Orbital Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Orbital Mechanics Orbital Mechanics Part 1 Orbital Forces Why a Sat. remains in orbit ? Bcs the centrifugal force caused by the Sat. rotation around earth is counter- balanced by the Earth's Pull. Kepler’s Laws The Satellite (Spacecraft) which orbits the earth follows the same laws that govern the motion of the planets around the sun. J. Kepler (1571-1630) was able to derive empirically three laws describing planetary motion I. Newton was able to derive Keplers laws from his own laws of mechanics [gravitation theory] Kepler’s 1st Law (Law of Orbits) The path followed by a Sat. (secondary body) orbiting around the primary body will be an ellipse. The center of mass (barycenter) of a two-body system is always centered on one of the foci (earth center). Kepler’s 1st Law (Law of Orbits) The eccentricity (abnormality) e: a 2 b2 e a b- semiminor axis , a- semimajor axis VIN: e=0 circular orbit 0<e<1 ellip. orbit Orbit Calculations Ellipse is the curve traced by a point moving in a plane such that the sum of its distances from the foci is constant. Kepler’s 2nd Law (Law of Areas) For equal time intervals, a Sat. will sweep out equal areas in its orbital plane, focused at the barycenter VIN: S1>S2 at t1=t2 V1>V2 Max(V) at Perigee & Min(V) at Apogee Kepler’s 3rd Law (Harmonic Law) The square of the periodic time of orbit is proportional to the cube of the mean distance between the two bodies. a 3 n 2 n- mean motion of Sat. (radian/sec) , - earth geocentric gravitational constant = 3.986005x1014 The mean distance is equal to the semimajor axis a VIN: With n in rad/sec, the orbital period in sec. : P=2/n Kepler’s 3rd Law (Harmonic Law) In English: Orbits with the same semi-major axis will have the same period Examples Examples Orbital Elements Definition A set of mathematical parameters that enables us to accurately describe satellite motion Purpose Discriminate one satellite from other satellites Predict where a satellite will be in the future or has been in the past Determine amount and direction of maneuver or perturbation Orbital Elements Semi-Major Axis (Size) Eccentricity (Shape) Inclination Right Ascension (Orientation) Argument of Perigee Epoch Time (Location within orbit) True Anomaly – Mean Anomaly Equatorial Plane Inclination ( i) Orbital Plane Inclination Prograde: 0 i < 90 Equatorial: i= 0 or 180 Retrograde: Polar: i = 90 90 i < 180 i Argument of Perigee () Right ascension() Direction of True satellite motion Anomaly () Locate with Respect to Space Orbital Elements Definition A set of mathematical parameters that enables us to accurately describe satellite motion Purpose Discriminate one satellite from other satellites Predict where a satellite will be in the future or has been in the past Determine amount and direction of maneuver or perturbation Orbital Elements Semi-Major Axis (Size) Eccentricity (Shape) Inclination Right Ascension (Orientation) Argument of Perigee Epoch Time (Location within orbit) True Anomaly – Mean Anomaly Example Example Orbit Perturbations.
Recommended publications
  • Appendix a Orbits
    Appendix A Orbits As discussed in the Introduction, a good ¯rst approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational ¯eld of a spherical planet. This leads to the classical two-body problem. Since we use the term body to refer to a spacecraft of ¯nite size (as in rigid body), it may be more appropriate to call this the two-particle problem, but I will use the term two-body problem in its classical sense. The basic elements of orbital dynamics are captured in Kepler's three laws which he published in the 17th century. His laws were for the orbital motion of the planets about the Sun, but are also applicable to the motion of satellites about planets. The three laws are: 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times. 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun. The ¯rst law applies to most spacecraft, but it is also possible for spacecraft to travel in parabolic and hyperbolic orbits, in which case the period is in¯nite and the 3rd law does not apply. However, the 2nd law applies to all two-body motion. Newton's 2nd law and his law of universal gravitation provide the tools for generalizing Kepler's laws to non-elliptical orbits, as well as for proving Kepler's laws.
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Ionizing Feedback from Massive Stars in Massive Clusters III: Disruption of Partially Unbound Clouds 3
    Mon. Not. R. Astron. Soc. 000, 1–14 (2006) Printed 30 August 2021 (MN LATEX style file v2.2) Ionizing feedback from massive stars in massive clusters III: Disruption of partially unbound clouds J. E. Dale1⋆, B. Ercolano1, I. A. Bonnell2 1Excellence Cluster ‘Universe’, Boltzmannstr. 2, 85748 Garching, Germany. 2Department of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS 30 August 2021 ABSTRACT We extend our previous SPH parameter study of the effects of photoionization from O–stars on star–forming clouds to include initially unbound clouds. We generate a set 4 6 of model clouds in the mass range 10 -10 M⊙ with initial virial ratios Ekin/Epot=2.3, allow them to form stars, and study the impact of the photoionizing radiation pro- duced by the massive stars. We find that, on the 3Myr timescale before supernovae are expected to begin detonating, the fractions of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High–mass clouds are largely unaf- fected dynamically, while lower–mass clouds have large fractions of their gas reserves expelled on this timescale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well–cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback.
