<<

2/12/20

Orbital Space System Design, MAE 342, Princeton University Robert Stengel

Conic section Equations of motion Momentum and energy Kepler’s Equation Position and in

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1

1

Orbits 101

Satellites Escape and Capture (, )

2

2

1 2/12/20

Two-Body Orbits are Conic Sections

3

3

Classical and Time a : Semi-major axis e : Eccentricity

t p : Time of perigee passage Orientation Ω :Longitude of the Ascending/Descending Node i : Inclination of the Orbital Plane ω: Argument of Perigee

4

4

2 2/12/20

Orientation of an Elliptical Orbit

First Point of Aries

5

5

Orbits 102 (2-Body Problem) • e.g., – and or – Earth and or – Earth and : radius and velocity are constant • : 17,000 mph = 24,000 ft/s = 7.3 km/s • Super-circular – Earth to Moon: 24,550 mph = 36,000 ft/s = 11.1 km/s – Escape: 25,000 mph = 36,600 ft/s = 11.3 km/s • Near , small changes have huge influence on apogee 6

6

3 2/12/20

Newton’s 2nd Law

§ Particle of fixed (also called a point mass) acted upon by a changes velocity with § proportional to and in direction of force § Inertial reference frame § Ratio of force to acceleration is the mass of the particle: F = m a d dv(t) ⎣⎡mv(t)⎦⎤ = m = ma(t) = F ⎡ ⎤ dt dt vx (t) ⎡ f ⎤ ⎢ ⎥ x ⎡ ⎤ d ⎢ ⎥ fx f ⎢ ⎥ m ⎢ vy (t) ⎥ = ⎢ y ⎥ F = fy = force vector dt ⎢ ⎥ ⎢ ⎥ ⎢ f ⎥ ⎢ f ⎥ ⎢ vz (t) ⎥ ⎢ z ⎥ ⎣⎢ z ⎦⎥ ⎣ ⎦ ⎣ ⎦

7

7

Equations of Motion for a Particle Integrating the acceleration (Newton’s 2nd Law) allows us to solve for the velocity of the particle

⎡ ⎤ ⎡ ⎤ fx m ax dv(t) 1 ⎢ ⎥ ⎢ ⎥ = v! (t) = F = ⎢ fy m ⎥ = ⎢ ay ⎥ dt m ⎢ ⎥ ⎢ ⎥ fz m az ⎣⎢ ⎦⎥ ⎣⎢ ⎦⎥

T dv(t) T T 1 v(T ) = dt + v(0) = a(t)dt + v(0) = Fdt + v(0) ∫0 dt ∫0 ∫0 m 3 components of velocity

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ vx (T ) ax (t) vx (0) fx (t) m vx (0) ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ ⎢ vy (T ) ⎥ = ⎢ ay (t) ⎥dt + ⎢ vy (0) ⎥ = ⎢ fy (t) m ⎥dt + ⎢ vy (0) ⎥ ⎢ ⎥ ∫0 ⎢ ⎥ ⎢ ⎥ ∫0 ⎢ ⎥ ⎢ ⎥ v T a t v 0 f t m v 0 ⎣⎢ z ( ) ⎦⎥ ⎣⎢ z ( ) ⎦⎥ ⎣⎢ z ( ) ⎦⎥ ⎣⎢ z ( ) ⎦⎥ ⎣⎢ z ( ) ⎦⎥ 8

8

4 2/12/20

Equations of Motion for a Particle Integrating the velocity allows us to solve for the position of the particle

⎡ ⎤ ⎡ ⎤ x!(t) vx (t) dr(t) ⎢ ⎥ ⎢ ⎥ = r!(t) = v(t) = ⎢ y!(t) ⎥ = ⎢ vy (t) ⎥ dt ⎢ ⎥ ⎢ ⎥ ⎢ z!(t) ⎥ ⎢ vz (t) ⎥ ⎣ ⎦ ⎣ ⎦ T dr(t) T r(T ) = dt + r(0) = v dt + r(0) ∫0 dt ∫0 3 components of position

