Normal University,Normal Changchun 130024,Jilin,. 100 1 challenge totheModernEvolutionary Synthesis(Bossdorfetal., an additionalpathwayforenvironmental adaptationandproducesa 2006; JablonkaandLamb,1998;Richards,2006),whichprovides inherited byfuturegenerations(Grant-DowntonandDickinson, environmentally inducedepigeneticpatternsmayevenbestably 2007; Gaoetal.,2010;Kucharski2008).These environmental changeswithoutgeneticdivergence (Dolinoyetal., phenotypical variationinresponsetorapidandunpredictable in eukaryotescouldaffect genetic expressionandthusmaymediate 2012). Recentstudieshavesuggestedthatepigeneticmodifications pace withtherapidlychangingenvironment(Bonduriansky et al., environmental adaptation,buttheyoccurslowlyandcannot keep support abundantphenotypicvariationinorganisms for moving toanew, moresuitablearea.Thegeneticchangesmay mechanisms, physiologicaladaptability, phenotypicplasticityor organisms havetoadaptthechangedenvironmentbygenetic When facingchallengesfromenvironmentalchangesorstresses, Environmental adaptation KEY WORDS:DNA methylation,Chiroptera,, ( structure offemalepopulationsthegreatroundleafbat adaptation. We haveexploredthenaturalepigeneticdiversityand evolutionary potentialofepigeneticvarianceinbatpopulationsfor environments shapeepigeneticmarksonthegenomeand natal philopatry, presentinganopportunitytoexplorehow geographic variationsinphenotype,andthefemalesusuallyhave evolutionary effects. Batslivingindiverseenvironmentsshow generations, indicatingthatepigeneticprocesseshavepotential variation, andthisepigeneticvariancecouldbeinheritedbyfuture modifications couldmediateenvironmentallyinducedphenotypic various environmentalstresses.Recentstudiesshowthatepigenetic fragmentation, organismshavetoadjusttheirphenotypeadapt When facingthechallengesofenvironmentalchange,suchashabitat Sen Liu Natural epigeneticvariationinbatsanditsroleevolution REVIEW © 2015.PublishedbyTheCompanyofBiologistsLtd|JournalExperimentalBiology(2015)218,100-106doi:10.1242/jeb.107243 *Author ([email protected]) for correspondence Environment, HenanPolytechnic University, Jiaozuo454000,Henan,China. Introduction ABSTRACT populations arealsodiscussedinthisreview. mitosis andmeiosis,theirpotentialrolesinevolutionforbat induced epigeneticvariationmaybeinheritedasaresultofboth contribute totheepigeneticdiversitiesofeachspecies.Environment- sequence divergence,epigeneticdriftandenvironmentalvariables diversity thatexceedsthecorrespondinggeneticvariance.DNA low levelofgenomicDNA methylationandextensiveepigenetic variables onepigeneticdiversification.Allthreebatspecieshavea have alsoestimatedtheeffects ofgeneticvarianceandecological using amethylation-sensitiveamplifiedpolymorphismtechnique.We pusillus Jilin Key Laboratory of Resource Conservation andUtilization, AnimalResource Northeast Conservation Jilin Key of Laboratory armiger ) andtheeasternbent-wingedbat( 1,2 , KepingSun ), theleasthorseshoebat(Rhinolophus 1 , Tinglei Jiang 2 Institute of Resources and Institute of Miniopterus fuliginosus 1 and JiangFeng ) 1, * 2003). Forexample,inviableyellowagouti( offspring (Crewsetal.,2007;Maleszka,2008;Waterland andJirtle, could induceDNA methylation variance oforganisms ortheir suggested thatenvironmentalchange,suchasdietsandbehaviours, disease andageing.Studiesconductedwithanimalsplantshave X-chromosome inactivationandisalsoassociatedwithimmunity, methylation playsanimportantroleingeneregulation,imprintingand methyl-CpG bindingdomainproteinforms.Inmammals,DNA proteins tothegeneorrecruitingadditionallocusin transcription ofgenesbyimpedingthebindingtranscriptional by DNA methyltransferases.DNA methylationcanaffect the modification thatoccursatthefifthcarbonpositionofacytosinering Schmitz etal.,2011). populations inadditiontogeneticvariance(Massicotteetal.,2011; epigenetic processisanothersourceofrandomvariationinnatural 2008; JablonkaandLamb,1995;etal.,2005),inthatthe retrotransposon upstreamofthe in methylationatnineCpGsitesanintracisternalA particle exposure totheenvironmentaltoxicantbisphenolA causesadecrease natural populations (Bossdorfetal.,2008;Ledón-Rettig, 2013). phenotypes andrespondingto globalenvironmentalchangein estimate thepotentialroleofepigenetic variationinproducingnew investigate epigeneticvariation andepigeneticinheritance and Martin,2012;Flatscheret al.,2012).Thus,itisimportantto Richards, 2012),andthusmay evencausespeciation(Boffelli and ecologicalnichedifferentiation (Herreraetal.,2012;Schrey and Wendel, 2003;Rapp and Wendel, 2005;Salmonetal.,2005), polyploidization (EllstrandandSchierenbeck,2000;Liu and physiological processessuchasbotanichybridization and complex, andepigeneticprocessesmaytakepartinadvanced epigenetic processesandnaturalenvironmentsmaybe more epigenetic featuresintherealworld.Theinteractionbetween and phenotypicvariationeffectively, theymaynotreflect the Although theycouldestablishthecorrelationbetweenepigenetic been alteredbyhumanselection(Shorteretal.,2012;Vrana, 2007). 2005). (Bossdorf etal.,2008;JablonkaandLamb,1995; al., under environmentalstressasanadditionalsysteminevolution DNA methylationmayincreasethe adaptationpotentialoforganisms junglefowl (theirancestor).Thesestudiessuggestthatvariationin expression inselectivesweepregionsdomesticatedchickenandred that domesticationprocessescouldaffect thelevelsofmethylationand (Weaver etal.,2004).Nättandcolleagues(Nätt2012)found individual differences inresponsetothesurroundingenvironment in thehippocampusoftheiroffspring, andthuscausethemtoexhibit alter theDNA methylationataglucocorticoid receptorgenepromoter rat maternalpup-lickingandgroomingarched-backnursingcould DNA methylation(Kucharskietal., 2008).Thedifferent degreesof either sterileworkersorreproductivequeensbyalteringtheirgenomic Differences indietdeterminewhetherhoneybeelarvaedevelopinto colour distributionoftheiroffspring (Dolinoyetal.,2007). DNA methylation,oneofthekeyepigeneticmarkers,isacovalent Most oftheabovestudiesarebasedonmodelsystemsthathave Agouti gene, andthusaltersthecoat A vy ) mice,maternal

