The Making of a Biochemist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Warburg Effect(S)—A Biographical Sketch of Otto Warburg and His Impacts on Tumor Metabolism Angela M
Otto Cancer & Metabolism (2016) 4:5 DOI 10.1186/s40170-016-0145-9 REVIEW Open Access Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism Angela M. Otto Abstract Virtually everyone working in cancer research is familiar with the “Warburg effect”, i.e., anaerobic glycolysis in the presence of oxygen in tumor cells. However, few people nowadays are aware of what lead Otto Warburg to the discovery of this observation and how his other scientific contributions are seminal to our present knowledge of metabolic and energetic processes in cells. Since science is a human endeavor, and a scientist is imbedded in a network of social and academic contacts, it is worth taking a glimpse into the biography of Otto Warburg to illustrate some of these influences and the historical landmarks in his life. His creative and innovative thinking and his experimental virtuosity set the framework for his scientific achievements, which were pioneering not only for cancer research. Here, I shall allude to the prestigious family background in imperial Germany; his relationships to Einstein, Meyerhof, Krebs, and other Nobel and notable scientists; his innovative technical developments and their applications in the advancement of biomedical sciences, including the manometer, tissue slicing, and cell cultivation. The latter were experimental prerequisites for the first metabolic measurements with tumor cells in the 1920s. In the 1930s–1940s, he improved spectrophotometry for chemical analysis and developed the optical tests for measuring activities of glycolytic enzymes. Warburg’s reputation brought him invitations to the USA and contacts with the Rockefeller Foundation; he received the Nobel Prize in 1931. -
Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4. -
Illustrations from the Wellcome Institute Library the Chain Papers*
Medical History, 1983, 27:434-435 ILLUSTRATIONS FROM THE WELLCOME INSTITUTE LIBRARY THE CHAIN PAPERS* THE three men who shared the Nobel Prize in October 1945 for their work on penicillin could scarcely have differed more in their backgrounds and characters. Fleming was sixty-four years old by then; the son of a Scottish farmer, he was a retiring man, not given to conversation. By contrast, Florey, then aged forty-seven, was the son of a wealthy Australian boot and shoe manufacturer; aggressively ambitious, his achievements and intellect were later to secure him the Presidency of the Royal Society. Then there was Chain - a mere thirty-nine years old - a Jewish refugee of Russian origin, who still had major work on penicillin ahead of him; his ambition was mixed with an independence and volubility that was to lead him into conflict with the scientific/medical establishment. Fleming has been the subject of many biographies, mostly hagiographical. Florey's role in the penicillin story was recently reassessed in Gwyn Macfarlane's excellent Howard Florey. The making ofa great scientist (Oxford University Press, 1979). Sir Ernst Boris Chain died in 1979, and his biography is being written by Ronald W. Clark. This, together with future research on Chain's papers, will enable a fuller assessment to be made of the role and character of the youngest of the three scientists. The Chain papers, recently given by Lady Chain to the Contemporary Medical Archives Centre, form an extensive collection of some sixty-nine boxes, comprising material from Chain's personal and professional life. -
The Prime Cause, Prevention and Treatment of Cancer
International Science and Investigation Journal ISSN: 2251-8576 2016, 5(5) Journal homepage: www.isijournal.info The Prime Cause, Prevention and Treatment of Cancer Somayeh Zaminpira *1, Sorush Niknamian 2 *1 Ph.D. in Cellular and Molecular Biology, University of Cambridge, United Kingdom 2 Ph.D. in Cellular and Molecular Biology, University of Cambridge, United Kingdom 102 International Science and Investigation Journal Vol. 5(5) Abstract This meta-analysis research has gone through more than 200 studies from 1934 to 2016 to find the differences and similarities in cancer cells, mostly the cause. The most important difference between normal cells and cancer cells is how they respire. Normal cells use the sophisticated process of respiration to efficiently turn any kind of nutrient that is fat, carbohydrate or protein into high amounts of energy in the form of ATP. This process requires oxygen and breaks food