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ x(T ) vx (t) x(0) ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ ⎢ y(T ) ⎥ = ⎢ vy (t) ⎥dt + ⎢ y(0) ⎥ ∫0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ z T v t z 0 ⎣⎢ ( ) ⎦⎥ ⎣⎢ z ( ) ⎦⎥ ⎣⎢ ( ) ⎦⎥ 9

9

Spherical Model of the Rotating Earth Spherical model of earth’s surface, earth-fixed (rotating) coordinates

⎡ x ⎤ ⎡ cos L cosλ ⎤ ⎢ o ⎥ ⎢ E E ⎥ RE = ⎢ yo ⎥ = ⎢ cos LE sinλE ⎥ R ⎢ ⎥ ⎢ ⎥ zo sin LE ⎣ ⎦E ⎣ ⎦

LE : (from ), deg

λE : Longitude (from Prime Meridian), deg R : Radius (from Earth's center), deg

Earth's rate, Ω, is 15.04 deg/hr 10

10

5 2/12/20

Non-Rotating (Inertial) Reference Frame for the Earth

Celestial longitude, λC, measured from First Point of Aries on the Celestial Sphere at Vernal

λC = λE + Ω (t − tepoch ) = λE + Ω Δt

11

11

Transformation Effects of Rotation Transformation from inertial frame, I, to Earth’s rotating frame, E ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ xo cosΩΔt sinΩΔt 0 cosΩΔt sinΩΔt 0 ⎢ ⎥ R = ⎢ sin t cos t 0 ⎥R = ⎢ sin t cos t 0 ⎥ y E ⎢ − ΩΔ ΩΔ ⎥ I ⎢ − ΩΔ ΩΔ ⎥⎢ o ⎥ 0 0 1 0 0 1 ⎢ ⎥ ⎣⎢ ⎦⎥ ⎣⎢ ⎦⎥ zo ⎣ ⎦I Location of satellite, rotating and inertial frames

⎡ cos L cosλ ⎤ ⎡ cos L cosλ ⎤ ⎢ E E ⎥ ⎢ E C ⎥ rE = ⎢ cos LE sinλE ⎥(R + Altitude); rI = ⎢ cos LE sinλC ⎥(R + Altitude) ⎢ sin L ⎥ ⎢ sin L ⎥ ⎣ E ⎦ ⎣ E ⎦ Orbital calculations generally are made in an

inertial frame of reference 12

12

6 2/12/20

Gravity Force Between Two Point , e.g., Earth and Moon Magnitude of gravitational attraction

Gm m F = 1 2 r2

G : = 6.67 ×10−11Nm2 /kg2 st 24 m1 : Mass of 1 body = 5.98 ×10 kg for Earth nd 22 m2 : Mass of 2 body = 7.35 ×10 kg for Moon

r : between centers of mass of m1 and m2 , m

13

13

Acceleration Due To

Gm1m2 F2 = m2a1on2 = 2 “Inverse- r Law”

Gm1 µ1 a1on2 = 2 ! 2 r r

µ1 = Gm1 Gravitational parameter of 1st mass

At Earth’s surface, acceleration due to gravity is

µ 3.98 ×1014 m3 s2 a ! g = E = = 9.798m s2 g oEarth R2 6,378,137m 2 surface ( )

14

14

7 2/12/20

Gravitational Force Vector of the Spherical Earth Force always directed toward the Earth’s center

⎡ x ⎤ µE ⎛ rI ⎞ µE ⎢ ⎥ F = −m = −m y (vector), as r = r g 2 ⎜ ⎟ 3 ⎢ ⎥ I I rI ⎝ rI ⎠ rI ⎢ z ⎥ ⎣ ⎦I (x, y, z) establishes the direction of the local vertical

⎡ x ⎤ ⎢ y ⎥ ⎢ ⎥ ⎡ cos L cosλ ⎤ ⎢ z ⎥ E I rI ⎣ ⎦I ⎢ ⎥ = = cos L sinλ 2 2 2 ⎢ E I ⎥ rI x + y + z I I I ⎢ sin L ⎥ ⎣ E ⎦ 15

15

Equations of Motion for a Particle in an Inverse-Square- Law Field Integrating the acceleration (Newton’s 2nd Law) allows us to solve for the velocity of the particle