The Journal of Experimental Biology REVIEW of source ofrandomvariationinfacilitatingtheenvironmentaladaptation suggesting thatgenome-wideDNA methylationvariancemaybea regions –andshowssignificantgeneticepigeneticvariation, Mountains ofnortheasternChina–subalpineforestandalpinetundra species in populationsofseveralplantspecies.Thewind-pollinatedtree genetic divergence, theinvasive methylation differentiation (Lira-Medeirosetal.,2010).With limited with littlegeneticvariationbuthavesignificantphenotypicandDNA mangrove phenotypic variation(Gaoetal.,2010).Populationsofthewhite of theepigeneticsysteminmediatingenvironmentallyinduced common-garden environments,indicatingtheflexibilityandrole reprogramming andsimilarphenotypesinresponsetodifferent extensive morphologicaldifferences, showsgenome-wideepigenetic aquatic habitatsandappearstohavelittlegeneticvariancebut Alternanthera philoxeroides investigate three aspectsofhowepigeneticvariation facilitatesbat epigenetic varianceinenvironmental adaptation.Inthisreview, we present anopportunitytoexplore theevolutionarypotentialof (Maharadatunkamsi etal.,2000; Sunetal.,2013).Thus,batsmay variation inphenotype,such as morphologyandacoustictraits 1995). Populationsofbatsinvarious habitatsalsoshowgeographic even non-tactilestimulicould arousehibernatingbats(Thomas, stunted growthofhouse-dwellingbats(Boldoghetal.,2007) and instance, lightpollutionfromilluminationofbuildingscould cause and behaviourofbats(Jonesetal.,2009;Mann2002). For significantly affect thediversity, populationdynamics,development destruction, environmentalpollutionandglobalclimatechange variation (Jonesetal.,2009);environmentalchanges,suchashabitat environmental changebecauseoftheirsensitivityto biota ofinterest.Inaddition,batsareconsideredasbioindicators of ecological balanceandthustheyreflectwiderscaleimpactson the (Kunz andFenton,2003).Changesintheirpopulationsgreatly affect roles ininsectcontrol,plantpollinationandseeddissemination important componentsofbiodiversityandplaycriticalecological be oneofthemostwidelydistributedgroupsmammals.Theyare have evolvedtrueflight.Thecapacityofflighthasenabledbatsto environmental adaptationoftheseanimals. which suggestedthatnaturalepigeneticvariationfacilitatesthe (Schrey etal.,2012),showedspecificpopulationepigeneticpatterns, (Massicotte etal.,2011) andthehousesparrow, 2013). Studiesconductedintheclonalfish trutta) whentheymigratetotheseafromfreshwater(Moránetal., genome-wide methylationchangesinhatchery-rearedtrout( showed thatsalt-enricheddietscouldinduceshort-term,reversible the naturalpopulationepigeneticvariationinanimals.A similarstudy populations wasfound.However, thisworkisthefirsttoinvestigate but nosignificantdifference inepigeneticpatternsbetweenthetwo attempted toexplainthephenomenonintermsofepigeneticvariation, surviving offspring thanwildfish;Blouinetal.(Blouinal.,2010) salmonid terms ofenvironmentaladaptationandevolutionarescarce.Inthe (Richards etal.,2012). phenotypic differentiation inresponsetodiverseenvironments differentiate fasterthangeneticonesandcouldcontributeto an extensiveepigeneticdiversity, suggestingthatepigeneticmarks lives indifferent areas,includingmarsh,beachandroadside–exhibits Variations innaturalgenomicmethylationhavebeeninvestigated , animalsoftheorderChiroptera,areonlymammalsthat Studies onthenaturalepigeneticsofwildanimalpopulationsin B. ermanii Betula ermanii Oncorhynchus mykiss,fishraisedinhatcherieshavefewer Laguncularia racemosa (Wu etal.,2013).Populationsofthealligatorweed lives incontrastinghabitatstheChangbai , whichgrowsinbothterrestrialand Fallopia live inthesaltmarshandriverside species complex–which Chrosomus eos-neogaeus Passer domesticus Salmo Sangon BiologicalEngineeringTechnology &ServicesCo.,Ltd). Column AnimalGenomeDNA ExtractionKit(SK1205,Shanghai Genomic DNA wasextractedfrommuscletissueusingaUNIQ-10 History ofNortheastNormalUniversity, JilinProvince,China. October in2009and2010,depositedtheMuseumofNatural 2).AllsampleswerecollectedduringSeptember– 1,Fig. (Table selected toexplorethenaturalepigeneticcharacteristicsin bats populations of populations of hibernation andnormalstatusinbats(MorinStorey, 2009). DNA methylationislikelytobe different betweentheperiodsof addition, batsinhibernationwereexcludedfromthisstudybecause effects oflocalecologicalfactorsontheirepigeneticdiversity. In individual’s birthplace),whichoffers theopportunitytoestimate philopatry (thebehaviourofremainingin,orreturningto,an three batspecieswereselectedbecausemostofthemhavestrongnatal 2012; Norberg andRayner, 1987).Femaleindividuals(adult)ofthe winged ,MiniopterusfuliginosusHodgson1835( ,RhinolophuspusillusTemminck 1834,andthebent- methylation inevolutionforbats. diversity ofbatpopulations;and(3)thepotentialfunctionDNA the influencingfactorsthatcontributetoextensiveepigenetic structure ofDNA methylationwithin andamongbatpopulations;(2) populations toadaptdiverseenvironments:(1)theextentand armiger Fig. restriction enzymes, (rare cutter)witheitheroneoftwo methylation-sensitiveisoschizomer (AFLP) technique(Reyna-López etal.,1997),MSAP usesEcoRI 2013). Modifiedfromtheamplified fragmentlengthpolymorphism epigenetic variationamongindividuals andpopulations(Schreyetal., is themostcommonlyused technique todetectwhole-genome The methylation-sensitiveamplified polymorphismprotocol(MSAP) roundleaf bat, morphologies, callsandbehaviourswereselected,includingthegreat in batpopulations,threediversespecieswithdisparatefeaturestheir In ordertoinvestigatethecommonnaturalepigeneticcharacteristics Methods todetectpopulationepigenetics Natural population epigeneticsinbat populations Nine populationsof

