme with dUMP and MTHF by inducing conformational changes in the structure, (iii) loss of the hydrogen bond and other atomic interactions and (iv) enhanced movement of protein atoms indicated by principal component analysis (PCA). In this study, MD simulations framework has provided considerable insight into mutation induced conformational changes in the ThyA enzyme of Mycobacterium. Antimicrobial resistance (AMR) threatens the efective treatment of tuberculosis (TB) caused by the bacteria Mycobacterium tuberculosis (Mtb) and has become a serious threat to global public health1. In 2017, there were reports of 5,58000 new TB cases with resistance to rifampicin (frst line drug), of which 82% have developed multidrug-resistant tuberculosis (MDR-TB)2. AMR has been reported to be one of the top health threats globally, so there is an urgent need to proactively address the problem by identifying new drug targets and understanding the drug resistance mechanism3,4.
    [Show full text]
  • Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication?
    pharmaceutics Review Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication? Luíse L. Chaves 1,2,*, Yuri Patriota 2, José L. Soares-Sobrinho 2 , Alexandre C. C. Vieira 1,3, Sofia A. Costa Lima 1,4 and Salette Reis 1,* 1 Laboratório Associado para a Química Verde, Rede de Química e Tecnologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; [email protected] (A.C.C.V.); slima@ff.up.pt (S.A.C.L.) 2 Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil; [email protected] (Y.P.); [email protected] (J.L.S.-S.) 3 Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife 50740-521, Brazil 4 Cooperativa de Ensino Superior Politécnico e Universitário, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal * Correspondence: [email protected] (L.L.C.); shreis@ff.up.pt (S.R.) Received: 30 October 2020; Accepted: 4 December 2020; Published: 11 December 2020 Abstract: Leprosy disease remains an important public health issue as it is still endemic in several countries. Mycobacterium leprae, the causative agent of leprosy, presents tropism for cells of the reticuloendothelial and peripheral nervous system. Current multidrug therapy consists of clofazimine, dapsone and rifampicin. Despite significant improvements in leprosy treatment, in most programs, successful completion of the therapy is still sub-optimal. Drug resistance has emerged in some countries. This review discusses the status of leprosy disease worldwide, providing information regarding infectious agents, clinical manifestations, diagnosis, actual treatment and future perspectives and strategies on targets for an efficient targeted delivery therapy.
    [Show full text]
  • PRODUCT MONOGRAPH Prmycobutin
    PRODUCT MONOGRAPH PrMYCOBUTIN® (rifabutin capsules USP) 150 mg Capsules Antibacterial Agent Pfizer Canada ULC Date of Preparation: 17,300 Trans-Canada Highway 24 September 2003 Kirkland, Quebec H9J 2M5 Date of revision: February 11, 2021 Control No. 244143 ® Pharmacia & Upjohn Company LLC Pfizer Canada ULC, licensee Pfizer Canada ULC, 2021 PRODUCT MONOGRAPH NAME OF DRUG PrMYCOBUTIN® (rifabutin capsules USP) 150 mg Capsules THERAPEUTIC CLASSIFICATION Antibacterial Agent ACTION AND CLINICAL PHARMACOLOGY MYCOBUTIN (rifabutin) is a derivative of rifamycin S, belonging to the class of ansamycins. The rifamycins owe their antimycobacterial efficacy to their ability to penetrate the cell wall and to their ability to complex with and to inhibit DNA-dependent RNA polymerase. Rifabutin has been found to interact with and to penetrate the outer layers of the mycobacterial envelope. Rifabutin inhibits DNA-dependent RNA polymerase in susceptible strains of Escherichia coli and Bacillus subtilis but not in mammalian cells. In resistant strains of E. coli, rifabutin, like rifampin, did not inhibit this enzyme. It is not known whether rifabutin inhibits DNA-dependent RNA polymerase in Mycobacterium avium or in M. intracellulare which constitutes M. avium complex (MAC). Rifabutin inhibited incorporation of thymidine into DNA of rifampin-resistant M. tuberculosis suggesting that rifabutin may also inhibit DNA synthesis which may explain its activity against rifampin-resistant organisms. Following oral administration, at least 53% of MYCOBUTIN dose is rapidly absorbed with rifabutin peak plasma concentrations attained in 2 to 4 hours. High-fat meals slow the rate without influencing the extent of absorption of rifabutin from the capsule dosage form. The mean (± SD) absolute bioavailability assessed in HIV positive patients in a multiple dose study was 20% (±16%, n=5) on day 1 and 12% (± 5%, n=7) on day 28.