⎡ x ⎤ dv(t) 1 µE ⎛ rI ⎞ µE ⎢ ⎥ = v! t = F = − = − y ( ) g 2 ⎜ ⎟ 3 ⎢ ⎥ dt m rI ⎝ rI ⎠ rI ⎢ z ⎥ ⎣ ⎦ T dv(t) T T 1 v(T ) = dt + v(0) = a(t)dt + v(0) = Fdt + v(0) ∫0 dt ∫0 ∫0 m 3 components of velocity

⎡ ⎤ ⎡ 3 ⎤ ⎡ ⎤ vx (T ) x rI vx (0) ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ 3 ⎢ vy (T ) ⎥ = −µE ⎢ y rI ⎥dt + ⎢ vy (0) ⎥ ⎢ ⎥ ∫0 ⎢ ⎥ ⎢ ⎥ v T z r 3 v 0 ⎣⎢ z ( ) ⎦⎥ ⎣⎢ I ⎦⎥ ⎣⎢ z ( ) ⎦⎥ 16

16

8 2/12/20

Equations of Motion for a Particle in an Inverse-Square- Law Field As before; Integrating the velocity allows us to solve for the position of the particle

⎡ ⎤ ⎡ ⎤ x!(t) vx (t) dr(t) ⎢ ⎥ ⎢ ⎥ = r!(t) = v(t) = ⎢ y!(t) ⎥ = ⎢ vy (t) ⎥ dt ⎢ ⎥ ⎢ ⎥ ⎢ z!(t) ⎥ ⎢ vz (t) ⎥ ⎣ ⎦ ⎣ ⎦

T dr(t) T r(T ) = dt + r(0) = v dt + r(0) ∫0 dt ∫0 3 components of position

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ x(T ) vx (t) x(0) ⎢ ⎥ T ⎢ ⎥ ⎢ ⎥ ⎢ y(T ) ⎥ = ⎢ vy (t) ⎥dt + ⎢ y(0) ⎥ ∫0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ z T v t z 0 ⎣⎢ ( ) ⎦⎥ ⎣⎢ z ( ) ⎦⎥ ⎣⎢ ( ) ⎦⎥ 17

17

Dynamic Model with Inverse- Square-Law Gravity No aerodynamic or thrust force Neglect motions in the z direction

msatellite << mEarth

Dynamic Equations Example: Initial Conditions at Equator 3 v!x (t) = −µE xI (t) rI (t) 3 vx (0) = 7.5, 8, 8.5 km/s v!y (t) = −µE yI (t) rI (t) vy (0) = 0 x!I (t) = vx (t) x(0) = 0 y!I (t) = vy (t) y(0) = 6,378 km = R where r t = x2 t + y2 t I ( ) I ( ) I ( ) 18

18

9 2/12/20

Equatorial Orbits Calculated with Inverse-Square-Law Model

19

19

Work “Work” is a scalar measure of change in energy With constant force, In one dimension

W12 = F(r2 − r1 ) = FΔr In three T T W12 = F (r2 − r1 ) = F Δr With varying force, work is the integral

⎡ ⎤ r2 r2 dx T ⎢ ⎥ W = F dr = f dx + f dy + f dz , dr = dy 12 ∫ ∫ ( x y z ) ⎢ ⎥ r1 r1 ⎣⎢ dz ⎦⎥ 20

20

10 2/12/20

Conservative Force

Iron Filings § Assume that the 3-D force Around Magnet field is a function of position F = F(r)

§ The force field is conservative if Force Emanating from Source

r2 r1 ∫ FT (r)dr + ∫ FT (r)dr = 0 r1 r2

… for any path between r1 and r2 and back

21

21

Gravitational Force is Gradient of a Potential, V(r)

Gravity potential, V(r), is a function only of position

µE ∂ ⎛ µE ⎞ ∂ Fg = −m rI = m ! V (r) r 3 ∂r ⎝⎜ r ⎠⎟ ∂r I

22

22

11 2/12/20

Gravitational Force Field Gravitational force field

µE Fg = −m 3 rI rI Gravitational force field is conservative because

r r 2 ∂ 1 ∂ V (r)drI − V (r)drI = ∫ ∂r ∫ ∂r r1 r2 r r 2 µ 2 µ − m E r dr + m E r dr = 0 ∫ r 3 I I ∫ r 3 I I r1 I r1 I … for any path between r1 and r2 and back 23