1. Thebatspeciesstudied. and (C) The JournalofExperimentalBiology(2015)doi:10.1242/jeb.107243 Miniopterus fuliginosus M. fuliginosus Hipposideros armiger R. pusillus HpaII andMsp I, whichrecognize thesame H. armiger (A) Rhinolophuspusillus comprising 39femalesandeight comprising 47femalesintotalwere . comprising 45females,nine (Hodgson 1835),theleast i.1) (Liu et al., Fig. , (B)Hipposideros 101

The Journal of Experimental Biology bat populations. the MSAP techniquewasusedtoexplorethenaturalvariationinour DNA methylation(Karanetal.,2012;Verhoeven etal., 2010).Thus, MSAP techniquecandetectenvironmentallyinducedvariationin 2010). Finally, epigeneticstudiesofnaturalpopulationsbasedonthe presence/absence islargely an all-or-nothing response(Blouinetal., Additionally, theMSAP technique issensitiveinthatband detector ofdifferentiation among populations(Bossdorfetal.,2008). genome-wide scaleconcurrently, suggestingitcouldbeapowerful epigenetic fingerprintsofalarger numberofindividualsona genomic informationandisabletoprovideseveralhundred 2010; Richardsetal.,2012).Thisisbecauseitdoesnotrelyon (Blouin etal.,2010;HerreraandBazaga,2011; Lira-Medeirosetal., widely toinvestigatenaturalepigeneticvarianceinwildpopulations MSAP techniqueiswellsuitedfornon-modelspecies,andapplied overcome theshortcomingsofMSAP technique.However, the sequencing, microarraysornext-generationsequencingmay reviewed elsewhere(Schreyetal.,2013).Techniques likebisulphite be linkedtothetraits.Someotherpotentialdisadvantageshavebeen 102 REVIEW showed thatpolar fishesexhibithigherDNA methylation levelsthan blooded animalsincludingmammals andbirds,theirlaterstudy amphibians, havehigherCpG methylationlevelsthanwarm- al., 1997)foundthatcold-blooded vertebrates,suchasfishesand et al.,2012;Zemach2010). Jabbariandcolleagues(Jabbariet may havepotentialfunctionsin evolution(Fengetal.,2010;Sarda The variationingenomicmethylation patternsandlevelsacrosstaxa methylation on5 individuals orpopulations. reflect thedifference ingenome-widemethylationpatternsbetween cleave non-methylatedCCGGsites.Thus,thetechniquecanbeused cleaves fully-methylatedinternalC,whilebothisoschizomerscan of eitherCbutcleavesthehemi-methylatedexternalC,whereas sensitivities (Vos etal.,1995). restriction site(5 Haikou, HainanProvince Locations Table Patterns andlevelsofgenomicmethylationinbatpopulations Nanzhao, HenanProvince aya,ScunPoic CY32.12 SCWY Wanyuan, SichuanProvince Tongbai, HenanProvince Yixing, AnhuiProvince Hanshan, AnhuiProvince Wuhu, AnhuiProvince uhu hjagPoic ZJHZ Wuyuan, JiangxiProvince Huzhou, ZhejiangProvince Chongqing uyn,GihuPoic GZSY JXQS Suiyang, GuizhouProvince Qianshan, JiangxiProvince une,Yna rvneYX 26.22 26.60 YNXW Pingtan, FujianProvince JXJGS Xuanwei, Yunnan Province Jianggangshan, JiangxiProvince eghiin,HnnPoic uLJ27.75 HuNLSJ Lengshuijiang, HunanProvince Guilin, GuangxiProvince houn undn rvneGDSG Shaoguan, GuangdongProvince Anlong, GuizhouProvince Baise, GuangxiProvince Yuxi, Yunan Province Simao, Yunnan Province However, thedisadvantageofMSAP isthatit can onlydetect 1. Locationofsamplepopulationsandindividualnumbersthethreebatspecies ′ ′ -CCGG-3 -CCGG-3′ ′ andscreenanonymouslocithatmaynot ) buthavedifferent cytosinemethylation HpaII issensitivetofullmethylation aNK19.94 HaiNHK eN 33.50 HeNNZ eT 32.81 HeNTB o oainLniue(E aiue(N No.of Latitude(°N) Longitude(°E) for location Abbreviation AHHS JSYX HH31.05 AHWH JXWY CQ FJPT GZAL GXGL GXBS YNYX YNSM 31.62 31.25 30.95 29.39 28.21 29.28 27.99 25.43 24.77 25.28 25.39 24.34 23.55 22.60 MspI 1.1– 110.21 – 1.0– 113.40 1.3– 118.13 0.56 107.95 1.8– 119.78 2.9– 120.09 111.57 1.0– 118.30 1.06 114.20 1.0– 117.70 1.95 117.69 0.1– 103.81 0.1– 107.71 0.85 107.18 0.4– 109.74 1.64 5 – 113.56 105.54 110.68 0.86 106.58 0.74 102.27 0.14 100.71 al., 2008)and With avariedintroduction history, housesparrow(P. domesticus) greater productivityandstability thanepigeneticallyuniformones. Arabidopsis thaliana wild populations.Latzeletal. (Latzeletal.,2013)foundthat epigenetic structuringmaybewidespread inwildpopulations. indicating thatextensiveintraspecific epigeneticvariationand A. philoxeroides found inthesethreebatspecieshasbeenreportedplants,such as Purugganan, 2004).Epigeneticdiversityofasimilarextentto that for adaptiveevolution(HerreraandBazaga,2010;Kalisz and diversity withinapopulation,whichcouldsupportthe‘rawmaterial’ epigenotypic variationcontributestotheextensivemethylation (Thioulouse etal.,1997)],asisgeneticvariation.Greaterindividual pusillus 0.337 and0.255,P distinct between-andwithin-populationcomponents[ 3).Epigeneticvariationisstructuredinto polymorphisms (Fig. All threebatspeciesinvestigatedexhibithighlevelsofepigenetic of batsrequiresfurtherinvestigation. However, thefunctionoflowermethylationlevelsinevolution (about 54%)(Yang etal.,2011), usingtheMSAP technique. tissues, suchaschicken(about29.4%)(Xuetal.,2007)andswine all arebelowthoseofotherreportedanimalsbasedonmuscle similar genome-wide5 the genome-widecoverage.Thethreebatspecieswestudiedhave other mammals,DNA methylation ismainlytargeted atCpGlociin be associatedwiththelongperiodofdomestication.Inbats,asin compared withthoseoftheirancestor, theredjunglefowl;thismay domestic chickenshavedifferent methylationlevelsatspecificloci to theirsurroundings.Shorteretal.(Shorteral.,2012)showedthat related totheirbodytemperature,thusallowingvertebratesadapt suggesting thatthemethylationlevelinvertebratesmaybeinversely do tropicalandtemperatefishes(Varriale andBernardi,2006), Epigenetic diversityinbatpopulations Greater epigeneticdiversitymay haveevolutionarypotentialfor and – – The JournalofExperimentalBiology(2015)doi:10.1242/jeb.107243 M. fuliginosus,respectively, usingADE-4software H. armiger Viola cazorlensis (Gao etal.,2010),Hordeum brevisubulatum <0.001, 10 plants withdiverseepigenetic variation have ′ -CCGG-3′ – 5 – 6 – 3 3 – 5 No. ofR.pusillus – – – – 3 – 6 – – 5 – 3 – 4 permutations for methylationlevels(20–27%),but (Jablonka andLamb,1998), 7 – 5 – – – – 4 4 fuliginosus No. ofM. – 6 5 8 – – – – – – – 8 – H. armiger, β ST =0.316, (Li et R.