    [Show full text]
  • Optimisation of Propellant Consumption for Power Limited Rockets
    Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets.
    [Show full text]
  • Flight and Orbital Mechanics
    Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics AE2-104, lecture hours 21-24: Interplanetary flight Ron Noomen October 25, 2012 AE2104 Flight and Orbital Mechanics 1 | Example: Galileo VEEGA trajectory Questions: • what is the purpose of this mission? • what propulsion technique(s) are used? • why this Venus- Earth-Earth sequence? • …. [NASA, 2010] AE2104 Flight and Orbital Mechanics 2 | Overview • Solar System • Hohmann transfer orbits • Synodic period • Launch, arrival dates • Fast transfer orbits • Round trip travel times • Gravity Assists AE2104 Flight and Orbital Mechanics 3 | Learning goals The student should be able to: • describe and explain the concept of an interplanetary transfer, including that of patched conics; • compute the main parameters of a Hohmann transfer between arbitrary planets (including the required ΔV); • compute the main parameters of a fast transfer between arbitrary planets (including the required ΔV); • derive the equation for the synodic period of an arbitrary pair of planets, and compute its numerical value; • derive the equations for launch and arrival epochs, for a Hohmann transfer between arbitrary planets; • derive the equations for the length of the main mission phases of a round trip mission, using Hohmann transfers; and • describe the mechanics of a Gravity Assist, and compute the changes in velocity and energy. Lecture material: • these slides (incl. footnotes) AE2104 Flight and Orbital Mechanics 4 | Introduction The Solar System (not to scale): [Aerospace
    [Show full text]
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Brief Introduction to Orbital Mechanics Page 1
    Brief Introduction to Orbital Mechanics Page 1 Brief Introduction to Orbital Mechanics We wish to work out the specifics of the orbital geometry of satellites. We begin by employing Newton's laws of motion to determine the orbital period of a satellite. The first equation of motion is F = ma (1) where m is mass, in kg, and a is acceleration, in m/s2. The Earth produces a gravitational field equal to Gm g(r) = − E r^ (2) r2 24 −11 2 2 where mE = 5:972 × 10 kg is the mass of the Earth and G = 6:674 × 10 N · m =kg is the gravitational constant. The gravitational force acting on the satellite is then equal to Gm mr^ Gm mr F = − E = − E : (3) in r2 r3 This force is inward (towards the Earth), and as such is defined as a centripetal force acting on the satellite. Since the product of mE and G is a constant, we can define µ = mEG = 3:986 × 1014 N · m2=kg which is known as Kepler's constant. Then, µmr F = − : (4) in r3 This force is illustrated in Figure 1(a). An equal and opposite force acts on the satellite called the centrifugal force, also shown. This force keeps the satellite moving in a circular path with linear speed, away from the axis of rotation. Hence we can define a centrifugal acceleration as the change in velocity produced by the satellite moving in a circular path with respect to time, which keeps the satellite moving in a circular path without falling into the centre.