23

Potential Energy in Gravitational Force Field

Potential energy, V or PE, is defined with respect to a reference point, r0

PE(r0 ) = V (r0 ) = V0 (≡ −U0 )

⎛ µ ⎞ ⎛ µ ⎞ µ µ ΔPE ! V (r2 ) −V (r1 ) = − m +V0 + m +V0 = −m + m ⎜ r ⎟ ⎜ r ⎟ r r ⎝ 2 ⎠ ⎝ 1 ⎠ 2 1

24

24

12 2/12/20

Kinetic Energy Apply Newton’s 2nd Law to the definition of Work

dr dv = v; dr = vdt F = m dt dt

r2 t2 T t2 T ⎛ dv ⎞ 1 2 1 2 2 W12 = F dr = m⎜ ⎟ v dt ∫ ∫ ⎝ dt ⎠ = mv = m ⎣⎡v (t2 ) − v (t1 )⎦⎤ r1 t1 2 2 t1 t2 t2 1 d T 1 d 2 1 = m∫ (v v)dt = m∫ (v )dt = m ⎡v2 − v2 ⎤ ! T − T ! ΔKE 2 t dt 2 t dt ⎣ 2 1 ⎦ 2 1 1 1 2 Work = integral from 1st to 2nd time T (= KE) is the of the point mass, m

25

25

Total Energy in Point-Mass Gravitational Field

§ Potential energy of mass, µ m, depends only on the V = PE = −m gravitational force field r

§ Kinetic energy of mass, m, 1 depends only on the velocity T ! KE = mv2 magnitude measured in an 2 inertial frame of reference E = PE + KE § Total energy, , is the E µ 1 sum of the two: = −m + mv2 r 2 = Constant

26

26

13 2/12/20

Interchange Between Potential and Kinetic Energy in a Conservative System

E 2 − E1 = 0 ⎛ µ 1 ⎞ ⎛ µ 1 ⎞ −m + mv2 − −m + mv2 = 0 ⎝⎜ r 2 2 ⎠⎟ ⎝⎜ r 2 1 ⎠⎟ 2 1

P2

⎛ µ µ ⎞ ⎛ 1 2 1 2 ⎞ ⎜ −m + m ⎟ = ⎜ mv2 − mv1 ⎟ ⎝ r2 r1 ⎠ ⎝ 2 2 ⎠

PE2 − PE1 = KE2 − KE1 P1

27

27

Specific Energy… Energy per unit of the satellite’s mass

P E S = PES + KES 1

1 ⎛ mµ 1 2 ⎞ = − + mv m ⎝⎜ r 2 ⎠⎟

µ 1 P2 = − + v2 r 2

28

28

14 2/12/20

Angular Momentum of a Particle (Point Mass)

h = (r × mv) = m(r × v) = m(r × r!) 29

29

Angular Momentum of a Particle • Moment of linear momentum of a particle – Mass times components of the velocity that are perpendicular to the moment arm h = (r × mv) = m(r × v) • Cross Product: Evaluation of a determinant with unit vectors (i, j, k) along axes, (x, y, z) and (vx, vy, vz) projections on to axes

i j k x y z r × v = = (yvz − zvy )i + (zvx − xvz ) j + (xvy − yvx )k

vx vy vz

30

30

15 2/12/20

Cross Product in Column Notation Cross product identifies perpendicular components of r and v

i j k x y z r × v = = (yvz − zvy )i + (zvx − xvz ) j + (xvy − yvx )k

vx vy vz

⎡ yv − zv ⎤ ⎡ ⎤ Column ⎢ ( z y ) ⎥ ⎡ 0 −z y ⎤ vx notation ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ r × v = zv − xv = z 0 x vy ⎢ ( x z ) ⎥ ⎢ − ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ −y x 0 ⎥ ⎢ v ⎥ xvy − yvx ⎣ ⎦ z ⎣⎢ ( ) ⎦⎥ ⎣⎢ ⎦⎥ 31

