A New Species of Derobrachus Audinet-Serville, 1832 (Coleoptera, Cerambycidae, Prioninae) from a Cloud Forest in Honduras

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Derobrachus Audinet-Serville, 1832 (Coleoptera, Cerambycidae, Prioninae) from a Cloud Forest in Honduras Zootaxa 4422 (3): 395–402 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4422.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:066252ED-DE7E-4191-A03C-822F24455280 A new species of Derobrachus Audinet-Serville, 1832 (Coleoptera, Cerambycidae, Prioninae) from a cloud forest in Honduras ANTONIO SANTOS-SILVA1, NOËL MAL2, MARTIJN VAN ROIE3, 4 & MERLIJN JOCQUÉ2,3,5,6 1Museu de Zoologia, Universidade de São Paulo, São Paulo, SP, Brazil 2 Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium 3Biodiversity Inventory for Conservation npo (BINCO), Walmersumstraat 44, 3380 Glabbeek, Belgium 4Department of Biology, Ecosystem Management Research Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium 5Operation Wallacea, Wallace House, Old Bolingbroke, Lincolnshire, PE23 4EX, UK. 6Corresponding author. E-mail: [email protected] Abstract A yearly biodiversity monitoring of longhorned beetles (Cerambycidae) in a Honduran cloud forest revealed a new species of prionine. Derobrachus cusucoensis sp. nov. is a locally relatively common species described from Cusuco National Park in Honduras, becoming the ninth species of this genus recorded for the country. Similar both in morphology and a montane habitat to D. dohrni, there is a possibility that this new species represents a disconnected population from the latter that evolved separately. An adapted insert for an existing identification key to all Derobrachus species is included. Key words: Central America, key, longhorned beetle, taxonomy, Cusuco National Park Introduction The Honduran landscape is characterized by mountains topped by cloud forest. Over the years these montane forest ecosystems have developed a rich diversity of animals and plants uniquely adapted to this habitat. The most northern stretches of cloud forest in Honduras are located in the Merendón mountain range, bordering Guatemala. The tiny forest patches here are partly covered by Cusuco National Park (CNP), ranked in the top 100 most irreplaceable sites worldwide for the conservation of threatened amphibians, birds and mammals (Le Saout et al. 2013). The high degree of isolation of this mountain range has resulted in a high degree of endemicity. Deforestation here is a pressing issue, and the actual protection of CNP limited. To help preserve this unique forest, a yearly biodiversity monitoring is set in place by Operation Wallacea (https://www.opwall.com/). This monitoring program includes light trapping at fixed locations to evaluate selected invertebrate groups such as the Lepidoptera families Sphingidae (hawkmoths) and Saturniidae (emperor moths). The most common longhorned beetles observed at light traps in CNP are Derobrachus species (Cerambycidae: Prioninae: Prionini) and include a new species to science. Recently, Heffern and Santos-Silva (2016) described a new species of this genus from Mexico (Veracruz), elevating the number of known species in Derobrachus (Monné 2017) to 20. Santos-Silva (2007) revised Derobrachus Audinet-Serville, 1832 and divided the genus into three species groups, without nomenclatural value, together encompassing 19 species: “sulcicornis group”, “brevicollis group”, and “apterus group”. Of these, the species that currently have been recorded for Honduras (Monné 2017) are: Derobrachus apterus Bates, 1879, D. dohrni Lameere, 1911; D. granulatus Bates, 1884; D. inaequalis (Bates, 1872); D. longicornis (Bates, 1872); D. megacles Bates, 1884; D. procerus Thomson, 1861 and D. sulcicornis LeConte, 1851. We here describe the new species of Derobrachus from cloud forest in CNP and provide an insert for identification key to species. Accepted by G. Nearns: 23 Mar. 2018; published: 24 May 2018 395 Material and methods Field site. Light trapping took place from June to August 2014-2017 in Cusuco National Park (CNP), situated in the Merendón mountain range in northwestern Honduras. The core zone of the park consists of lower montane tropical rain forest (a mix of primary and secondary), with patches of primary cloud forest and upper montane rain forest. Light trapping is repeated yearly on five fixed locations in CNP; Base