The Journal of Experimental Biology may contribute to epigeneticdiversityaloneor together. DNA sequencedivergence, random eventsorvariedenvironments or environmentalchanges,isindependent ofgeneticvariation.Thus, and (3)pure–epigeneticvariation, generatedbystochasticevents epigenetic variationisdirected orpotentiatedlooselybygenotype; completely dependentongenetic divergence; (2)facilitated – epigenetic methylation:(1)obligatory –epigeneticvariationis As Richards(Richards,2006)reviewed,therearethreetypes of to variousenvironments. methylation variations,whichmaybeofbenefittobatsinadapting DNA sequencediversity(Fig. methylation diversityinbatpopulationsexceedsthecorresponding habitats (Gaoetal.,2010;Richards2012).Thegenomic variation, whichhasfacilitatedtheiradaptionandspreadto new alligator weedhavelowgeneticdiversitybutextensiveepigenetic al., 2012).PopulationsoftheinvasiveplantsJapaneseknotweed and genetic variationduringintroduction(Liebletal.,2013;Schrey et wide methylationvariationmaycompensateforthedecreased between epigeneticandgeneticdiversity, suggestingthatgenome- of populationmethylation,andtherewasanegativecorrelation showed higherlevelsofepigeneticvariationbutdifferent patterns populations fromKenya(<50 REVIEW Factors influencingepigeneticdiversity inbat populations years) andFlorida(~150

2) andprovidesalarge number of years) both Liu etal.,2010), whichsuggestsinterdependence orposition- Bazaga, 2010;Lietal.,2008) and humans(Bjornssonetal.,2008; genetic profileshasbeenreported inotherplants(Herreraand 2011). Incontrast,asignificantcorrelation betweenepigeneticand significantly correlatedwithherbivory stress(HerreraandBazaga, association withherbivory-related geneticvariationbutis populations ofthesouthernSpanish violet (Cervera etal.,2002;Vaughn etal.,2007).Epigeneticvariationin thaliana instance, thelarge variation inDNA methylationin evolution (Bossdorfetal.,2008;BossdorfandZhang,2011). For independent fromgeneticcontrol,asanadditionalsystem in means epigeneticmechanismsmaybeindependentoratleastpartly 2007). Thelackof,orweak,correlationbetweenthetwodiversities methylated AFLP fragmentsfornaturalpopulations(Boninetal., by multilocusapproachesbasedonthemethylatedand non- variance (Richards,2006). alone orthesignificanceofmeiotictransmissionepigenetic phenotypic variationthatcanbeexplainedbyepigeneticeffects aspect inepigeneticresearchbecauseitdeterminesthedegreeof The relationshipbetweenepigeneticandgeneticdiversityisakey populations Effects ofgeneticdivergenceonepigeneticdiversityinbat In general,thecorrelationbetweentwoprofilesisestimated plants isnotcorrelatedwiththeirgeneticdivergence The JournalofExperimentalBiology(2015)doi:10.1242/jeb.107243 abbreviations, seeTable three batspecies.Fordefinitionsof the cavesinsampledlocalitiesfor Fig.

.Thestudyarea.mapshows 2. V. cazorlensis

1. Arabidopsis has aweak 103

The Journal of Experimental Biology 104 REVIEW populations (HerreraandBazaga,2010). variation maybeapossiblepathwayfortheevolutionofbat variation type,whichindicatesthatcorrelatedgenetic–epigenetic bat populationsmaybelongtotheobligatoryorfacilitatedepigenetic relationship suggeststhatmostofthemethylationvariationamong as reviewedbyRichards(Richards,2006).However, thesignificant Here, wecannotdifferentiate betweenthethreetypesofmethylation downstream consequenceof,geneticvariation(Liuetal.,2012). indicating thatepigeneticdifferentiation maybedependenton,ora P as cavetourism, illuminationandnoisepollution surroundingthe precipitation), cavesize(dayroosts), dietandhumanactivitiessuch This includesmeteorological conditions(suchastemperature, epigenetic variancemaybeinduced byenvironmentalvariation. variation ingenome-wideDNA methylation.Atleastsomeofthe populations livingindiverse environmentsexhibitextensive Bats aresensitivetoenvironmental changes(Jonesetal.,2009),and may beanon-functionallink(Richardsetal.,2010). parallel suchthatthesignificantrelevancebetweentwoprofiles may alsocauseepigeneticandgeneticdivergence tohappenin epigenetic diversityamongbatpopulations.Thesestochasticevents (Robertson andWolf, 2012)maycontributetotheextensive Random epimutationsthatarenotinducedbyenvironmentalfactors profound effects onphysiology (Martin,2005;West etal.,2013). also alwaysassociatedwithageingprocessesandmay have by errorsinthemitoticprocess(Richards,2008).Epigeneticdrift is Epigenetic driftcouldinducethedivergence inmethylationpatterns may becausedbystochasticeventslikedriftorepimutation. as pureepigeneticvariation.Someofthemethylationvariations variation isindependentofgeneticdivergence orcanbeidentified genetic profiles(Fig. populations significantlyexceedthecorrespondingdifferences in The extensiveDNA methylationpolymorphisms anddiversityinbat three batspecies( 2012; HellmanandChess,2010). dependent correlationsbetweenthetwoprofiles(Chuangetal., epigenetic andgeneticpolymorphism( the threebatspecies. Fig. Environmental factorscontributetoepigeneticdiversity Epigenetic driftorepimutationscontributetoepigeneticdiversity =0.010 forR.pusillus; We foundsignificantcorrelationbetweenthetwoprofilesinall

.Thedifferencebetweenepigeneticandgeneticpolymorphismsin 3. Proportion of polymorphism (%) 100 10 20 30 40 50 60 70 80 90 0 .pslu .amgrM.fuliginosus H.armiger R. pusillus * r