    [Show full text]
  • Spacecraft Trajectories in a Sun, Earth, and Moon Ephemeris Model
    SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL A Project Presented to The Faculty of the Department of Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Romalyn Mirador i ABSTRACT SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL by Romalyn Mirador This project details the process of building, testing, and comparing a tool to simulate spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model can be used to find complex trajectories but would need to include other perturbations like gravity harmonics to model more accurate trajectories. i ACKNOWLEDGEMENTS I would like to thank my family and friends for their continuous encouragement and support throughout all these years. A special thank you to my advisor, Dr. Capdevila, and my friend, Dhathri, for mentoring me as I work on this project. The knowledge and guidance from the both of you has helped me tremendously and I appreciate everything you both have done to help me get here. ii Table of Contents List of Symbols ............................................................................................................................... v 1.0 INTRODUCTION
    [Show full text]
  • Elliptical Orbits
    1 Ellipse-geometry 1.1 Parameterization • Functional characterization:(a: semi major axis, b ≤ a: semi minor axis) x2 y 2 b p + = 1 ⇐⇒ y(x) = · ± a2 − x2 (1) a b a • Parameterization in cartesian coordinates, which follows directly from Eq. (1): x a · cos t = with 0 ≤ t < 2π (2) y b · sin t – The origin (0, 0) is the center of the ellipse and the auxilliary circle with radius a. √ – The focal points are located at (±a · e, 0) with the eccentricity e = a2 − b2/a. • Parameterization in polar coordinates:(p: parameter, 0 ≤ < 1: eccentricity) p r(ϕ) = (3) 1 + e cos ϕ – The origin (0, 0) is the right focal point of the ellipse. – The major axis is given by 2a = r(0) − r(π), thus a = p/(1 − e2), the center is therefore at − pe/(1 − e2), 0. – ϕ = 0 corresponds to the periapsis (the point closest to the focal point; which is also called perigee/perihelion/periastron in case of an orbit around the Earth/sun/star). The relation between t and ϕ of the parameterizations in Eqs. (2) and (3) is the following: t r1 − e ϕ tan = · tan (4) 2 1 + e 2 1.2 Area of an elliptic sector As an ellipse is a circle with radius a scaled by a factor b/a in y-direction (Eq. 1), the area of an elliptic sector PFS (Fig. ??) is just this fraction of the area PFQ in the auxiliary circle. b t 2 1 APFS = · · πa − · ae · a sin t a 2π 2 (5) 1 = (t − e sin t) · a b 2 The area of the full ellipse (t = 2π) is then, of course, Aellipse = π a b (6) Figure 1: Ellipse and auxilliary circle.
    [Show full text]
  • Multi-Body Trajectory Design Strategies Based on Periapsis Poincaré Maps
    MULTI-BODY TRAJECTORY DESIGN STRATEGIES BASED ON PERIAPSIS POINCARÉ MAPS A Dissertation Submitted to the Faculty of Purdue University by Diane Elizabeth Craig Davis In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2011 Purdue University West Lafayette, Indiana ii To my husband and children iii ACKNOWLEDGMENTS I would like to thank my advisor, Professor Kathleen Howell, for her support and guidance. She has been an invaluable source of knowledge and ideas throughout my studies at Purdue, and I have truly enjoyed our collaborations. She is an inspiration to me. I appreciate the insight and support from my committee members, Professor James Longuski, Professor Martin Corless, and Professor Daniel DeLaurentis. I would like to thank the members of my research group, past and present, for their friendship and collaboration, including Geoff Wawrzyniak, Chris Patterson, Lindsay Millard, Dan Grebow, Marty Ozimek, Lucia Irrgang, Masaki Kakoi, Raoul Rausch, Matt Vavrina, Todd Brown, Amanda Haapala, Cody Short, Mar Vaquero, Tom Pavlak, Wayne Schlei, Aurelie Heritier, Amanda Knutson, and Jeff Stuart. I thank my parents, David and Jeanne Craig, for their encouragement and love throughout my academic career. They have cheered me on through many years of studies. I am grateful for the love and encouragement of my husband, Jonathan. His never-ending patience and friendship have been a constant source of support. Finally, I owe thanks to the organizations that have provided the funding opportunities that have supported me through my studies, including the Clare Booth Luce Foundation, Zonta International, and Purdue University and the School of Aeronautics and Astronautics through the Graduate Assistance in Areas of National Need and the Purdue Forever Fellowships.
    [Show full text]
  • Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
    A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet.
    [Show full text]
  • GRAVITATION UNIT H.W. ANS KEY Question 1
    GRAVITATION UNIT H.W. ANS KEY Question 1. Question 2. Question 3. Question 4. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as shown in the diagram above. The stars themselves each have radius r. Question 55.. What is the force each star exerts on the other? Answer D—In Newton's law of gravitation, the distance used is the distance between the centers of the planets; here that distance is 2R. But the denominator is squared, so (2R)2 = 4R2 in the denominator here. Two stars, each of mass M, form a binary system. The stars orbit about a point a distance R from the center of each star, as shown in the diagram above. The stars themselves each have radius r. Question 65.. In terms of each star's tangential speed v, what is the centripetal acceleration of each star? Answer E—In the centripetal acceleration equation the distance used is the radius of the circular motion. Here, because the planets orbit around a point right in between them, this distance is simply R. Question 76.. A Space Shuttle orbits Earth 300 km above the surface. Why can't the Shuttle orbit 10 km above Earth? (A) The Space Shuttle cannot go fast enough to maintain such an orbit. (B) Kepler's Laws forbid an orbit so close to the surface of the Earth. (C) Because r appears in the denominator of Newton's law of gravitation, the force of gravity is much larger closer to the Earth; this force is too strong to allow such an orbit.
    [Show full text]