Camp (15.497056000 / - 88.211764000), Cantilles (15.513457 / -88.241681), Guanales (15.488512 / -88.234064), Cortecito (15.522111000 / -88.289355000), El Danto (15.528277 / -88.277573), and an occasional location Capuca (15.512366 / - 88.217148). Field collection. The light trap was equipped with a 125 W Philips MV bulb strung in front of a vertical white piece of cloth at about 150 cm above the ground. A white piece of plastic was placed under the bulb. Power was provided by a portable generator. Light trapping was initiated at 20:00 and continued for two hours. Cerambycids were collected and preserved in 70% ethanol. Species description. Photographs related to figures 1–5 were taken with Canon EOS70D DSLR Camera and 105 mm F2.8 Sigma EX DG Macro OS Lens; stacking by Zerene Stacker software (by the second author). Photographs related to figures 6–15 and 17–20 were taken with a Canon EOS Rebel T3i DSLR camera, Canon MP-E 65 mm f/2.8 1-5X macro lens, stacking by Zerene Stacker software (by the first author). Measurements were taken in ‘‘mm’’ using measuring ocular Hensoldt/Wetzlar - Mess 10 in the Leica MZ6 stereomicroscope, also used in the study of the specimens. Measurements. Total length is measured as the distance between the tip of the mandibles and the distal edge of elytra. Prothoracic length is measured along the central line of the prothorax. Anterior prothoracic width is measured as the widest point between the tips of the distal lateral spines. Posterior prothoracic width is the widest point between the tips of the basal lateral spines. The latter two measurements were only recorded if lateral spines were intact. The humeral width is the distance between the shoulders of the elytra. Elytral length is the distance between the humeral callus and the elytral apex measured on a parallel line with the interior edge of the elytra. The collection acronyms used in this study are as follows: RBINS Royal Belgian Institute of Natural Sciences, Brussels, Belgium; NDPC Norbert Delahaye, Private Collection, Plaisir, France; MZSP Museu de Zoologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil; ZMPA Polish Academy of Science, Museum of the Institute of Zoology, Warsaw, Poland. Derobrachus cusucoensis, sp. nov. (Figs 1–13, 21–23) Description. Holotype male (Figs 1–5, 7, 9–10, 12). Integument mostly dark brown, more blackish on some areas; palpi reddish brown; antennae dark brown; elytra dark brown basally, brown on remaining surface, except dark brown margins; tarsomeres I–IV dark brown interspersed with irregular dark reddish brown areas; tarsomere V reddish brown, especially metatarsomere V, except basal and distal areas. Head. Area between clypeus and prothoracic margin longitudinally sulcate; coarsely rugose on each side of central sulcus between clypeus and posterior margin of upper eye lobes, interspersed with fine, sparse punctures; area between posterior edge of upper eye lobes and prothoracic margin finely, abundantly rugose-punctate (opaque general appearance); with short, erect, sparse yellowish brown setae, slightly more abundant close to eyes. Ocular carina distinct from anterior margin of upper eye lobes to near posterior ocular edge. Area between clypeus and antennal base, moderately finely, densely punctate; with short, erect, abundant yellowish brown setae, more abundant toward ventral side. Antennal tubercles large, inner side rounded, slightly projected under frons; coarsely, sparsely punctate on basal half, gradually finer, denser toward apex, especially denser in frontal area; with erect, sparse yellowish brown setae, shorter, distinctly more abundant close to apex. Postclypeus (Fig. 5) large; basal area centrally nearly coplanar with frons, distinctly elevated toward sides, with distal margin widely concave; central distal area distinctly inclined; center of basal area sub-triangularly smooth, finely, abundantly punctate in remaining central area, gradually coarser, sparser toward sides; inclined area smoothly, sparsely punctate; with 396 · Zootaxa 4422 (3) © 2018 Magnolia Press SANTOS-SILVA ET AL. long, erect, abundant yellowish brown setae, sparser toward sides of basal area and in inclined area. Anteclypeus transverse, narrow, smooth, glabrous. Labrum narrow, transverse, inclined, with center of distal margin rounded projected; with sparse yellowish brown setae and dense fringe of yellowish brown setae distally, except