Asterisks indicateasignificantdifference between 3), suggestingthatatleastapartofmethylation =0.299, r =0.6446, P =0.048 forH.armiger; P <0.05). * P =0.0245 forM.fuliginosus), polymorphism Genetic polymorphism Epigenetic * r =0.524, methylation patterns inthegermlinecouldbe inheritedbyfuture its daughtercellsbymitosis (Skinner, 2011). Theheritable a newphenotypefortheindividual andmaybetransmittedbetween health ofanorganism. Somaticepigeneticvariationcould resultin critical inmaintainingthephysiological stabilityofthecelland by bothmitosisandmeiosis.Epigenetic patternsinsomaticcellsare Environment-induced epigenetic patternsinbatsmaybeinherited provides vastpotentialheritablemethylationvariations. research onA tissue culture,andshowedsimilarfeaturesinboth.Similarly, epigenetic patternswereplantedunderthesameconditionsafter from terrestrialandaquatichabitatswithdiversemorphological reversibility ofmethylationpatterns.Alltheexperimentalplants experiment onthealligatorweed colleagues (Gaoetal.,2010)designedacontrolledcommon-garden reversible whenthenormalenvironmentisrestored.Gaoand that environment-inducedmethylationpatternsinbatsmaybe dynamic thanaregeneticmarkers(Richards,2006),whichmeans both while humandisturbancemayaffect themethylationvariationin conditions maycontributetotheepigeneticdiversityof characteristics inmanyaspects.Forexample,meteorological variation inthethreebatspecies,probablybecauseoftheirdisparate Different keyecologicalfactorsaccountedfortheepigenetic have agreaterimpactonDNA methylationofbats(Liuetal.,2012). al., 2008). 2007; Mannetal.,2002;RansomeandMcOwat,1994;Schaub distribution andbehavioursofbats(BourneHamilton-Smith, habitats, allofwhichcouldsignificantlyaffect thedevelopment, 74.5% forH.armiger, epigenetic varianceexistinginindividuals(68.4%,66.3% and is theonlyheritablevariationinnaturalpopulations.Thegreater Evolutionary Synthesis,whichassumesthatDNA sequencevariance Heritable epigeneticmarksposeaseriouschallengetotheModern subsequent environmentalchange(Ledón-Rettig,2013). the changedsurroundingorifphenotypepersistsfollowing a bat populationsifanerroroccursinmatchingthephenotype with epigenetic variancemayhaveadverseeffects onthepersistenceof from illuminationandnoise.However, itshouldbenotedthat bats acquiringanewphenotypetoovercometheharmfuleffects occur, e.g.cavetourism,theepigeneticcuesmayalsofacilitate extensive methylationdiversity. Oncerapidenvironmentalchanges environments, suchasareasfarfromandneartohumans,have ( broaden theecologicalnicheofaflower-living yeast the alligatorweed,Japaneseknotweedandhousesparrow, andeven contribute totheextremeextensionofaninvasivespeciessuchas environmental change.Thus,thosemethylationvariationsmay the environmentcouldinduceorganism toadaptthe varied methylationpatternsthatmayoccurasaresultofchangesin persistence ofbatpopulations.Ingeneral,weconsiderthatthe et al.,2006). which alsosuggeststhereversiblefeaturesofmethylation(Dolinoy of theAgouti CpG sitesinaretrotransposonupstreamofthetranscriptionstartsite similar togenisteincompensatesforthelowermethylationofsix evolution epigeneticvariationHeritable inbats in anditsrole Metschnikowia reukaufii It shouldbenotedthatepigeneticcuesaremoreflexibleand Ecological factorscovaryingacrossgeographicallocationsmay Environment-induced epigeneticvariancemayfacilitatethe H. armiger The JournalofExperimentalBiology(2015)doi:10.1242/jeb.107243 vy gene inthefetus,protectingoffspring fromobesity, mice showedthatthematernaldietarymethyldonor and M. fuliginosus R. pusillus ), asreviewedabove.Batslivinginvaried and (S.L. andJ.F., unpublisheddata). A. philoxeroides M. fuliginosus,respectively) to testthe R. pusillus,

The Journal of Experimental Biology epigenetic variation inbatpopulations. elucidate theevolutionarypotential ofenvironment-induced epigenetic andphenotypicvariation, whichcouldenableusto further insightintothepossible relationshipsbetweengenetic, effective high-throughputsequencingtechniquescould provide such ashistonemethylationand acetylation.Inthefuture,newand genetic diversity. Inaddition,othermarkersshouldbeconsidered, bats bycommon-gardenexperimentsbecauseoftheirextensive processes ofepigeneticvariationinresponsetoecologicalstress of profile. in batevolutionadditiontonaturalselectionandthegenetic harmful forbatpopulations,andcouldbeoneofthedrivingforces environment-induced epigeneticvariationmaybebeneficial or contribute tothewideepigeneticdiversity. Theheritable genetic divergence, driftorepimutation, andenvironmentalvariation variations maybeevolutionarilysignificanttowildpopulations. The found inplants,indicatingthattheextensiveindividualepigenotypic diversity withinandamongpopulationsindividuals,as also significant epigeneticstructuresexhibitextensivemethylation diverse batspecies.Theirgreaterepigeneticpolymorphismsand bat populations. provide insightintothemechanismsofenvironmentaladaptation to environmentalchangeswithoutgeneticdivergence, andmay DNA methylation,couldmediatephenotypic variationinresponse necessary toconsideranotherexplanation.Epigeneticcues,suchas to adaptenvironmentalchangesrapidly, anditistherefore Genetic changescouldnotprovideaneffective phenotypeforbats variable meteorologicalconditionsandanthropogeniceffects. phenotypes andaresensitivetoenvironmentalchanges,suchas the biotaofinterest.Theyliveindiversehabitatswithvaried Bats arekeyecologicalspeciesandreflectwiderscaleimpactson crucial roleinthewidespreaddistributionofbatpopulations. new changedsurroundings.Thus,epigeneticmarksmayhavea occurs again,‘wash-out’ mayfacilitatetheoffspring toadaptthe Burggren (Burggren, 2015).Whenrapidenvironmental change generation overseveralgenerations,asreviewedinthisissueby methylation patternsmaybe‘washed-out’ bothinter- andintra- features ofepigeneticcues,thephenotypescausedbychanged for alongperiod.However, becauseoftheflexibleanddynamic across generationstoensuretheyadaptthechangedenvironments the mechanismsofenvironmentaladaptionbats. epigenetic variationsthatescaperesettingprovidetheinsightinto and Raz,2009;Nättetal.,2012;Richards,2006).Heritable and animalspecies(Grant-DowntonDickinson,2006;Jablonka may bestablyinheritedacrossgenerationsasreportedinmanyplant all epigeneticmarksareresetineachgeneration,andsomeofthem reset duringtheearlydevelopmentofoffspring. However, not induced methylationvariationsfromparents,maybeerasedand