down completely into harmless carbon dioxide and water. Cancer cells use a primitive process of fermentation to inefficiently turn either glucose from carbohydrates or the amino acid glutamine from protein into small quantities of energy in the form of ATP. This process does not require oxygen, and only partially breaks down food molecules into lactic acid and ammonia, which are toxic waste products. The most important result is that fatty acids or better told fats cannot be fermented by cells. This research mentions the role of ROS and inflammation in causing mitochondrial damage and answers the most important questions behind cancer cause and mentions some beneficial methods in preventing and treatment of cancer. Keywords Cancer, Respiration, Fermentation, ROS, Prevention Introduction 1. -
Federation Member Society Nobel Laureates
FEDERATION MEMBER SOCIETY NOBEL LAUREATES For achievements in Chemistry, Physiology/Medicine, and PHysics. Award Winners announced annually in October. Awards presented on December 10th, the anniversary of Nobel’s death. (-H represents Honorary member, -R represents Retired member) # YEAR AWARD NAME AND SOCIETY DOB DECEASED 1 1904 PM Ivan Petrovich Pavlov (APS-H) 09/14/1849 02/27/1936 for work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged. 2 1912 PM Alexis Carrel (APS/ASIP) 06/28/1873 01/05/1944 for work on vascular suture and the transplantation of blood vessels and organs 3 1919 PM Jules Bordet (AAI-H) 06/13/1870 04/06/1961 for discoveries relating to immunity 4 1920 PM August Krogh (APS-H) 11/15/1874 09/13/1949 (Schack August Steenberger Krogh) for discovery of the capillary motor regulating mechanism 5 1922 PM A. V. Hill (APS-H) 09/26/1886 06/03/1977 Sir Archibald Vivial Hill for discovery relating to the production of heat in the muscle 6 1922 PM Otto Meyerhof (ASBMB) 04/12/1884 10/07/1951 (Otto Fritz Meyerhof) for discovery of the fixed relationship between the consumption of oxygen and the metabolism of lactic acid in the muscle 7 1923 PM Frederick Grant Banting (ASPET) 11/14/1891 02/21/1941 for the discovery of insulin 8 1923 PM John J.R. Macleod (APS) 09/08/1876 03/16/1935 (John James Richard Macleod) for the discovery of insulin 9 1926 C Theodor Svedberg (ASBMB-H) 08/30/1884 02/26/1971 for work on disperse systems 10 1930 PM Karl Landsteiner (ASIP/AAI) 06/14/1868 06/26/1943 for discovery of human blood groups 11 1931 PM Otto Heinrich Warburg (ASBMB-H) 10/08/1883 08/03/1970 for discovery of the nature and mode of action of the respiratory enzyme 12 1932 PM Lord Edgar D. -
Scientific References for Nobel Physiology & Medicine Prizes
Dr. John Andraos, http://www.careerchem.com/NAMED/NobelMed-Refs.pdf 1 Scientific References for Nobel Physiology & Medicine Prizes © Dr. John Andraos, 2004 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ 1901 - Emil Adolf von Behring "for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths." 1902 - Ronald Ross "for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it." Ross, R. Yale J. Biol. Med. 2002, 75 , 103 (reprint) Ross, R. Wilderness Environ. Med. 1999, 10 , 29 (reprint) Ross, R. J. Communicable Diseases 1997, 29 , 187 (reprint) Ross, R.; Smyth, J. Ind. J. Malarialogy 1997, 34 , 47 1903 - Niels Ryberg Finsen "in recognition of his contributions to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science." 1904 - Ivan Petrovich Pavlov "in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged." 1905 - Robert Koch "for his investigations and discoveries in relation to tuberculosis." 1906 - Camillo Golgi and Santiago Ramón y Cajal "in recognition of their work on the structure of the nervous system." Golgi, C. -
Nobel Laureates with Their Contribution in Biomedical Engineering
NOBEL LAUREATES WITH THEIR CONTRIBUTION IN BIOMEDICAL ENGINEERING Nobel Prizes and Biomedical Engineering In the year 1901 Wilhelm Conrad Röntgen received Nobel Prize in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him. Röntgen is considered the father of diagnostic radiology, the medical specialty which uses imaging to diagnose disease. He was the first scientist to observe and record X-rays, first finding them on November 8, 1895. Radiography was the first medical imaging technology. He had been fiddling with a set of cathode ray instruments and was surprised to find a flickering image cast by his instruments separated from them by some W. C. Röntgenn distance. He knew that the image he saw was not being cast by the cathode rays (now known as beams of electrons) as they could not penetrate air for any significant distance. After some considerable investigation, he named the new rays "X" to indicate they were unknown. In the year 1903 Niels Ryberg Finsen received Nobel Prize in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science. In beautiful but simple experiments Finsen demonstrated that the most refractive rays (he suggested as the “chemical rays”) from the sun or from an electric arc may have a stimulating effect on the tissues. If the irradiation is too strong, however, it may give rise to tissue damage, but this may to some extent be prevented by pigmentation of the skin as in the negro or in those much exposed to Niels Ryberg Finsen the sun. -