31

Angular Momentum Vector is Perpendicular to Both Moment Arm and Velocity

⎡ yv − zv ⎤ ⎢ ( z y ) ⎥ h = mr × v = m ⎢ zv − xv ⎥ ⎢ ( x z ) ⎥ ⎢ xv − yv ⎥ ⎣⎢ ( y x ) ⎦⎥ ⎡ ⎤ ⎡ 0 −z y ⎤ vx ⎢ ⎥⎢ ⎥ v = m ⎢ z 0 −x ⎥⎢ y ⎥ = mr!v ⎢ ⎥⎢ ⎥ −y x 0 vz ⎣ ⎦⎣⎢ ⎦⎥ 32

32

16 2/12/20

Specific Angular Momentum Vector of a Satellite … is the angular momentum per unit of the satellite’s mass, referenced to the center of attraction m hS = r × v = r × v = r × r! m Perpendicular to the orbital plane

33

33

Equations of Motion for a Particle in an Inverse-Square- Law Field

Acceleration is µ ⎛ r t ⎞ µ a t v t r t I ( ) r t ( ) = ! ( ) = !!( ) = − 2 ⎜ ⎟ = − 3 ( ) r (t) ⎝ r(t) ⎠ r (t)

… or

µ !r!+ 3 r = 0 r 34

34

17 2/12/20

Cross Products of Radius and Radius Rate Then

⎡ µ ⎤ r × !r!+ r = 0 ⎢ 3 ⎥ ⎣ r ⎦

r × r = 0 r! × r! = 0 … because they are parallel

Chain Rule for Differentiation d (r × r!) = (r! × r!) + (r × !r!) = (r × !r!) dt 35

35

Specific Angular Momentum

⎡ µ ⎤ µ r × !r!+ r = (r × !r!) + (r × r) ⎣⎢ r 3 ⎦⎥ r 3 0 d dh = (r × r!) = S = 0 dt dt Consequently

hS = Constant h ! h = r × r" (Perpendicular to the plane of motion) S ( ) Orbital plane is fixed in inertial space 36

36

18 2/12/20

Eccentricity Vector is a Constant of Integration

⎡ µ ⎤ µ !r!+ r × h = !r!× h + r × h = 0 ⎢ 3 ⎥ 3 ⎣ r ⎦ r µ µ !r!× h = − 3 r × h = − 3 r × (r × r!) r r With triple vector product identity (see Supplement) µ µ d ⎛ r⎞ !r!× h = − r × (r × r!) = − (r!r − rr!) = µ 3 2 ⎝⎜ ⎠⎟ r r dt r Integrating

⎛ r ⎞ (!r!× h)dt = r! × h = µ + e ∫ ⎝⎜ ⎠⎟ r e = (Constant of integration) 37

37

Significance of Eccentricity Vector

T ⎡ ⎛ r ⎞ ⎤ ⎡ ⎛ r ⎞ ⎤ r! × h − µ + e h = 0 because r! × h − µ + e = 0 ⎢ ⎝⎜ r ⎠⎟ ⎥ ⎢ ⎝⎜ r ⎠⎟ ⎥ ⎣ ⎦ ⎣ ⎦

T T µr h ∴(r! × h) h − − µeT h = 0 r 0 0

∴−µeT h = 0 § e is perpendicular to angular momentum, § which means it lies in the orbital plane § Its angle provides a reference direction for the perigee 38

38

19 2/12/20

General Equation of a

T ⎡ ⎛ r ⎞ ⎤ r r! × h − µ + e = 0 ⎢ ⎝⎜ r ⎠⎟ ⎥ ⎣ ⎦ 1st term is angular momentum squared rT r! × h = hT r × r! = hT h = h2 ( ) ( ) Then

⎛ rT r ⎞ h2 − µ + rT e = 0 h2 = µ(r + rT e) = µ(r + recosθ ) = 0 ⎝⎜ r ⎠⎟

h2 µ r = 1+ ecosθ 39

39

Elliptical Planetary Orbits § Assume satellite mass is negligible compared to Earth’s mass § Then § of the 2 bodies is at Earth’s center of mass § Center of mass is at one of ’s focal points § Other focal point is “vacant”

p h2 µ r = = , m or km 1+ e cosθ 1+ e cosθ θ : = Angle from perigee direction, deg or rad 40