et al.,2001).Theepigeneticpatterns,especiallyenvironment- establishing nucleartotipotency(GeimanandRobertson,2002;Reik implantation embryos,whichiscrucialforimprintingand mammals duringearlydevelopmentofgermcellsandpre- 2013). conditions (DiasandRessler, 2014;Crewsetal.,2007;Jensen reflect theexposuretotheirparentalorancestralenvironmental generations (JablonkaandRaz,2009;Richards,2006),whichcould REVIEW Conclusions It isstillveryhardtoexplorethemechanismsbehind the Here, wehaveexploredpopulationepigeneticdiversityinthree Methylation variationsmaybeinheritedandmaintainedstably It shouldbenotedthatepigeneticreprogrammingwouldoccurin hag .J,Ce,F .adCe,Y. Z. Chen, and F. C. Chen, T. J., Chuang, Foundation ofHenanPolytechnicUniversity(grantno.60307/003). (grant no.31400320,31372214,31370399and91131003) andtheDoctoral This workwassupportedbytheNationalNaturalScienceFoundationofChina experiments. S.L.wrotethedraft.S.L.,K.S.andT.J. revisedthearticle. S.L. andJ.F. conceivedanddesignedthestudy. S.L.andK.S.executedthe The authorsdeclarenocompetingfinancialinterests. improvement ofthearticle’s Englishusage. suggestions improvedthispaperandDrMichaelaHandelforcorrection ‘Epigenetics inComparativePhysiology’.We alsothankthereviewerswhose We thankTheJournalofExperimentalBiology oio,D . un,D n ite R.L. Jirtle, and D. Huang, D.C., Dolinoy, lsrn,N .adSheebc,K.A. Schierenbeck, and N.C. Ellstrand, ofli .adMri,D.I.K. Martin, and D. Boffelli, and H. Araki, L., Cluzel, V., Amarasinghe, B., Cooper, V., Thuillier, M.S., Blouin, Cui, T., Aspelund, R.A., Irizarry, M.D., Fallin, M.I., Sigurdsson, H.T., Bjornsson, odg,S,Dboi .adSm,P. Samu, and D. Dobrosi, S., Boldogh, rw,D,Gr,A . s,T . agee,N . pnta . calr,T., Schallert, M., Spinetta, N.L., Dangleben, T. S., Hsu, A.C., Gore, D., Crews, J. M. Martínez-Zapater, and L. Ruiz-García, M.T., Cervera, W. W. Burggren, a,L,Gn,Y,L,B,Ce,J n ag J. Yang, and J. Chen, B., Li, Y., Geng, L., Gao, J., Hetzel, M.G., Goll, M., Bostick, P.-Y., Chen, X., Zhang, S.J., Cokus, S., Feng, rn-ono,R .adDcisn H.G. Dickinson, and R.T. Grant-Downton, K.D. Robertson, and T. M. Geiman, References Funding Author contributions Competing interests Acknowledgements osof . ihrs .L n iluc,M. Pigliucci, and C.L. Richards, O., Bossdorf, Y. Zhang, and O. Bossdorf, T. Day, and A.J. Crean, R., Bonduriansky, is .G n ese,K.J. Ressler, and B.G. Dias, E. Hamilton-Smith, and S. Bourne, S. Manel, and D. Ehrich, A., Bonin, ltce,R,Famn . cösetr .adPu,O. Paun, and P. Schönswetter, B., Frajman, R., Flatscher, oio,D . eda,J . aeln,R .adJrl,R.L. Jirtle, and R. A. Waterland, J.R., Weidman, D.C., Dolinoy, Proc. Natl.Acad.Sci.USA between DNA methylationandtheevolutionaryratesofmammaliancodingexons. Mol. Genet.Genomics methylation inArabidopsisthalianabasedonmethylation-sensitiveAFLP markers. intragenerational phenotype‘washout’. Natl. Acad.Sci.USA counteracts bisphenolA-inducedDNA hypomethylationinearlydevelopment. modifying thefetalepigenome. evolution ofinvasivenessinplants? fluctuation andphenotypicvariation. habitats: implicationsforepigeneticregulation ofrapidresponsestoenvironmental methylation alterationsof differentiation? Sci. between wildandhatcherysteelhead( C. T. B. Grunau, Harris, and T. J. Ekström, 2877-2883. M.A., Rongione, individual changeovertimeinDNA methylationwithfamilialclustering. W., Yu, H., 9 buildings onhouse-dwellingbatsanditsconservationconsequences. na,M .adSinr M.K. mate preference. Skinner, and M.D. Anway, climate change. Ecol. length polymorphismdata:atoolboxformolecularecologistsandevolutionists. speciation? heterogeneity andphenotypicdivergence:canheritableepigeneticvariation aid etal. M.E. Halpern, of methylationpatterninginplantsandanimals. S.H., Strauss, J., Jain, Ann. Bot.97,11-27. for plantbiology2. The ‘epigeneticepiphany’:epigenetics, evolutionandbeyond. 117-125. modifications, andDNA methylation-howdoesitallfittogether? Ecol. Lett. 1572-1574. inheritance forevolutioninchangingenvironments. behavior andneuralstructureinsubsequentgenerations. 8689-8694. genistein alterscoatcolorandprotects , 527-534. 67, 217-224. 16, 3737-3758. 11 Genet. Res.Int. The JournalofExperimentalBiology(2015)doi:10.1242/jeb.107243 , 106-115. (2010). Noevidenceforlargedifferences ingenomicmethylation DNA CellBiol. Australasian BatSocietyNewsletter (2015). Dynamicsofepigeneticphenomena:intergenerationaland Proc. Natl.Acad.Sci.USA 104 268 , 13056-13061. , 543-552. (2011). A trulyecologicalepigeneticsstudy. 109 Alternanthera philoxeroides 2012 (2012). Epigeneticinheritance:acontributortospecies 1Suppl.1,S11-S16. 31 , 15841-15846. Environ. HealthPerspect. , 698421. (2014). Parentalolfactoryexperienceinfluences (2007). Transgenerational epigeneticimprintson Proc. Natl.Acad.Sci.USA (2007). Statisticalanalysisofamplifiedfragment Plant CellEnviron. (2007). J. Exp.Biol. Oncorhynchus mykiss (2000). Hybridizationasastimulusforthe (2007). Theeffects ofthe illuminationof (2007). Maternalnutrientsupplementation (2002). Chromatinremodeling,histone (2012). Position-dependentcorrelations A (2006). Epigeneticsanditsimplications 104 (2012). Theimplicationsofnongenetic Miniopterus schreibersiibassanii vy for organizingthesymposium (2010). Conservationanddivergence , 5942-5946. mouse offspring fromobesityby (2008). Epigeneticsforecologists. Proc. Natl.Acad.Sci.USA Evol. Appl. 218 28, 67-69. , 80-87. (2010). Genome-wideDNA 33, 1820-1827. in naturalandmanipulated 114 Nat. Neurosci. (2002). AnalysisofDNA , 567-572. ). (2012). Environmental 5 97, 7043-7050. J. Cell.Biochem. , 192-201. Can. J.Fish.Aquat. (2006). Maternal Mol. Ecol. (2008). Intra- Acta Chiropt. 17, 89-96. JAMA Proc. 105 299 107 Mol. and 87, 20, , ,