Integrity and Values in Science
1 Integrity and Values in Science Fred C. Martin, Retired Washington State Department of Natural Resources Olympia, Washington 2 Preamble • “That is the idea that we all hope you have learned in studying science in school—we never explicitly say what this is, but just hope that you catch on by all the examples of scientific investigation.” Richard Feynman. • "At times I even persuade myself that I can glimpse some of the answers, but this is a common delusion experienced by anyone who dwells too long on a single problem.“ Francis Crick. • “The secret to real happiness is low expectations.” Barry Schwartz. Science as an Emergent Property “… the conditions for the success of science are the values of man which science would have had to invent afresh if man had not otherwise known them ...” J. Bronowski. • Honesty • Tolerance • Self–respect • Independence • Imagination Post-Truth – Skepticism & Denial • “Nothing is so difficult as not deceiving oneself.” Ludwig Wittgenstein. • "Thinking is to humans as swimming is to cats; they can do it but they’d prefer not to." Daniel Kahneman. • "Intellectual rigor annoys people because it interferes with the pleasure they derive from allowing their wishes to be the fathers of their thoughts." George Will. Post-Truth – Personal Belief Trumps Facts • “… the false notion that democracy means that my ignorance is just as good as your knowledge.” Issac Asimov. • "... it is so much easier, mentally and emotionally, to take one side and hold to it tenaciously than to admit complexity and ambiguity; to start by believing, and fit evidence into that belief, rather than start by disbelieving, and seek the best evidence that confirms and disconfirms that belief." Carol Tavris. -
Dr. Otto Heinrich Warburg—Survivor of Ethical Storms
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272837212 Dr. Otto Heinrich Warburg—Survivor of Ethical Storms Article in Rambam Maimonides Medical Journal · January 2015 DOI: 10.5041/RMMJ.10183 · Source: PubMed CITATIONS READS 4 2,288 1 author: George M Weisz University of New England (Australia) 143 PUBLICATIONS 583 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Book- Finding Sanity: John Cade, lithium and the taming o View project All content following this page was uploaded by George M Weisz on 29 April 2015. The user has requested enhancement of the downloaded file. Open Access Rambam Maimonides Medical Journal HISTORY OF MEDICINE Dr. Otto Heinrich Warburg—Survivor of Ethical Storms George M. Weisz, M.D., F.R.A.C.S. (Ortho), M.A.* Senior Lecturer, School of Humanities (Program in History of Medicine), University of New South Wales, Sydney, Australia, and University of New England, Armidale, New South Wales, Australia ABSTRACT Otto Heinrich Warburg (1883–1970; not to be confused with the Zionist of the same name) was a member of an illustrious Jewish family, known for some five centuries. From humble beginnings, the family became prominent in the world for their contributions to all aspects of society. The son of a German mother and a Jewish (converted) father, Otto H. Warburg became a major contributor to medical science in the field of cancer research. Considered for Nobel Prize more than once, he finally received it in 1931 for his discovery of the nature and mode of action of the cellular respiratory enzyme. -
1901-2009 NOBEL PRIZE:1901-2009 O Prêmio Nobel De Medicina Desse Ano Foi Entregue a Elizabeth Blackbur