    [Show full text]
  • MDR-TB): Evidence and Perspectives
    Editorial Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and perspectives Adrian Rendon1,2*, Simon Tiberi3*, Anna Scardigli4*, Lia D’Ambrosio5,6*, Rosella Centis5, Jose A. Caminero7, Giovanni Battista Migliori5 1Center for Research, Prevention and Treatment of Respiratory Infections, University Hospital Dr José Eleuterio Gonzalez, Monterrey, N.L., Mexico; 2Latin American Thoracic Association (ALAT); 3Division of Infection, Barts Health NHS Trust, London, UK; 4The Global Fund to Fight Aids, Tuberculosis and Malaria, Geneva, Switzerland; 5Maugeri Institute, IRCCS, Tradate, Italy; 6Public Health Consulting Group, Lugano, Switzerland; 7Pneumology Department, University Hospital of Gran Canaria “Dr. Negrin”, Las Palmas Gran Canaria, Spain *These authors contributed equally to this work. Correspondence to: Giovanni Battista Migliori. Maugeri Institute, IRCCS, Via Roncaccio 16, 21049 Tradate, Italy. Email: [email protected]. Submitted Aug 30, 2016. Accepted for publication Sep 05, 2016. doi: 10.21037/jtd.2016.10.14 View this article at: http://dx.doi.org/10.21037/jtd.2016.10.14 Multidrug-resistant (MDR) tuberculosis (TB) (defined Rationale basis of anti-TB treatment as resistance to at least isoniazid and rifampicin), has a The historical principles, derived from randomized clinical relevant epidemiological impact, with 480, 000 cases and trials (RCTs), are still valid: (I) combining different effective 190,000 deaths notified in 2014; 10% of them meet the drugs to prevent the selection of resistant mutants of M. criteria for extensively drug-resistant (XDR)-TB [MDR- tuberculosis; and (II) prolonging the treatment to sterilise the TB with additional resistance to any fluoroquinolone, infected tissues and, therefore, prevent relapse (1,9,10). and to at least one injectable second-line drugs (SLDs)] At least four drugs likely to be effective compose (capreomycin, kanamycin or amikacin) (1,2).
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Tuberculosis Drug Information Guide, 2Nd Edition
    Tuberculosis Drug Information Guide 2ND EDITION Edmund G. Brown Jr, Governor STATE OF CALIFORNIA Diana S. Dooley, Secretary CALIFORNIA HEALTH & HUMAN SERVICES AGENCY Ron Chapman, MD, MPH, Director DEPARTMENT OF PUBLIC HEALTH Tuberculosis Drug Information Guide 2ND EDITION Edmund G. Brown Jr, Governor STATE OF CALIFORNIA Diana S. Dooley, Secretary CALIFORNIA HEALTH & HUMAN SERVICES AGENCY Ron Chapman, MD, MPH, Director DEPARTMENT OF PUBLIC HEALTH DrugInfo_2ndEd_v9.indd 3 12/5/12 3:55 PM Tuberculosis Drug Information Guide, 2nd edition was created through a collaboration of the Curry International Tuberculosis Center (CITC) and the State of California Department of Public Health, Tuberculosis Control Branch (CDPH). CITC is a project of the University of California, San Francisco, funded by the Centers for Disease Control and Prevention (CDC). The development of this Guide was funded through CDC Cooperative Agreement U52 CCU 900454. Permission is granted for nonprofit educational use and library duplication and distribution. Suggested citation: Curry International Tuberculosis Center and California Department of Public Health, 2012: Tuberculosis Drug Information Guide, 2nd edition. This publication is available on the CITC website: http://www.currytbcenter.ucsf.edu/ tbdruginfo/ Design: Edi Berton Design DrugInfo_2ndEd_v9.indd 4 12/5/12 3:55 PM Contributors Acknowledgments Ann M. Loeffler, MD John S. Bradley, MD Pediatric Infectious Diseases Attending and Director of Pediatric Rady Children’s Hospital San Diego, San Diego, California Hospitalists at Randall Children’s Hospital at Legacy Emanuel, Daniel Deck, Pharm.D. Portland, Oregon Department of Pharmaceutical Services, Pediatric Tuberculosis Consultant, San Francisco General Hospital, California Curry International Tuberculosis Center, San Francisco, California David Forinash, RPh Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon Charles A.