The Journal of Experimental Biology err,C . oo .I n aaa P. Bazaga, and M.I. Pozo, C.M., Herrera, 106 REVIEW alna .adLm,M.J. Lamb, and E. Jablonka, G. Bernardi, and J. Desgrès, J.P., PaïsdeBarros, S., Cacciò, K., Jabbari, P. Bazaga, and C.M. Herrera, alna .adRz G. Raz, and E. Jablonka, A. Chess, and A. Hellman, iaMdio,C . aio,C,Frads .A,Mt,C . ads,M.A. Cardoso, C.S., Mata, R.A., Fernandes, C., Parisod, C.F., Lira-Medeiros, alna . ab .J n eiosi A. Zeligowski, and M.J. Lamb, E., Jablonka, M.J. Lamb, and E. Jablonka, P. Bazaga, and C.M. Herrera, oe,G,Jcb,D . uz .H,Wli,M .adRcy P. A. Racey, and M.R. Willig, T. H., Kunz, D.S., Jacobs, G., Jones, P. Jensen, i,J,Hthsn . ern-izzr,N,Mra,M,Si .adClon V. Calhoun, and J. Sui, M., Morgan, N., Perrone-Bizzozero, K., Hutchison, J., Liu, J.F. Wendel, and B. Liu, uhrk,R,Mlsk,J,Frt .adMlsk,R. Maleszka, and S. Foret, J., Maleszka, R., Kucharski, P. K. Subudhi, and H. Biradar, T., M.D. DeLeon, R., Purugganan, Karan, and S. Kalisz, aaaaukmi ihh . icee,D n cmt,L. Schmitt, and D. Kitchener, S., J. Hisheh, Feng, Maharadatunkamsi, and B. Liu, J.P., Ho, T., Jiang, K., Sun, S., Liu, aeza R. Maleszka, azl . la,E,BroiiSler,A,Clt . ice,M n osof O. Bossdorf, and M. Fischer, V., Colot, A., BortoliniSilveira, E., Allan, V., Latzel, M.B. Fenton, and T. H. Kunz, an .L,Sed,R .adDlo,V. M. Dalton, and R.J. Steidl, S.L., Mann, eó-etg C. Ledón-Rettig, atn G.M. Martin, Liebl, B. Liu, and W. Guo, L., Hu, X., Liu, X., Shan, Y., Li, obr,U .adRye,J.M.V. Rayner, and and U.M. L. Norberg, Andersson, J., Beltéky, M., Johnsson, D., Wright, C.-J., Rubin, D., Nätt, B. Angers, and E. Whitelaw, R., Massicotte, oi,P,J n try K.B. Storey, and A. Jr Pérez-Figueroa, P., and Morin, L. Covelo-Soto, M., Megías, F., Marco-Rius, P., Morán, Ecol. DNA methylationandtheepigeneticbasisofnichewidthinaflower-livingyeast. herbivory. populations: ecological,geneticandepigeneticcorrelatesoflong-terminequalityin New Phytol. Biol. methylation throughoutarangeexpansionofanintroducedsongbird. Gene Evolutionary changesinCpGandmethylationlevelsthegenomeofvertebrates. Rev. Biol. prevalence, mechanisms,andimplicationsforthestudyofheredityevolution. 11 Lamarckian Dimension adaptive geneticdivergenceindiscretepopulationsoftheviolet polymorphism inthehumangenome. Biophys. Mol.Biol. allopolyploids. contrasting naturalenvironment. P. C. Ferreira, and London: TheMIT Press. noctem: theimportanceofbatsasbioindicators. Rhinolophus affinis. morphometric diversityin structure. PLoSONE (2010). Identificationofgeneticandepigeneticmarksinvolvedinpopulation reproductive statusinhoneybeesviaDNA methylation. contrasting ricegenotypes. variation inDNA methylationpatternanditsinfluenceongeneexpressionin consequences forplantevolution. Epigenetics honey bees:thecriticalinterplayofnutritional,brainandreproductivenetworks. Genet. Genomics variation inthefemalegreatroundleafbat( populations. (2013). Epigeneticdiversityincreasestheproductivityandstabilityofplant Press. Myotis velifer Integr. Comp.Biol. USA echolocation. (Mammalia; Chiroptera): wingadaptations,flightperformance, foragingstrategyand brevisubulatum polymorphism andepigeneticpopulationstructureinawildbarleyspecies( sensitive amplifiedpolymorphism(MSAP)markerfordetectionofDNA methylation 59. promoter methylationbetweenwildand domesticated chickens. P. Jensen, 442. expression andnovelapplicationofepigenetic controls. random variationinnaturalpopulations. adaptation inbrowntrout. (2013). Environmentalinducedmethylationchangesassociatedwithseawater , 159-183. .L,She,A . ihrs .L n atn L.B. Martin, and C.L. Richards, A.W., Schrey, A. L., 53, 351-358. 102 21, 2602-2616. 205 , 10413-10414. , 109-118. (2013). Transgenerational epigeneticeffects onanimalbehaviour. 84, 131-176. Mol. Ecol. (2008). Epigeneticintegrationofenvironmentalandgenomicsignalsin 3 187 Nat. Commun. (2005). Epigeneticdriftinagingidenticaltwins. . J.Wildl. Manage. (2012). Heritablegenome-widevariation ofgeneexpressionand , 188-192. Philos. Trans. R.Soc.B Mol. Phylogenet.Evol. ). Ecol.Res. , 867-876. 287 (2013). Ecologicalepigenetics:anintroductiontothesymposium. 113 53, 307-318. J. Biogeogr. 20, 1675-1688. (2010). Epigeneticvariationinmangroveplantsoccurring 5 , 643-650. , 447-454. , e13209. . NewYork, NY: OxfordUniversityPress,USA. (2003). Epigeneticphenomenaandtheevolutionofplant Aquaculture Wallacea (2010). Extensivesequence-influencedDNA methylation PLoS ONE 4 23, 927-930. (1998). Epigeneticinheritanceinevolution. , 2875. (2003). (2010). Epigeneticdifferentiation andrelationshipto (2009). Transgenerational epigeneticinheritance: 66, 618-624. (1995). 27, 193-201. PLoS ONE (2011). Untanglingindividualvariationinnatural (2009). Mammalianhibernation:differential gene Trends Ecol.Evol. : geographicalpatterninginthehorseshoebat, (1987). Ecologicalmorphologyandflight inbats Bat Ecology Epigenet. Chromatin 29, 365-379. 316 392-395 7 Epigenetics , e40203. Epigenetic InheritanceandEvolution:The (2004). EpiallelesviaDNA methylation: (2012). Jackofallnectars,mastermost: , 335-427. (2002). Effects ofcavetoursonbreeding Hipposideros armiger 5 , e10326. (2011). DNA methylation:A sourceof (2005). , 77-83. Endanger. SpeciesRes. . Chicago,IL:UniversityofChicago (2008). Utilityofthemethylation- 6 19, 309-314. , 421-427. Evolution inFourDimensions Science (2008). Nutritionalcontrolof (2012). Saltstressinduced (2012). Naturalepigenetic Int. J.Dev. Biol. 3 , 11. (2013). PatternsofDNA Proc. Natl.Acad.Sci. 319 (2000). Geneticand BMC Genomics ) populations. Viola cazorlensis , 1827-1830. (2009). Carpe Integr. Comp. J. Evol.Biol. 8 , 93-115. Hordeum 53, 433- (1997). Prog. Mol. Mol. 13, Q. . . holue . hse,D,Dl’e,S n lve,J.M. Olivier, and S. Dole’dec, D., Chessel, J., Thioulouse, M.K. Skinner, eah . cail .E,Sla .adZlemn D. Zilberman, and P. Silva, I.E., McDaniel, A., Zemach, ihrs E.J. Richards, ihrs .L,Bsdr,O n ehee,K.J.F. Verhoeven, and O. Bossdorf, C.L., Richards, T. P. McOwat, and R.D. Ransome, arae .adBrad,G. Bernardi, and