in rounded projection. Gulamentum finely, moderately sparsely punctate from base to lower eye lobes (this area convex), coarsely vermiculate from this point to distal margin (this area gradually depressed toward distal area of eyes, then distinctly elevated toward mentum); with long, erect, abundant yellowish brown setae. Area behind eyes finely rugose. Maxillary palpi long, about 1.8 times length of labial palpi. Genae finely, moderately abundant punctate, especially toward ventral side; with long, erect yellowish setae, sparser toward dorsal side, more abundant toward ventral side; apex acute, obliquely projected forward. Outer side of mandibles without tooth close to distal curvature. Distance between upper eye lobes 0.20 times length of scape; in ventral view, distance between lower eye lobes 0.25 times length of scape. Antennae 1.27 times elytral length,
Recommended publications
  • Coleoptera: Cerambycidae)
    J Insect Behav (2012) 25:569–577 DOI 10.1007/s10905-012-9321-0 Role of Volatile Semiochemicals in the Host and Mate Location Behavior of Mallodon dasystomus (Coleoptera: Cerambycidae) Matthew A. Paschen & Nathan M. Schiff & Matthew D. Ginzel Revised: 18 January 2012 /Accepted: 1 March 2012 / Published online: 16 March 2012 # Springer Science+Business Media, LLC 2012 Abstract Little is known of the role semiochemicals play in the mating systems of longhorned beetles (Coleoptera: Cerambycidae) in the primitive subfamily Prioninae. Mallodon dasystomus (Say), the hardwood stump borer, is a widely distributed prionine native to the southern US. Preferred hosts of M. dasystomus include oak, sweetgum, sugarberry and hackberry; although they also colonize a variety of other hardwoods. Here, we study the mate location behavior of M. dasystomus by testing the hypotheses that the sexes are mutually attracted to volatiles emanating from the larval host and that females release a volatile pheromone that is attractive to males alone. In a Y-tube olfactometer, male and female M. dasystomus responded to volatiles from host material (i.e., sweetgum and sugarberry). However, only males responded to females in the olfactometer, suggesting that females release a volatile sex pheromone. In choice experiments conducted in a greenhouse, we determined that both males and females prefer host over non-host material. In further bioassays in the greenhouse, males chose host material containing a live female over that containing a live male or host material alone. These findings are further evidence of the critical role host volatiles and pheromones play in mating systems of longhorned beetles.
    [Show full text]
  • Page 1 of 3 Plant Species Plant Common Name Arthropod Species
    Page 1 of 3 Plant Common Arthropod Plant Species Arthropod Species Collection Date Location Type City, State County Collector Collector Institution Plants Involved Plants Affected Acres Involved Acres Affected Severity Sample Number Record Collection Method Via State/ Country Notes Name Common Name Pulvinaria cottony maple leaf Fanning Springs Fanning Springs, Acer rubrum red maple 1-Apr-2011 Gilchrist Ian C. Stocks DPI 2 2 Moderate E-2011-1704 COUNTY Hand Catch acericola scale State Park FL common bugle, Phenacoccus Solanum Ajuga reptans creeping 21-Feb-2011 Nursery Archer, FL Alachua Cheryl A. Jones DPI 50 10 0.1 0.1 Moderate E-2011-838 HOST Hand Catch solani mealybug bugleweed Agriculture Christine A. INTERDICTION Annona cherimola cherimoya Planococcus citri citrus mealybug 9-Mar-2011 Interdiction Live Oak, FL Suwanee Zamora; C. DPI 40 ~95% Moderate E-2011-1077 Hand Catch California INTERCEPTION Station 6B Douglas Corbin Cestrum orange flowering Aleurodicus giant whitefly 20-Apr-2011 Nursery Ocala, FL Marion Shelly M. Wayte DPI 2 2 Slight E-2011-2187 HOST Hand Catch aurantiacum jasmine dugesii Chrysophyllum Pulvinaria satin leaf urbicola soft scale 30-Mar-2011 Roadside Miami, FL Miami-Dade Olga Garcia DPI 2 2 Severe E-2011-1666 HOST Hand Catch oliviforme urbicola Corticoris This bug is rarely collected (Dr. Citrus sinensis orange a plant bug 4-Apr-2011 Residence LaBelle, FL Hendry Roberto Delcid DPI E-2011-2183 COUNTY Jackson trap signatus Susan E. Halbert). This species is a pest of strawberry, cherry and spotted wing J. Mikaela Citrus sinensis orange Drosophila suzukii 8-Apr-2011 Residence Gulf Breeze, FL Santa Rosa DPI E-2011-1832 COUNTY Jackson Trap blueberry.