40

20 2/12/20

Properties of Elliptical Orbits Eccentricity can be determined from apogee and perigee radii

r − r r − r e = a p = a p ra + rp 2a

rp = a /(1− e) ra = a /(1+ e)

Semi-major axis is the average of the two r + r a = a p 2 41

41

Properties of Elliptical Orbits § Semi-latus rectum, p, can be expressed as a function of h or a and e p = h2 µ = a(1− e2 ) § Semi-minor axis, b, can be expressed as a function of ra and rp

b = rarp

§ of the ellipse, A, is

A = π a b = πa2 1− e2 , m2

42

42

21 2/12/20

Energy is Inversely Proportional to the Semi-Major Axis

At the periapsis, rp

r! = 0 and v = r θ! 2 2 p p p p = h µ = a(1− e ) 2 1 ! 2 µ 1 h µ E S " E = rpθ p − = 2 − 2 ( ) r 2 r r rp = a(1− e) p p p 1 µ = µp − 2µr = ⎡ 1− e2 − 2 1− e ⎤ E 2 ( p ) 2 ⎣( ) ( )⎦ 2rp 2a(1− e) µ(1− e) = − 2a(1− e)

µ = − E 43 2a 43

Classification of Conic Section Orbits

Orbit Shape Eccentricity, e Energy, E Semi-Major Semi-Latus Axis, a Rectum, p Circle 0 < 0 > 0 a

Ellipse 0 < e < 1 < 0 > 0 a(1– e2)

Parabola 1 0 Undefined 2rp (è∞) >1 > 0 < 0 a(1– e2)

44

44

22 2/12/20

“Vis Viva (Living Force) Integral”

Velocity is a function of radius and

1 2 µ ⎛ µ ⎞ v = + E v = 2 + E 2 r ⎝⎜ r ⎠⎟

§ Specific total energy, E, is µ inversely proportional to the E = − semi-major axis 2a § Velocity is a function of ⎛ 2 1⎞ radius and semi-major axis v = µ − ⎝⎜ r a⎠⎟

45

45

Maximum and Minimum Velocities on an Ellipse Velocity at periapsis

⎛ 2 1⎞ ⎛ 2 1⎞ v p = µ⎜ − ⎟ = µ⎜ − ⎟ ⎝ rp a⎠ ⎝ a(1− e) a⎠ µ (1+ e) = a (1− e) Velocity at apoapsis

⎛ 2 1⎞ µ (1− e) va = µ⎜ − ⎟ = ⎝ ra a⎠ a (1+ e)

46

46

23 2/12/20

Velocities at Periapses and of and Hyperbola

Parabola (a è ∞)

2µ vp = v∞ = 0 rp Hyperbola (a < 0)

⎛ 2 1⎞ µ v p = µ⎜ − ⎟ v∞ = − ⎝ rp a⎠ a

47

47

Relating Time and Position in Elliptical Orbit Rearrange and integrate angular momentum over time and angle

2 dθ d( Ellipse Area) h = µp = r = 2 dt dt

t θ θ f f r2 p3 f dθ dt = dθ = ∫ ∫ µp µ ∫ 1 ecos 2 to θo θo ( + θ )

… but difficult to integrate analytically

48

48

24 2/12/20

Anomalies of an Elliptical Orbit Angles measured from last periapsis

θ (or ν): True Anomaly E (or ψ ): M:

49

49

Kepler’s Equation for the Mean Anomaly M = E − esin E From the diagram, ae + ( p − r) e a − r cosE = = a ae r = a(1− cosE) r! = E! aesin E

50

50

25 2/12/20

Relationship of Time to Eccentric Anomaly

2 µ 1 ⎛ 2 h ⎞ E = − = r! + 2 − µr 2a 2 ⎝⎜ r ⎠⎟ where h2 = µa(1− e2 )

2 2 ⎡⎛ 2 1⎞ 2 2 ⎤ then r r! = µ ⎢⎜ − ⎟ r − a(1− e )⎥ ⎣⎝ r a⎠ ⎦ 3 2 a 2 ⎛ dE ⎞ leading to (1− ecosE) ⎜ ⎟ = 1 µ ⎝ dt ⎠ or