A. Varriale, D.W. Thomas, J. Feng, and G. Li, T., Jiang, L., Jin, X., Wei, R.T., Kimball, L., Luo, K., Sun, amn . ioce .L n edl J.F. Wendel, and M.L. Ainouche, A., Salmon, D.E. Wolf, and A.L. Robertson, M. Pigliucci, and A.W. Schrey, C.L., Richards, E.J. Richards, J. Ruiz-Herrera, and J. Simpson, G.E., Reyna-López, J. Walter, and W. Dean, W., Reik, ap .A n edl J.F. Wendel, and R.A. Rapp, agn .W,Tanurdzi M.W., Vaughn, cmt,R . cut,M . esy .G,OMle,R . rc,M . Libiger, M.A., Urich, R.C., O’Malley, M.G., Lewsey, M.D., Schultz, R.J., Schmitz, S.V. Yi, and B.G. Hunt, J., Zeng, S., Sarda, cab . swl,J n imr,B.M. Siemers, and J. Ostwald, A., Schaub, evr .C . evn,N,Capge .A,DAeso .C,Sam,S., Sharma, A.C., D’Alessio, F. A., Champagne, N., Cervoni, I.C.G., Weaver, o,P,Hgr,R,Bekr . ejn,M,vnd e,T,Hre,M,Frijters, P. M., B. Vrana, Hornes, T., vandeLee, M., Reijans, M., Bleeker, R., Hogers, P., Vos, ehee,K . asn .J,vnDj,P .adBee A. Biere, and P. J. vanDijk, J.J., Jansen, K.J., Verhoeven, cry .W n ihrs C.L. Richards, and A.W. Schrey, et . ishede,M n ecedrf A.E. Teschendorff, and M. Widschwendter, J., West, aeln,R .adJrl,R.L. Jirtle, and R.A. Waterland, cry .W,Avrz . os,C . ivts .J,Le .D,Lel A.L., Liebl, J.D., Lee, Shorter H. J., Kilvitis, C.M., Foust, M., Alvarez, A.W., Schrey, E.D., McCoy, T., Imboma, M., Awad, M.T., Grispo, C.A.C., Coon, A.W., Schrey, u .Q,Y,M . ag .F,M,L-. in,L,L,X-. io .X,Sn M.- Sun, H.-X., Xiao, X.-W., Li, L., Jiang, L.-L., Ma, X.-F., Wang, M.R., Yi, W.-Q., Wu, u . hn,Y,Sn . ag .adY,Y. Yu, Y and Y. Wang, D., Sun, Y., Zhang, Q., Xu, n,C,Zag . i,W,Yn,R,Zag . i,Z,Sn .adZa,Z. Zhao, and B. Sun, Z., Qiu, Y., Zhang, R., Yang, W., Niu, M., Zhang, C., ang, J. . multivariate analysisandgraphicaldisplaysoftware. e70368. importance ofdriftandecologicalselectioninevolutionaryprocesses. Geographic variationintheacoustictraitsofgreaterhorseshoebats:testing somatic epigeneticmitoticstability. 179159. evolutionary analysis ofeukaryoticDNA methylation. (2011). AnalysisofDNA methylationinvariousswinetissues. Ecol. Lett. by fewJapaneseknotweedgenotypesiscorrelatedwithepigeneticdifferentiation. epigenetic variation. Rev. Genet. amplification ofrestrictionpolymorphisms. methylation patternsaredetectableduringthedimorphictransitionoffungiby 168 climatic temperature. greater horseshoebatcolonies( (2012). fishes. Gene Exp. Biol. Ecol. consequences ofrecenthybridizationandpolyploidyin Biol. Trends Evol. development. aioiz .D,Ddi,N,MCmi,W . ge,N,Blk,A etal. 185 A. Bulski, DNA methylationchangesand theirheritabilityinasexualdandelions. N., Agier, W. R., McCombie, N., (2007). Epigeneticnaturalvariationin Dedhia, P. D., Rabinowicz, . cok .J n ce,J.R. Ecker, a sourceofnovelmethylationvariants. and N.J. Schork, O., gene bodymethylation. ek,J . yo,S,Sy,M n eny M.J. Meaney, and M. Szyf, S., Dymov, programming bymaternalbehavior. J.R., Seckl, nutritional effects onepigeneticgeneregulation. mammals. J.Mammal. . o,J,Plmn . upr .etal. M. Kuiper, J., fingerprinting. Peleman, J., Pot, A., enables broadnichewidthinaflowerlivingyeast. 110 age-associated epigeneticdriftinthehumaninteractome. atn .B,Rcad,C .adRbrsn M. Robertson, and C.L. beyond MS-AFLP. Richards, L.B., Martin, 979751. L.B. using housesparrows( Martin, and may compensatefordecreasedgeneticvariationwithintroductions:acasestudy C.L. Richards, H.R., Mushinsky, . i .F n i,B. Liu, and natural L.-F. Li, Z., Genet. Genomes of varioustissuesinchicken. , 14138-14143. , 81-91. , 1108-1118. .R,Cosad .P,Wb,D,Saa,G,Fle,M .adVaa P. B. Vrana, and M.R. Felder, G., Szalai, D., Webb, J.P., Crossland, K.R., , 14, 1163-1175. Betula ermanii Peromyscus 211, 3174-3180. 15, 1016-1025. (2007). Genomicimprintingasamechanismofreproductiveisolationin 76, 940-946. 7 The JournalofExperimentalBiology(2015)doi:10.1242/jeb.107243 385 (1995). Hibernatingbatsaresensitivetonontactilehumandisturbance. , 395-401. (2008). Populationepigenetics. Science (2006). Inheritedepigeneticvariation–revisitingsoftinheritance. Nucleic AcidsRes. (2011). Environmentalepigenetictransgenerationalinheritanceand , 111-121. 9 4 Integr. Comp.Biol. , 1321-1328. , e4. New Phytol. Zool. J.Linn.Soc. as amammalianepigeneticmodel. 293 (Betulaceae) populationsinhabitingcontrasting habitats. Passer domesticus 88, 5-23. Mol. Biol.Evol. , 1089-1093. ć (2013). Geneticandepigeneticdifferentiation between . ipa,Z,Jag . arsulo R., Carrasquillo, H., Jiang, Z., Lippman, M., , Anim. Biotechnol. (2005). Epigeneticsandplantevolution. (2006). DNA methylationandbodytemperaturein 187 Rhinolophus ferrumequinum 23, 4407-4414. (2012). Theroleofepigenticsinplantadaptation. (2001). Epigeneticreprogramminginmammalian (2003). Transposable elements:targetsforearly Epigenetics (2011). Transgenerational epigeneticinstabilityis Nat. Neurosci. (1994). Birthtimingandpopulationchangesin , 562-564. Arabidopsis thaliana 53, 340-350. (2012). Within-genotypeepigeneticvariation Science 29, 1907-1916. 112 ) ontwocontinents. Mol. Gen.Genet.253 , 337-351. (1995). AFLP:anewtechniqueforDNA Curr. Opin.Genet.Dev. (2008). Foragingbatsavoidnoise. (2012). Theevolutionofinvertebrate 6 18, 231-241. (2007). AnalysisonDNA methylation 334 Mol. Cell.Biol. , 838-842. (2012). Invasionofdiversehabitats Mol. Ecol. 7 , 369-373. (2005). Geneticandepigenetic , 847-854. Stat. Comput. Science (2013). Ecologicalepigenetics: (2010). Understandingnatural (2013). Distinctivetopologyof (2012). Epigeneticvariation (1997). Differences inDNA Proc. Natl.Acad.Sci.USA . PLoSBiol. Spartina 21, 2559-2561. Genet. Res.Int. PLoS ONE 328 (2010). Stress-induced (2010). Genome-wide ) aresynchronizedby Genet. Res.Int. 23, 5293-5300. , 703-710. (2004). Epigenetic , 916-919. (1997). ADE-4:a 7 , 75-83. (Poaceae). 18, 221-226. 5 PLoS ONE , e174. New Phytol. New Phytol. 6 , e16229. (2013). 2012 2012 Tree Mol. Nat. 8 J. , , ,

The Journal of Experimental Biology