    [Show full text]
  • Arthropod Population Dynamics in Pastures Treated with Mirex-Bait to Suppress Red Imported Fire Ant Populations
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1975 Arthropod Population Dynamics in Pastures Treated With Mirex-Bait to Suppress Red Imported Fire Ant Populations. Forrest William Howard Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Howard, Forrest William, "Arthropod Population Dynamics in Pastures Treated With Mirex-Bait to Suppress Red Imported Fire Ant Populations." (1975). LSU Historical Dissertations and Theses. 2833. https://digitalcommons.lsu.edu/gradschool_disstheses/2833 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Biological Control of Parkinsonia
    Journal of the Department of Agriculture, Western Australia, Series 4 Volume 27 Number 3 1986 Article 3 1-1-1986 Biological control of Parkinsonia W M. Woods Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4 Part of the Entomology Commons, Environmental Health and Protection Commons, and the Weed Science Commons Recommended Citation Woods, W M. (1986) "Biological control of Parkinsonia," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 27 : No. 3 , Article 3. Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol27/iss3/3 This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact [email protected]. .control • Once well-established, Parkinsonia is difficult to eradicate. Parkinsonia flower (inset) and (right) stems and needle:sharp spines of Parkinsonia aculeata. By W. Woods, Entomologist One of the most troublesome weeds in northern Australia's pastoral country is Parkinsonia aculeata, commonly called Parkinsonia, Jerusalem Thorn, Palo Verde or Retama. In 1983 Western Australia, Queensland and the Northern Territory started a joint biological control programme against this pest by sending the author overseas to search for its natural predators in southern USA, Mexico and Central America. A few insects show promise and one, a bruchid beetle Mimosestes ulkei, is being tested under quarantine in Queensland. Why is it a weed? Parkinsonia is a leguminous shrub or tree which can grow to a height of about 10 metres and is covered with vicious needle-sharp spines.
    [Show full text]
  • Mesquite Bugs and Other Insects in the Diet of Pallid Bats in Southeastern Arizona
    A peer-reviewed version of this preprint was published in PeerJ on 4 December 2018. View the peer-reviewed version (peerj.com/articles/6065), which is the preferred citable publication unless you specifically need to cite this preprint. Czaplewski NJ, Menard KL, Peachey WD. 2018. Mesquite bugs, other insects, and a bat in the diet of pallid bats in southeastern Arizona. PeerJ 6:e6065 https://doi.org/10.7717/peerj.6065 Mesquite bugs and other insects in the diet of pallid bats in southeastern Arizona Nicholas J Czaplewski Corresp., 1 , Katrina L Menard 2 , William D Peachey 3 1 Section of Vertebrate Paleontology, Oklahoma Museum of Natural History, Norman, Oklahoma, United States of America 2 Section of Recent Invertebrates, Oklahoma Museum of Natural History, Norman, Oklahoma, United States 3 Sonoran Science Solutions, Tucson, Arizona, United States Corresponding Author: Nicholas J Czaplewski Email address: [email protected] The pallid bat (Antrozous pallidus) is a species of arid and semiarid western North America, inhabiting ecoregions ranging from desert to oak and pine forest. Considered primarily insectivorous predators on large arthropods but taking occasional small vertebrate prey, pallid bats were recently shown to be at least seasonally omnivorous; they demonstrate unusual dietary flexibility and opportunism in certain parts of their geographic range and at different times of year. In a few areas they take nectar from cactus flowers and eat cactus fruit pulp and seeds. Until recently mesquite bugs were primarily tropical- subtropical inhabitants of Mexico and Central America but have since occupied the southwestern United States where mesquite trees occur. Pallid bats regularly use night roosts as temporary shelters in which to process and consume large arthropods caught near their foraging areas.