EDITORIAL PRÊMIO NOBEL: 1901-2009 NOBEL PRIZE:1901-2009 Rosa Lúcia Vieira Maidana, Francisco Veríssimo Veronese, Sandra Pinho Silveiro O prêmio Nobel de Medicina desse ano foi entregue a Elizabeth Blackburn, Jack Szostak e Carol Greider (Figura 1) por terem elucidado a estrutura e o processo de manutenção dos telômeros, como descrevem didaticamente Jardim et al. nesse volume da revista (1). Elizabeth Blackburn (University of California, San Francisco, EUA), Jack Szostak (Harvard Medical School, Boston, EUA) e Carol Greider (Johns Hopkins University, Baltimore, EUA) descobriram que os telômeros são sequências de DNA situados nas extremidades dos cromossomos e possuem uma estrutura que protege os cromossomos de danos como a erosão. Também de- monstraram que uma enzima específica, a telomerase (descoberta em 1984 por Elizabeth Blackburn e sua então assistente Carol Greider), está envolvida no processo de reparação dos cromossomos após a mitose celular. Como descrevem Calado e Young em revisão publicada em dezembro de 2009 no New England Journal of Medicine (2), os telômeros e a telomerase são protetores contra danos ao genoma que podem surgir de uma replicação assimétrica do DNA. Sem os telômeros, o material genético poderia ser perdido toda vez que ocorre uma divisão celular. As implicações clínicas destes processos são importantes, uma vez que alte- rações nos telômeros estão causalmente relacionadas a patologias em que ocorre mutações genéticas, como a anemia aplásica. Telômeros curtos estão associados a risco aumentado de doença cardiovascular, e mutações no gene da telomerase a condições como fibrose pulmonar e hepática e susceptibilidade a alguns tipos de câncer (ex., coloretal, esôfago, leucemia mielóide). -
ILAE Historical Wall02.Indd 5 6/12/09 12:02:49 PM
1950–1959 1952 1954 1955 1956 1958 1959 Selman A. Waksman John Enders Hugo Theorell Dickinsons Richards Edward Tatum Severo Ochoa 1950950 1950950 1953953 1954954 1956956 1957957 1958958 Edward Kandall Philip Hench Hans Krebs Thomas Weller Andre Cournand Daniel Bovet Joshua Lederberg 1950950 195195151 1953953 1954954 195695656 1958958 1959959 Tadeus Reichstein Max Theiler Fritz Lipmann Frederick Robbins Werner Forssmann George Beadle Arthur Kornberg 1950 Second series of Epilepsia ceases publication 1950 First use of corticosteroids and ACTH in epilepsy 1951 Phenacemide launched 1952 Volume 2 of the Atlas of Electroencephalography, devoted to epilepsy, is published 1952 Third series of Epilepsia inaugurated 1952 Hibicon launched and soon withdrawn from practice 1953 ILAE quadrennial meeting in Lisbon – in which there is a landmark session on temporal lobe epilepsy convened by Gastaut 1953 Brazil, Chile, Japan and Peru form branches of the ILAE, which now comprises 10 chapters 1953 Phensuximide launched into practice 1954 ILAE joins CIOMS (Council for International Organizations in Medical Sciences) 1954 Primidone introduced into clinical practice 1955 Cuba forms a branch of the ILAE Drugs introduced into clinicall practice between 1938 and 1958588 1938 Dilantin Phenytoin 1941 Diamox Acetazolamide 1946 Tridione Trimethadione 1947 Mesantoin Mephenytoin 1949 Paradione Paramethadione 1950 Thiantoin Phethenylate 1951 Phenurone Phenacemide 1952 Gemonil Metharbital 1952 Hibicon Benzchlorpropamidem idedee 1953 Milontin Phensuximide 1954 Mysoline -
Annual Report 2018–2019
We undertake discovery science where we reassemble physiological processes at the molecular, cellular, tissue and systems level of organisation. In so doing we provide a bridge to translational medicine, and interface between physical and life sciences, as we train the next generation of doctors and biomedical scientists. Annual Report 2018–2019 Defining Excellence Oxford Anatomy and Physiology ranked #1 in the QS World University Rankings by subject 2017, 2018 A Year of Progress From the Head of Department The Department of Physiology, Anatomy and Genetics has enjoyed another successful year, from our cutting edge © Colin Beesley © Colin research papers revealing Fish genes hold key to repairing damaged hearts key insights into heart regeneration, iron Key research into the Mexican cavefish led by Associate Professor deficiency and Parkinson’s Mathilda Mommersteeg and Research Assistant William Stockdale has led to an important paper suggesting a gene called to name a few, to hosting lrrc10 may hold the key to this fish’s remarkable ability to repair three major international its own heart after damage. Their findings could inspire change in scholars for our named the way human heart failure is treated. lecture series. www.dpag.ox.ac.uk/news/fish-genes-hold-key-to-repairing- Particular highlights for me have been hosting Jeffrey damaged-hearts M. Friedman ForMemRS for the inaugural Hans Krebs Lecture, Carla J. Shatz ForMemRS for the Charles Sherrington Lecture, Jennifer Doudna ForMemRS for a special Sherrington Prize Lecture on CRISPR-cas9 Gene Editing, and Anant Parekh joining these world- leading scientists on his own election as Fellow of the Royal Society.