    [Show full text]
  • Antimicrobial Resistance in Bacteria
    Cent. Eur. J. Med. • 4(2) • 2009 • 141-155 DOI: 10.2478/s11536-008-0088-9 Central European Journal of Medicine Antimicrobial resistance in bacteria Review Article Katrijn Bockstael*, Arthur Van Aerschot** Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium Received 9 July 2008; Accepted 17 November 2008 Abstract: The development of antimicrobial resistance by bacteria is inevitable and is considered as a major problem in the treatment of bacterial infections in the hospital and in the community. Despite efforts to develop new therapeutics that interact with new targets, resistance has been reported even to these agents. In this review, an overview is given of the many therapeutic possibilities that exist for treatment of bacterial infections and how bacteria become resistant to these therapeutics. Keywords: Antimicrobial agents • Resistance development • Efflux • Alteration of drug target • Antibacterials © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction 2. Different mechanisms of resistance to antimicrobials The history of humankind can be regarded from a medical point of view as a struggle against infectious 2.1. Intrinsic resistance diseases. Infections were the leading cause of death Bacteria may be inherently resistant to an antimicrobial. th worldwide at the beginning of the 20 century. Since This passive resistance is a consequence of general the discovery of penicillin by Alexander Fleming in adaptive processes that are not necessary linked to a 1929 and the first introduction of the sulpha drugs by given class of antimicrobials. An example of natural Domagk in 1932, the number of new antimicrobials resistance is Pseudomonas aeruginosa, whose low available has increased tremendously between 1940 membrane permeability is likely to be a main reason for and 1960.
    [Show full text]
  • And Second-Line Drugs in a Murine Model of Tuberculosis
    Sterilizing Activities of Novel Combinations Lacking First- and Second-Line Drugs in a Murine Model of Tuberculosis Kathy Williams,a Austin Minkowski,a Opokua Amoabeng,a Charles A. Peloquin,b Dinesh Taylor,a Koen Andries,c Robert S. Wallis,d Khisimuzi E. Mdluli,e and Eric L. Nuermbergera,f Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USAa; College of Pharmacy, University of Florida, Gainesville, Florida, USAb; Tibotec BVBA, Johnson & Johnson, Beerse, Belgiumc; Pfizer Inc., Groton, Connecticut, USAd; Global Alliance for TB Drug Development, New York, New York, USAe; and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USAf Novel oral regimens composed of new drugs with potent activity against Mycobacterium tuberculosis and no cross-resis- tance with existing agents are needed to shorten and simplify treatment for both drug-susceptible and drug-resistant tu- berculosis. As part of a continuing effort to evaluate novel drug combinations for treatment-shortening potential in a mu- rine model, we performed two long-term, relapse-based experiments. In the first experiment, several 3- and 4-drug Downloaded from combinations containing new agents currently in phase 2/3 trials (TMC207 [bedaquiline], PA-824 and PNU-100480 [sut- ezolid], and/or clofazimine) proved superior to the first-line regimen of rifampin, pyrazinamide, and isoniazid. TMC207 plus PNU-100480 was the most effective drug pair. In the second experiment, in which 3- and 4-drug combinations com- posed of TMC207 and pyrazinamide plus rifapentine, clofazimine, PNU-100480, or both rifapentine and clofazimine were evaluated, the rank order of drugs improving the sterilizing activity of TMC207 and pyrazinamide was as follows: rifapen- tine plus clofazimine > clofazimine > rifapentine > PNU-100480.
    [Show full text]
  • Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies
    Arrhythmogenic potential of drugs FP7-HEALTH-241679 http://www.aritmo-project.org/ Common Study Protocol for Observational Database Studies WP5 – Analytic Database Studies V 1.3 Draft Lead beneficiary: EMC Date: 03/01/2010 Nature: Report Dissemination level: D5.2 Report on Common Study Protocol for Observational Database Studies WP5: Conduct of Additional Observational Security: Studies. Author(s): Gianluca Trifiro’ (EMC), Giampiero Version: v1.1– 2/85 Mazzaglia (F-SIMG) Draft TABLE OF CONTENTS DOCUMENT INFOOMATION AND HISTORY ...........................................................................4 DEFINITIONS .................................................... ERRORE. IL SEGNALIBRO NON È DEFINITO. ABBREVIATIONS ......................................................................................................................6 1. BACKGROUND .................................................................................................................7 2. STUDY OBJECTIVES................................ ERRORE. IL SEGNALIBRO NON È DEFINITO. 3. METHODS ..........................................................................................................................8 3.1.STUDY DESIGN ....................................................................................................................8 3.2.DATA SOURCES ..................................................................................................................9 3.2.1. IPCI Database .....................................................................................................9
    [Show full text]