    [Show full text]
  • Entomología Cultural FACETAS DE LA CIENCIA
    Ensayos sobre Entomología Cultural FACETAS DE LA CIENCIA José Luis Navarrete-Heredia Gabriela Castaño-Meneses Georgina Adriana Quiroz-Rocha Coordinadores Universidad de Guadalajara FACETAS DE LA CIENCIA Ensayos sobre Entomología Cultural José Luis Navarrete-Heredia Gabriela Castaño-Meneses Georgina Adriana Quiroz-Rocha Coordinadores FACETAS DE LA CIENCIA Ensayos sobre Entomología Cultural José Luis Navarrete-Heredia Gabriela Castaño-Meneses Georgina Adriana Quiroz-Rocha Coordinadores Universidad de Guadalajara Cuerpo Académico de Zoología UDG-CA-51 2011 PATROCINADORES UNIVERSIDAD DE GUADALAJARA Dr. Marco Antonio Cortés Guardado Rector General Dr. Miguel Ángel Navarro Navarro Vicerrector Ejecutivo Lic. José Alfredo Peña Ramos Secretario General CENTRO UNIVERSITARIO DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS Dr. Salvador Mena Munguía Rector Dr. Enrique Pimienta Barrios Secretario Académico Mtro. José Rizo Ayala Secretario Administrativo DIVISIÓN DE CIENCIAS BIOLÓGICAS Y AMBIENTALES Dr. Carlos Beas Zarate Director Dra. Mónica Riojas López Secretario DEPARTAMENTO DE BOTÁNICA Y ZOOLOGÍA Dr. Ramón Rodríguez Macias Jefe de Departamento CENTRO DE ESTUDIOS EN ZOOLOGÍA Dr. Sergio Guerrero Vázquez Facetas de la Ciencia: Ensayos sobre Entomología Cultural es una publicación de la Universidad de Guadalajara. Portada: José Luis Navarrete-Heredia Primera edición: 2011 D.R. © Universidad de Guadalajara Av. Juárez 975 Sector Juárez Guadalajara, Jalisco, Código Postal 44170 LaEdición corrección y tipografía: de los manuscritosJosé Luis Navarrete-Heredia estuvo a cargo de los autores y coordinadores. PRESENTACIÓN - El científico es un ser humano. Como tal, no está exento de sus pasiones, debilidades y obsesiones. En el que- hacer cotidiano, conocemos a varios colegas que les gusta la literatura, el cine, el teatro o la fotografía. Son apasionados de la música e incluso la practican.
    [Show full text]
  • A Guide to Arthropods Bandelier National Monument
    A Guide to Arthropods Bandelier National Monument Top left: Melanoplus akinus Top right: Vanessa cardui Bottom left: Elodes sp. Bottom right: Wolf Spider (Family Lycosidae) by David Lightfoot Compiled by Theresa Murphy Nov 2012 In collaboration with Collin Haffey, Craig Allen, David Lightfoot, Sandra Brantley and Kay Beeley WHAT ARE ARTHROPODS? And why are they important? What’s the difference between Arthropods and Insects? Most of this guide is comprised of insects. These are animals that have three body segments- head, thorax, and abdomen, three pairs of legs, and usually have wings, although there are several wingless forms of insects. Insects are of the Class Insecta and they make up the largest class of the phylum called Arthropoda (arthropods). However, the phylum Arthopoda includes other groups as well including Crustacea (crabs, lobsters, shrimps, barnacles, etc.), Myriapoda (millipedes, centipedes, etc.) and Arachnida (scorpions, king crabs, spiders, mites, ticks, etc.). Arthropods including insects and all other animals in this phylum are characterized as animals with a tough outer exoskeleton or body-shell and flexible jointed limbs that allow the animal to move. Although this guide is comprised mostly of insects, some members of the Myriapoda and Arachnida can also be found here. Remember they are all arthropods but only some of them are true ‘insects’. Entomologist - A scientist who focuses on the study of insects! What’s bugging entomologists? Although we tend to call all insects ‘bugs’ according to entomology a ‘true bug’ must be of the Order Hemiptera. So what exactly makes an insect a bug? Insects in the order Hemiptera have sucking, beak-like mouthparts, which are tucked under their “chin” when Metallic Green Bee (Agapostemon sp.) not in use.
