Two-Body Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Two‐Body Dynamics: Orbits in 3D Chapter 4 Introductions • So far we have focus on the orbital mechanics of a spacecraft in 2D. • In this Chapter we will now move to 3D and express orbits using all 6 orbital elements Geocentric Equatorial Frame r X 2 Y 2 Z 2 sin1Z /r 1X /r cos (Y /r 0) cos X /r 2 cos1 (Y /r 0) cos Orbital Elements • Classical Orbital Elements are: a = semi‐major axis (or h or ε) e = eccentricity i = inclination Ω = longitude of ascending node ω = argument of periapsis θ = true anomaly Orbital Elements vr r v/r iˆ ˆj kˆ h r v XY Z Vx Vy Vz iˆ ˆj kˆ n kˆ h 001 hx hy hz Orbital Elements h i cos1 z h 1n e cos (ez 0) ne n e 2 cos1 (e 0) ne z 2 1 2 h 2 2 e v r rvrv and e e e or e 1 v r 2 r Orbital Elements 2 e r 1 1 h 1 cos 1 (v 0) cos (vr 0) r er e r e r 2 1 1 1 h 2 cos (vr 0) 2 cos 1 (v 0) er r e r Coordinate Transformation • Answers the question of “what are the parameters in another coordinate frame” y y’ x’ Q x Transformation z (or direction cosine) matrix z’ 100 T Q Q 1 010 Q is a orthogonal transformation matrix T 001 QQ 1 Coordinate Transformation x' Qx Where T x Q x' Q Q Q iˆ / iˆ iˆ / ˆj iˆ / kˆ 11 12 13 ˆ / ˆ ˆ / ˆ ˆ / ˆ And Q Q21 Q22 Q23 j i j j j k ˆ / ˆ ˆ / ˆ ˆ / ˆ Q31 Q32 Q33 k i k j k k Where is made up of rotations about the axis {a, b, or c} by the angle {θd, θe, and θf} Q R R R a d b e c f 3rd rotation 2nd rotation 1st rotation Coordinate Transformation For example the Euler angle sequence for rotation is the 3-1-3 rotation Q R3 R1R3 0 360 0 180 0 360 where you rotate by the angle α along the 3rd axis (usually z-axis), then by β along the 1st axis, and then by γ along the 3rd axis. sin cossin cos cos cos cossin sin cos sin sin Q sin coscos cos sin cos coscos sin sin sincos 313 sin sin cos sin cos Thus, the angles can be found from elements of Q Q31 Q13 tan cos Q33 tan Q32 Q23 Coordinate Transformation Classic Euler Sequence from xyz to x’y’z’ Coordinate Transformation For example the Yaw-Pitch-Roll sequence for rotation is the 1-2-3 rotation Q R1R2 R3 0 360 90 90 0 360 where you rotate by the angle α along the 3rd axis (usually z-axis), then by β along the 2nd axis, and then by γ along the 1st axis. cos cos sin cos sin Q cos sinsin sin cos sin sin sin cos cos cossin 123 cos sincos sin sin sin sin cos cos sin coscos Thus, the angles can be found from elements of Q Q12 Q23 tan sin Q13 tan Q11 Q33 Coordinate Transformation Yaw, Pitch, and Roll Sequence from xyz to x’y’z’ Transformation between Geocentric Equatorial and Perifocal Frame Transferring between pqw frame and xyz cos h 2 / r sin pqw 1 ecos 0 sin v e cos pqw h 0 Transformation from geocentric equatorial to perifocal frame Transformation between Geocentric Equatorial and Perifocal Frame Transformation from perifocal to geocentric equatorial frame is then Therefore Perturbation to Orbits Oblateness • Planets are not perfect spheres R R oblateness eq pole Req Perturbation to Orbits Oblateness ˙r˙ r p p p uˆ p uˆ p hˆ r3 r r t t h R2 p 1.5 J 1 3sin2 i sin2 r r2 2r 2 R 2 2 pt 1.5 J2 sin i sin 2 r2 r R2 p 1.5 J sin 2i sin2 h r2 2r Perturbation to Orbits Oblateness Perturbation to Orbits Oblateness Perturbation to Orbits Oblateness Sun‐Synchronous Orbits Orbits where the orbit plane is at a fix angle α from the Sun-planet line Thus the orbit plane must rotate 360° per year (365.25 days) or 0.9856°/day Finding State of S/C w/Oblateness • Given: Initial State Vector • Find: State after Δtassuming oblateness (J2) • Steps finding updated state at a future Δtassuming perturbation 1. Compute the orbital elements of the state 2. Find the orbit period, T, and mean motion, n 3. Find the eccentric anomaly 4. Calculate time since periapsis passage, t, using Kepler’s equation Me nt E esin E Finding State of S/C w/Oblateness 5. Calculate new time as tf = t + Δt 6. Find the number of orbit periods elapsed since original periapsis passage n p t f /T 7. Find the time since periapsis passage for the final orbit t n floor n T orbit _ n p p 8. Find the new mean anomaly for orbit n M nt e orbit _ n orbit _ n 9. Use Newton’s method and Kepler’s equation to find the Eccentric anomaly (See slide 57) Finding State of S/C w/Oblateness 10. Find the new true anomaly 1 e E tan orbit _ n tan orbit _ n 2 1 e 2 11. Find position and velocity in the perifocal frame cos h 2 / r sin pqw 1 ecos 0 sin v e cos pqw h 0 Finding State of S/C w/Oblateness 12. Compute the rate of the ascending node 13. Compute the new ascending node for orbit n 14. Find the argument of periapsis rate 15. Find the new argument of periapsis Finding State of S/C w/Oblateness 16. Compute the transformation matrix [Q] using the inclination, the UPDATED argument of periapsis, and the UPDATED longitude of ascending node cos(i) 17. Find the r and v in the geocentric frame Ground Tracks Projection of a satellite’s orbit on the planet’s surface Ground Tracks Projection of a satellite’s orbit on the planet’s surface E 15.04 deg/hr Ground Tracks Projection of a satellite’s orbit on the planet’s surface Ground Tracks reveal the orbit period Ground Tracks reveal the orbit inclination i LATmax or min If the argument of perispais, ω, is zero, then the shape below and above the equator are the same. .