Antimicrobial Resistance in Bacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Successful Treatment of Rifampicin Resistant Case of Leprosy by WHO Recommended Ofloxacin and Minocycline Regimen
Lepr Rev (2019) 90, 456–459 CASE REPORT Successful treatment of rifampicin resistant case of leprosy by WHO recommended ofloxacin and minocycline regimen MALLIKA LAVANIAa, JOYDEEPA DARLONGb, ABHISHEK REDDYb, MADHVI AHUJAa, ITU SINGHa, R.P. TURANKARa & U. SENGUPTAa aStanley Browne Laboratory, The Leprosy Mission Community Hospital, Nand Nagri, New Delhi 110093, India bThe Leprosy Mission Hospital, Purulia, West Bengal 723101, India Accepted for publication 15 July 2019 Summary A 25-year-old male treated for leprosy at the age of 15, with MDT, visited TLM Purulia Hospital in July 2017. He was provisionally diagnosed as a lepromatous relapse with ENL reaction. A biopsy was done to test for drug resistance. Drug resistance testing showed resistance to rifampicin. Second line drug regimen recommended by WHO for rifampicin-resistance was started. Within 6 months of taking medication the clinical signs and symptoms improved rapidly and the BI dropped by 1·66 log within 6 months. This case highlights the need for investigations in cases of relapse and the efficacy of WHO recommended second line drug regimen treatment in rifampicin-resistant leprosy cases. Keywords: leprosy, rifampicin-resistance, second-line treatment Introduction Leprosy, also known as Hansen’s disease (HD), is a chronic infectious disease caused by the bacterium Mycobacterium leprae or Mycobacterium lepromatosis.1,2 Leprosy is curable with administration of a rifampicin, clofazimine and dapsone known as multidrug therapy (MDT). Since the introduction of MDT in 1983 the prevalence -
Chapter 12 Antimicrobial Therapy Antibiotics
Chapter 12 Antimicrobial Therapy Topics: • Ideal drug - Antimicrobial Therapy - Selective Toxicity • Terminology - Survey of Antimicrobial Drug • Antibiotics - Microbial Drug Resistance - Drug and Host Interaction An ideal antimicrobic: Chemotherapy is the use of any chemical - soluble in body fluids, agent in the treatment of disease. - selectively toxic , - nonallergenic, A chemotherapeutic agent or drug is any - reasonable half life (maintained at a chemical agent used in medical practice. constant therapeutic concentration) An antibiotic agent is usually considered to - unlikely to elicit resistance, be a chemical substance made by a - has a long shelf life, microorganism that can inhibit the growth or - reasonably priced. kill microorganisms. There is no ideal antimicrobic An antimicrobic or antimicrobial agent is Selective Toxicity - Drugs that specifically target a chemical substance similar to an microbial processes, and not the human host’s. antibiotic, but may be synthetic. Antibiotics Spectrum of antibiotics and targets • Naturally occurring antimicrobials – Metabolic products of bacteria and fungi – Reduce competition for nutrients and space • Bacteria – Streptomyces, Bacillus, • Molds – Penicillium, Cephalosporium * * 1 The mechanism of action for different 5 General Mechanisms of Action for antimicrobial drug targets in bacterial cells Antibiotics - Inhibition of Cell Wall Synthesis - Disruption of Cell Membrane Function - Inhibition of Protein Synthesis - Inhibition of Nucleic Acid Synthesis - Anti-metabolic activity Antibiotics -
Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1. -
1057-1064, 1984 the Effect of Pipemidic Acid on The
Microbiol. Immunol. Vol. 28 (9), 1057-1064, 1984 The Effect of Pipemidic Acid on the Growth of a Stable L-Form of •ôNH•ôStaphylococcus aureus•ôNS•ô Kunihiko YABU,*,1 Hiromi ToMizu,1 and Yayoi KANDA2 1 Department of Biology, Hokuriku University School of Pharmacy, Kanazawa-machi, Kanazawa, Ishikawa ,920-11, and 2Department of Microbiology, Teikyo University School of Medicine, Kaga 2-chome, Ilabashi-ku, Tokyo 173 (Accepted for publication, June 12, 1984) Bacterial L-forms usually display spherical forms in an osmotically protective medium and seem to lack the typical binary fission process of cellular division ob servedin most bacteria (7). Although various modes of replication, such as budding binary fission, and release of elementary bodies from large bodies have been observed by light and electron microscopy (2, 5, 16), little is known about the processes involved in replication of L-forms. In the course of an experiment designed to test the effect of DNA synthesis inhibitors on the growth of a stable L-form of •ôNH•ôStaphylococcus•ôNS•ôaureus which grows in liquid medium, it was found that pipemidic acid, a synthetic antibacterial agent structurally related to nalidixic acid (13), induced a marked morphological altera tionat growth inhibitory concentrations. This study was initiated in an attempt to clarify the mechanism of replication of stable L-forms by analyzing the mor phologicalalteration caused by pipemidic acid. The stable L-form used was isolated as follows. S. •ôNH•ôaureus•ôNS•ôFDA 209P was grown in 10ml of Brain Heart Infusion broth (Difco) at 37C. The culture grown at 5•~105 colony-forming units (CFU) per ml was washed with saline by filtration and suspended in saline containing 100ƒÊg of N-methyl-N'-nitro-N-nitrosoguanidine per nil. -