µ 3 dt = (1− ecosE)dE a 51

51

Integrating the Prior Result …

t E 1 µ 1 dt = (1− ecosE)dE ∫ a3 ∫ t0 E0

µ E1 3 (t1 − t0 ) = (E − esin E) = M1 − M 0 a E0 Time is proportional to Mean Anomaly

M1 − M 0 M1 − M 0 (t1 − t0 ) = or t1 = t0 + µ a3 µ a3 , P

µ 2π (P − 0) = (E − esin E) = 2π a3 0 3 P = 2π a µ 52

52

26 2/12/20

Orbital Period

Orbital period is related to the total energy a3 −µ2 P = 2π = π 3 where E < 0 for an ellipse µ 2 E Mean Motion, n, is the inverse of the Period

a3 2π P = 2π ! where n is the µ n 53

53

Position and Velocity in Orbit at Time, t

Mean Anomaly, given time from perigee passage, tp

µ M (t) = t − t p a3 ( ) Eccentric Anomaly, E(t), given Mean Anomaly, M(t) E(t) − esin E(t) = M (t) Newton’s method of successive approximation, using M(t) as starting guess for E(t)

Eo (t) = M (t) + esin M (t)

Iterate until ΔM i < Tolerance

ΔM i = M (t) − ⎣⎡Ei (t) − esin Ei (t)⎦⎤

ΔEi+1 = ΔM i ⎣⎡1− ecosEi (t)⎦⎤

54 Ei+1 (t) = Ei (t) + ΔEi+1

54

27 2/12/20

Position and Velocity in Orbit at Time, t

Calculate True Anomaly, given Eccentric Anomaly

−1 ⎡ 1+ e E(t)⎤ θ (t) = 2 tan ⎢ tan ⎥ ⎣ 1− e 2 ⎦

Compute magnitude of radius a(1− e2 ) r(t) = 1+ ecosθ (t)

55

55

Position and Velocity in Orbit at Time, t Radius vector, in the orbital plane

⎡ x(t) ⎤ ⎡ r(t)cosθ (t) ⎤ r(t) = ⎢ ⎥ = ⎢ ⎥ ⎢ y t ⎥ ⎢ r t sinθ t ⎥ ⎣ ( ) ⎦ ⎣ ( ) ( ) ⎦ Velocity vector, in the orbital plane

⎡ ⎤ ⎡ ⎤ vx (t) µ −sinθ (t) v(t) = ⎢ ⎥ = ⎢ ⎥ ⎢ vy (t) ⎥ p ⎢ e + cosθ t ⎥ ⎣ ⎦ ⎣ ( ) ⎦ see Weisel, Dynamics, 1997, pp. 64-66

56

56

28 2/12/20

Next Time: Planetary Defense

57

57

Supplemental Material

58

58

29 2/12/20

First Point of Aries ( Intercept at Right)

59

59

Dimension of energy? Scalar (1 x 1) Dimension of linear momentum? Vector (3 x 1) Dimension of angular momentum? Vector (3 x 1)

60

60

30 2/12/20

Sub-Orbital (Sounding) 1945 - Present

NASA Wallops Island Control Center

Canadian LTV Black Brant XII Scout

61

61

MATLAB Code for Flat- Earth Script for Script for Numerical Solution Analytic Solution tspan = 40; % Time span, s g = 9.8; xo = [10;100;0;0]; % Init. Cond. t = 0:0.1:40; [t1,x1] = ode45('FlatEarth',tspan,xo);

vx0 = 10; Function for vz0 = 100; Numerical Solution x0 = 0; z0 = 0; function xdot = FlatEarth(t,x) % x(1) = vx vx1 = vx0; % x(2) = vz vz1 = vz0 – g*t; % x(3) = x x1 = x0 + vx0*t; % x(4) = z z1 = z0 + vz0*t - 0.5*g*t.* t; g = 9.8; xdot(1) = 0; xdot(2) = -g; xdot(3) = x(1); xdot(4) = x(2); xdot = xdot'; 62 end

62

31 2/12/20

Trajectories Calculated with Flat-Earth Model § Constant gravity, g, is the only force in the model, i.e., no aerodynamic or thrust force § Can neglect motions in the y direction