    [Show full text]
  • Coleoptera, Cerambycidae, Prioninae)
    Volume 46(10):129‑134, 2015 A NEW SPECIES OF PHYSOPLEURUS LACORDAIRE FROM FRENCH GUIANA (COLEOPTERA, CERAMBYCIDAE, PRIONINAE) NORBERT DElaHAYE1 GÉRARD LUC TAVAKILIAN2 ABSTRACT Misidentified as Physopleurus crassidens (Bates, 1869) since the beginning of the 20th cen- tury by some authors, a new species from French Guiana is herein described: Physopleurus ubirajarai sp. nov. Key-Words: Coleoptera; Cerambycidae; Prioninae; Macrotomini; Physopleurus; Taxon- omy; South America. INTRODUCTION Physopleurus dohrnii Lacordaire, 1869, from Venezu- ela; The systematic history of the genus Physopleu- Physopleurus erikae Santos-Silva & Martins, 2009, rus Lacordaire, 1869 was perfectly processed in 2003 from Colombia; by Santos-Silva & Martins, who described two new Physopleurus exiguus Santos-Silva & Martins, 2003, species, and listed 10 species in the genus. In 2005, from Bolivia and Brazil; the number of species was reduced to nine, because Physopleurus longiscapus Lameere, 1912, from Bolivia, of the description of the genus Hisarai Santos-Silva & Colombia, Ecuador, Peru, and Brazil; Martins, with Physopleurus seripierriae Santos-Silva & Physopleurus maillei (Audinet-Serville, 1832), from Martins, 2003 as type species. Two new species were Brazil, Paraguay, and Argentina; described in 2006 and 2009, respectively P. rafaeli Physopleurus rafaeli Santos-Silva, 2006, from Brazil; Santos-Silva, from Brazil, and P. erikae Santos-Silva Physopleurus rugosus (Gahan, 1894); from French & Martins, from Colombia. Chalumeau (2010) de- Guiana and Brazil; scribed P. swifti, synonymized in the same year with Physopleurus ubirajarai sp. nov., from French Guiana; P. rugosus (Gahan, 1894) by Tavakilian (2010). Physopleurus tritomicros Lameere, 1912, from French Currently, the genus Physopleurus includes 12 Guiana and Brazil; species (the new species included): Physopleurus villardi (Lameere, 1902), from Guate- mala, Ecuador, and Peru.
    [Show full text]
  • Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity
    Biodiversity and Coarse woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA - October 18-20,1993 Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workhop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA October 18-20,1993 Editors: James W. McMinn, USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, and D.A. Crossley, Jr., University of Georgia, Athens, GA Sponsored by: U.S. Department of Energy, Savannah River Site, and the USDA Forest Service, Savannah River Forest Station, Biodiversity Program, Aiken, SC Conducted by: USDA Forest Service, Southem Research Station, Asheville, NC, and University of Georgia, Institute of Ecology, Athens, GA Preface James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in The effects of CWD on biodiversity depend upon the management of forest ecosystems. The implied harvesting variables, distribution, and dynamics. This objective is the conservation of a full complement of native proceedings addresses the current state of knowledge about species and communities within the forest ecosystem. the influences of CWD on the biodiversity of various Effective implementation of conservation measures will groups of biota. Research priorities are identified for future require a broader knowledge of the dimensions of studies that should provide a basis for the conservation of biodiversity, the contributions of various ecosystem biodiversity when interacting with appropriate management components to those dimensions, and the impact of techniques. management practices. We thank John Blake, USDA Forest Service, Savannah In a workshop held in Athens, GA, October 18-20, 1993, River Forest Station, for encouragement and support we focused on an ecosystem component, coarse woody throughout the workshop process.
    [Show full text]
  • BOLETÍN CIENTÍFICO CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL Vol
    BOLETÍN CIENTÍFICO CENTRO DE MUSEOS MUSEO DE HISTORIA NATURAL Vol. 22 No. 2 SCIENTIFIC BULLETIN MUSEUM CENTER NATURAL HISTORY MUSEUM Vol. 22 No. 2 bol.cient.mus.his.nat. Manizales (Colombia) Vol. 22 No. 2 222 p. julio-diciembre ISSN 0123-3068 ISSN: 2462-8190 de 2018 (Impreso) (En línea) ISSN 0123–3068 (Impreso) ISSN: 2462-8190 (En línea) -Fundada en 1995- BOLETÍN CIENTÍFICO Nueva periodicidad semestral CENTRO DE MUSEOS Tiraje 150 ejemplares Vol. 22 No. 2, 222 p. MUSEO DE HISTORIA NATURAL julio-diciembre, 2018 Manizales - Colombia Rector Alejandro Ceballos Márquez Vicerrector Académico Marco Tulio Jaramillo Salazar Vicerrectora de Investigaciones y Postgrados Luisa Fernanda Giraldo Zuluaga Vicerrector Administrativo Manuel Humberto Jiménez Ramírez Vicerrectora de Proyección Universitaria Patricia Salazar Villegas Decano Facultad de Ciencias Exactas y Naturales Marco Tulio Jaramillo Salazar Centro de Museos Olga Lucía Hurtado Boletín Científico Revista especializada en estudios Centro de Museos de Historia Natural y áreas Museo de Historia Natural biológicas afines. Director Julián A. Salazar E. Médico Veterinario & Zootecnista (MVZ). Universidad de Caldas, Centro de Museos. Indexada por Publindex Categoría A2 Zoological Record SciELO Index Copernicus Scopus Cómite Editorial Cómite Internacional Ricardo Walker Ángel L. Viloria Investigador, Fundador Boletín Biólogo-Zoólogo, Ph.D., Centro Científico Museo de Historia de Ecología, IVIC, Venezuela Natural, Universidad de Caldas Tomasz Pyrcz Luis Carlos Pardo-Locarno Entomólogo, Ph.D., Museo de Ingeniero Agronómo, Ph.D., MSc., Zoología Universidad Jaguellónica, CIAT Palmira, Valle Polonia John Harold Castaño Zsolt Bálint MSc. Programa Biología, Biologo, Ph.D., Museo de Historia Universidad de Caldas Natural de Budapest, Hungría Luís M. Constantino Carlos López Vaamonde Entomólogo, MSc., Centro Ingeniero Agrónomo, Entomólogo, de Investigaciones para el café MSc., Ph.D., BSc.