Unexpected Induction of Resistant Pseudomonas Aeruginosa Biofilm to fluoroquinolones by Diltiazem: a New Perspective of Microbiological Drug—Drug Interactionଝ
Journal of Infection and Public Health (2008) 1, 105—112 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Unexpected induction of resistant Pseudomonas aeruginosa biofilm to fluoroquinolones by diltiazem: A new perspective of microbiological drug—drug interactionଝ Walid F. ElKhatib, Virginia L. Haynes, Ayman M. Noreddin ∗ University of Minnesota, Duluth, College of Pharmacy, Pharmacy Practice and Pharmaceutical Sciences, 1110 Kirby Dr. Life Sciences 232, Duluth, MN 55812, USA Received 15 August 2008; received in revised form 21 October 2008; accepted 22 October 2008 KEYWORDS Summary The increase of multi-drug resistant Pseudomonas aeruginosa infec- Diltiazem; tions is a worldwide dilemma. At the heart of the problem is the inability to treat Pseudomonas established P. aeruginosa biofilms with standard antibiotic therapy, including flu- aeruginosa; oroquinolones. We address a previously unstudied question as to the effect of a Biofilm; commonly prescribed calcium channel blocker (CCB) diltiazem on the biofilm growth. Resistance; Real-time monitoring of the overall growth and killing of P.aeruginosa biofilm during fluoroquinolones therapy in the presence and absence of diltiazem was performed. Fluoroquinolone In this study, we demonstrate that for P. aeruginosa biofilms, resistance to the first- line fluoroquinolones may be induced by the commonly prescribed calcium channel blocker diltiazem. Published by Elsevier Limited on behalf of King Saud Bin Abdulaziz University for Health Sciences. All rights reserved. Introduction approved for the treatment of angina, hyper- tension and cardiac arrhythmia [1]. It acts as Diltiazem is a class III calcium channel blocker a calcium antagonist that controls calcium ion (CCB) belonging to benzothiazepines and has been influx in cardiac and vascular smooth muscle cells through slow voltage-gated L-type channels in the ଝ This manuscript was presented in part at the Design of Med- cell membrane. -
Antibiotic Resistance: from the Bench to Patients
antibiotics Editorial Antibiotic Resistance: From the Bench to Patients Márió Gajdács 1,* and Fernando Albericio 2,3 1 Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Dóm tér 10., 6720 Szeged, Hungary 2 School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa 3 Department of Organic Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona, Spain * Correspondence: [email protected]; Tel.: +36-62-341-330 Received: 20 August 2019; Accepted: 26 August 2019; Published: 27 August 2019 The discovery and subsequent clinical introduction of antibiotics is one of the most important game-changers in the history of medicine [1]. These drugs have saved millions of lives from infections that would previously have been fatal, and later, they allowed for the introduction of surgical interventions, organ transplantation, care of premature infants, and cancer chemotherapy [2]. Nevertheless, the therapy of bacterial infections is becoming less and less straightforward due to the emergence of multidrug resistance (MDR) in these pathogens [3]. Direct consequences of antibiotic resistance include delays in the onset of the appropriate (effective) antimicrobial therapy, the need to use older, more toxic antibiotics (e.g., colistin) with a disadvantageous side-effect profile, longer hospital stays, and an increasing burden on the healthcare infrastructure; overall, a decrease in the quality-of-life (QoL) and an increase in the mortality rate of the affected patients [4,5]. To highlight the severity of the issue, several international declarations have been published to call governments around the globe to take action on antimicrobial resistance [6–9]. Since the 1980s, pharmaceutical companies have slowly turned away from antimicrobial research and towards the drug therapy of chronic non-communicable diseases [10,11]. -
Clofazimine As a Treatment for Multidrug-Resistant Tuberculosis: a Review