Dynamic Equations Analytic (Closed-Form) Solution v t v x ( ) = x0

v!z (t) = −g (z positive up) v T v x ( ) = x0 x!(t) = vx (t) T

z!(t) = vz (t) vz (T ) = vz − gdt = vz − gT 0 ∫ 0 0 Initial Conditions x T x v T ( ) = 0 + x0 v 0 = v x ( ) x0 T 2 vz (0) = vz 0 z(T ) = z0 + vz T − gt dt = z0 + vz T − gT 2 0 ∫ 0 0 x(0) = x0 63 z(0) = z0

63

Trajectories Calculated with Flat-Earth Model

vx (0) = 10m / s

vz (0) = 100,150, 200m / s x(0) = 0 z(0) = 0

64

64

32 2/12/20

MATLAB Code for Spherical-Earth Trajectories Script for Numerical Solution

R = 6378; % Earth Surface Radius, km tspan = 6000; % seconds options = odeset('MaxStep', 10) xo = [7.5;0;0;R]; [t1,x1] = ode15s('RoundEarth',tspan,xo,options); for i = 1:length(t1) v1(i) = sqrt(x1(i,1)*x1(i,1) + x1(i,2)*x1(i,2)); r1(i) = sqrt(x1(i,3)*x1(i,3) + x1(i,4)*x1(i,4)); end

function xdot = RoundEarth(t,x) % x(1) = vx % x(2) = vy % x(3) = x % x(4) = y Function for mu = 3.98*10^5; % km^2/s^2 Numerical Solution r = sqrt(x(3)^2 + x(4)^2); xdot(1) = -mu * x(3) / r^3; xdot(2) = -mu * x(4) / r^3; xdot(3) = x(1); xdot(4) = x(2); xdot = xdot'; end 65

65

Equations that Describe

x2 y2 + = 1 a2 b2 b a : Semi - major axis, m or km y o x b : Semi - minor axis, m or km a

x(θ ) = a cos(θ ) y(θ ) = b sin(θ ) θ : Angle from x - axis (origin at center) rad

66

66

33 2/12/20

Constructing Ellipses

F1P1 + F2P1 = F1P2 + F2P2 = 2a Foci (from center), ⎡ ⎤ x f ⎡ 2 2 ⎤ ⎡ 2 2 ⎤ ⎢ ⎥ = ⎢ − a − b ⎥, ⎢ a − b ⎥ ⎢ y f ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎣ ⎦1,2 ⎣ ⎦ ⎣ ⎦

String, Tacks, and Pen Archimedes Trammel Hypotrochoid

67

67

Ellipses

Semi - latus rectum ("The Parameter"), b2 p = , m a

b2 Eccentricity, e = 1− a2 b2 = 1− e; b = a 1− e a2

68

68

34 2/12/20

How Do We Know that Gravitational Force is Conservative?

Because the force is the derivative (with respect to r) of a scalar function of r called the potential, V(r): µ µ V (r) = −m +Vo = −m 1 2 +Vo r (rT r)

⎡ ∂V ∂x ⎤ ⎡ x ⎤ ∂V (r) ⎢ ⎥ µ ⎢ ⎥ = ⎢ ∂V ∂y ⎥ = m 3 y = −Fg ∂r r ⎢ ⎥ ⎢ ∂V ∂z ⎥ ⎢ z ⎥ ⎣ ⎦ ⎣ ⎦ This derivative is also called the gradient of V with respect to r 69

69

Conservation of Energy Energy is conserved in an elastic collision, i.e. no losses due to friction, air , etc. “Newton’s Cradle” illustrates interchange of potential and kinetic energy in a gravitational field

70

70

35 2/12/20

Examples of Circular Orbit Periods for Earth and Moon

Period, min Altitude above Surface, km Earth Moon 0 84.5 108.5 100 86.5 118 1000 105.1 214.6 10000 347.7 1905

71

71

Typical Satellite Orbits

GPS Constellation 26,600 km Sun- 72

72

36 2/12/20

Geo-Synchronous

Geo- Synchronous Ground Track 42, 164 km

Marco Polo- 1 & 2

73

73

Background Math

Triple Vector Product Identity

a × (b × c) ≡ (a i c)b − (a i b)c = aT c b − aT b c ( ) ( ) Dot Product of Radius and Rate dr rT r! = r i r! = r dt 74

74

37