    [Show full text]
  • Cerambycidae of Tennessee
    Cerambycidae of Tennessee! Disteniinae: Disteniini! Parandrinae: Parandriini! Closed circles represent previously published county records, museum specimen records, and specimens examined. Open circles are county records reported in Jamerson (1973) for which a specimen could not be located. Future collections are needed to substantiate these accounts. Fig. 2. Elytrimitatrix (Elytrimitatrix) undata (F.)! Fig. 3. Neandra brunnea (F.)! Prioninae: Macrotomini! Prioninae: Meroscheliscini! Fig. 4. Archodontes melanoplus melanoplus (L.)! Fig. 5. Mallodon dasystomus dasystomus Say! Fig. 6. Tragosoma harrisii (LeConte)! Prioninae: Prionini! Fig. 7. Derobrachus brevicollis Audinet-Serville! Fig. 8. Orthosoma brunneum (Forster)! Fig. 9. Prionus (Neopolyarthron) imbricornis (L.)! Prioninae! : Solenopterini! Fig. 10. Prionus (Prionus) laticollis (Drury) ! Fig. 11. Prionus (Prionus) pocularis Dalman ! Fig. 12. Sphenosethus taslei (Buquet) ! Necydalinae: Necydalini! Spondylidinae: Asemini! Fig. 13. Necydalis melitta (Say)! Fig. 14. Arhopalus foveicollis (Haldeman)! Fig. 15. Arhopalus rusticus obsoletus (Randall)! ! ! Suppl. Figs. 2-15. Tennessee county collection localities for longhorned beetle (Cerambycidae) species: Disteniinae, Parandrinae, Prioninae, Necydalinae, Spondylinae: Asemini (in part). ! Spondylidinae: Asemini (ctd.)! Fig. 16. Asemum striatum (L.)! Fig. 17. Tetropium schwarzianum Casey! Fig. 18. Atimia confusa confusa (Say)! ! Spondylidinae: Saphanini! Lepturinae: Desmocerini! Lepturinae: Encyclopini! Fig. 19. Michthisoma heterodoxum LeConte
    [Show full text]
  • A Check-List and Keys to the Primitive Sub-Families of Cerambycidae of Illinois
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1967 A Check-list and Keys to the Primitive Sub-families of Cerambycidae of Illinois Michael Jon Corn Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Corn, Michael Jon, "A Check-list and Keys to the Primitive Sub-families of Cerambycidae of Illinois" (1967). Masters Theses. 2490. https://thekeep.eiu.edu/theses/2490 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. A CHECK-LIST AND KEYS TO THE PRIMITIVE SUBFAMILIES OF CEHAMBYCIDAE OF ILLINOIS (TITLE) BY MICHAEL JON CORN B.S. in Ed., Eastern Illinois University, 1966 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS 1967 YEAR I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE 21 rl.\I\( l'i "1 PATE ADVISER DEPARTMENT HEAD ACKNOWLEDGEMENTS The author would like to thank Dr. Michael A. Goodrich for.his advice and guidance during the research and writing of this paper. The author is also indebted to the following curators of the various museums and private individuals from whom material was borrowed: Mr. John K. Bouseman; Dr. Rupert Wenzel and Dr. Henry Dybas, Field Museum ,...-._, of Natural History; Dr.'M.
    [Show full text]