Scientia Pharmaceutica Review Clofazimine as a Treatment for Multidrug-Resistant Tuberculosis: A Review Rhea Veda Nugraha 1 , Vycke Yunivita 2 , Prayudi Santoso 3, Rob E. Aarnoutse 4 and Rovina Ruslami 2,* 1 Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia; [email protected] 2 Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia; [email protected] 3 Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran—Hasan Sadikin Hospital, Bandung 40161, Indonesia; [email protected] 4 Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Health Sciences, 6255HB Nijmegen, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Multidrug-resistant tuberculosis (MDR-TB) is an infectious disease caused by Mycobac- terium tuberculosis which is resistant to at least isoniazid and rifampicin. This disease is a worldwide threat and complicates the control of tuberculosis (TB). Long treatment duration, a combination of several drugs, and the adverse effects of these drugs are the factors that play a role in the poor outcomes of MDR-TB patients. There have been many studies with repurposed drugs to improve MDR-TB outcomes, including clofazimine. Clofazimine recently moved from group 5 to group B of drugs that are used to treat MDR-TB. This drug belongs to the riminophenazine class, which has lipophilic characteristics and was previously discovered to treat TB and approved for leprosy. This review discusses the role of clofazimine as a treatment component in patients with MDR-TB, and Citation: Nugraha, R.V.; Yunivita, V.; the drug’s properties. -
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications, -
Analysis of Mutations Leading to Para-Aminosalicylic Acid Resistance in Mycobacterium Tuberculosis
www.nature.com/scientificreports OPEN Analysis of mutations leading to para-aminosalicylic acid resistance in Mycobacterium tuberculosis Received: 9 April 2019 Bharati Pandey1, Sonam Grover2, Jagdeep Kaur1 & Abhinav Grover3 Accepted: 31 July 2019 Thymidylate synthase A (ThyA) is the key enzyme involved in the folate pathway in Mycobacterium Published: xx xx xxxx tuberculosis. Mutation of key residues of ThyA enzyme which are involved in interaction with substrate 2′-deoxyuridine-5′-monophosphate (dUMP), cofactor 5,10-methylenetetrahydrofolate (MTHF), and catalytic site have caused para-aminosalicylic acid (PAS) resistance in TB patients. Focusing on R127L, L143P, C146R, L172P, A182P, and V261G mutations, including wild-type, we performed long molecular dynamics (MD) simulations in explicit solvent to investigate the molecular principles underlying PAS resistance due to missense mutations. We found that these mutations lead to (i) extensive changes in the dUMP and MTHF binding sites, (ii) weak interaction of ThyA enzyme with dUMP and MTHF by inducing conformational changes in the structure, (iii) loss of the hydrogen bond and other atomic interactions and (iv) enhanced movement of protein atoms indicated by principal component analysis (PCA). In this study, MD simulations framework has provided considerable insight into mutation induced conformational changes in the ThyA enzyme of Mycobacterium. Antimicrobial resistance (AMR) threatens the efective treatment of tuberculosis (TB) caused by the bacteria Mycobacterium tuberculosis (Mtb) and has become a serious threat to global public health1. In 2017, there were reports of 5,58000 new TB cases with resistance to rifampicin (frst line drug), of which 82% have developed multidrug-resistant tuberculosis (MDR-TB)2. AMR has been reported to be one of the top health threats globally, so there is an urgent need to proactively address the problem by identifying new drug targets and understanding the drug resistance mechanism3,4. -
DESCRIPTION CLINICAL PHARMACOLOGY Mechanism Of
NDA 20-844/ Topamav Sprinkle Capsules Approved Labeling Text Version: 10/26/98 DESCRIPTION Topiramate is a sulfamate-substituted monosaccharide that is intended for use as an antiepileptic drug. TOPAMAX@ (topiramate capsules) Sprinkle Capsules are available as I5 mg, 25 mg and 50mg sprinkle capsules for oral administration as whole capsules or for opening and sprinkling onto soft food. Topiramate is a white crystalline powder with a bitter taste. Topiramate is most soluble in alkaline solutions containing sodium hydroxide or sodium phosphate and hawng a pH of 9 to IO. It is freely soluble in acetone, chloroform, dimethylsulfoxide, and ethanol. The solubility in water is 9.8 mg/mL. Its saturated solution has a pH of 6.3. Topiramate has the molecular formula C,,H,,NO,S and a molecular weight of 339.37. Topiramate is designated chemically as 2,3:4,5-Di-O-isopropylidene-~- D-fructopyranose sulfamate and has the following structural formula: H3C CH3 TOPAMAX” (topiramate capsules) Sprinkle Capsules contain topiramate coated beads in a hard gelatin capsule. The inactive ingredients are: sugar spheres (sucrose and starch), povidone, cellulose acetate, gelatin, silicone dioxide, sodium lauryl sulfate, titanium dioxide, and black pharmaceutical ink. CLINICAL PHARMACOLOGY Mechanism of Action: The precise mechanism by which topiramate exerts its antiseizure effect is unknown; however, electrophysiological and biochemical studies of the effects of topiramate on cultured neurons have revealed three properties that may contribute to topiramate’s antiepileptic efficacy. First, action potentials elicited repetitively by a sustained depolarization of the neurons are blocked by topiramate in a time-dependent manner, suggestive of a state-dependent sodium channel blocking action. -
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. -
Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results.