Low-Thrust Many-Revolution Trajectory Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Low-Thrust Many-Revolution Trajectory Optimization Low-Thrust Many-Revolution Trajectory Optimization by Jonathan David Aziz B.S., Aerospace Engineering, Syracuse University, 2013 M.S., Aerospace Engineering Sciences, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2018 This thesis entitled: Low-Thrust Many-Revolution Trajectory Optimization written by Jonathan David Aziz has been approved for the Department of Aerospace Engineering Sciences Daniel J. Scheeres Jeffrey S. Parker Jacob A. Englander Jay W. McMahon Shalom D. Ruben Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Aziz, Jonathan David (Ph.D., Aerospace Engineering Sciences) Low-Thrust Many-Revolution Trajectory Optimization Thesis directed by Professor Daniel J. Scheeres This dissertation presents a method for optimizing the trajectories of spacecraft that use low- thrust propulsion to maneuver through high counts of orbital revolutions. The proposed method is to discretize the trajectory and control schedule with respect to an orbit anomaly and perform the optimization with differential dynamic programming (DDP). The change of variable from time to orbit anomaly is accomplished by a Sundman transformation to the spacecraft equations of motion. Sundman transformations to each of the true, mean and eccentric anomalies are leveraged for fuel-optimal geocentric transfers up to 2000 revolutions. The approach is shown to be amenable to the inclusion of perturbations in the dynamic model, specifically aspherical gravity and third- body perturbations, and is improved upon through the use of modified equinoctial elements. An assessment of computational performance shows the importance of parallelization but that a single, multi-core processor is effective. The computational efficiency facilitates the generation of fuel versus time of flight trade-offs within a matter of hours. Many-revolution trajectories are characteristic of orbit transfers accomplished by solar electric propulsion about planetary bodies. Methods for modeling the effect of solar eclipses on the power available to the spacecraft and constraining eclipse durations are also presented. The logistic sunlight fraction is introduced as a coefficient that scales the computed power available by the fraction of sunlight available. The logistic sunlight fraction and Sundman-transformed DDP are used to analyze transfers from low-Earth orbit to geostationary orbit. The analysis includes a systematic approach to estimating the Pareto front of fuel versus time of flight. In addition to addressing many-revolution trajectories, this dissertation advances the utility of DDP in the three-body problem. Fuel-optimal transfers are presented in the Earth-Moon circular restricted three-body problem between distant retrograde orbits, between Lyapunov orbits and iv between Halo orbits. Those include mechanisms for varying the time of flight and the insertion point onto a target orbit. A multi-phase DDP approach enables initial guesses to be constructed from discontinuous trajectory segments. DDP is shown to leverage the system dynamics to find a heteroclinic connection between Lyapunov orbits, which is facilitated by the multi-phase approach. Dedication To Mom and Dad and the rest of you. vi Acknowledgements Thank you to my committee members, Daniel Scheeres, Jeffrey Parker, Jacob Englander, Jay McMahon and Shalom Ruben for your instruction, advising and mentoring. An honorary seat and my sincerest thanks is given to the late George Born, without whom I would not have enrolled at CU Boulder. This project took form in the low-thrust trajectory optimization research group with guidance from Jeffrey Parker and support from Jonathan Herman, Jeannette Heiligers, Nathan Parrish and Stijn De Smet. Thank you, low-thrust optimizers, and to the many visiting students who joined in the fun for a shorter period. This project reached maturity in the Celestial Mechanics and Spaceflight Mechanics Laboratory under the advising of Daniel Scheeres. Thank you Dan for welcoming me to CSML and sharing your wisdom while allowing me a great deal of academic freedom. Thank you to all CSML'ers. There are too many past and present fellow graduate students to acknowledge, so on behalf of all of you, I focus that gratitude to Sarah Melssen, Steve Hart, Annie Brookover and Carrie Simon for administrative support. I am grateful for the support I have received from a number of organizations. This work was supported by a NASA Space Technology Research Fellowship. I am indebted to Jacob Englander for helping to make that possible. Thank you for your unwaivering enthusiasm that began with the initial proposal and continues to the assembly of this document. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Thank you Gregory Lantoine for playing host and stimulating our research collaboration. vii Contents Chapter 1 Introduction 1 1.1 Orbit Transfers . 2 1.2 Historical Low-Thrust Many-Revolution Solutions . 7 1.2.1 Indirect Methods . 7 1.2.2 Control Laws . 9 1.2.3 Direct Optimization . 10 1.3 Differential Dynamic Programming . 11 1.4 Dissertation Overview . 13 2 Low-Thrust Spaceflight Dynamics 16 2.1 Perturbed Keplerian Motion . 16 2.1.1 Power Modeling . 18 2.1.2 Control Variables . 18 2.2 Modified Equinoctial Elements . 20 2.3 The Circular Restricted Three-Body Problem . 22 2.3.1 Spacecraft State and Dynamics . 22 2.3.2 The Jacobi Constant . 25 2.3.3 Lagrange Points . 26 viii 3 Differential Dynamic Programming 28 3.1 Notation . 28 3.1.1 Tensor Notation . 29 3.2 Introduction . 30 3.3 Forward Pass . 30 3.4 Augmented Lagrangian Method . 31 3.5 Backward Sweep . 32 3.5.1 Stage Subproblems . 32 3.5.2 Second-Order Dynamics . 34 3.5.3 Stage Cost-To-Go Derivatives . 36 3.5.4 Stage Update Equations . 36 3.5.5 Inter-phase Subproblems . 37 3.5.6 Multiplier Update . 39 3.5.7 Parameter Update . 40 3.6 Trust-Region Quadratic Subproblem . 41 3.7 Iteration . 42 3.8 DDP and Indirect Optimization . 43 3.9 Example Earth-Mars Rendezvous . 44 3.9.1 Variable Departure and Arrival Times . 46 3.9.2 Monotonic Basin Hopping . 48 4 Sundman-Transformed Differential Dynamic Programming 53 4.1 The Sundman Transformation . 54 4.1.1 Sundman-Transformed Dynamics . 54 4.1.2 The Sundman-Transformed State Transition Matrix and Tensor . 55 4.2 GTO to GEO Transfer in Cartesian Coordinates . 56 4.2.1 Spacecraft State and Dynamics . 56 ix 4.2.2 Augmented Lagrangian Cost Function . 58 4.2.3 Trajectory Computation . 59 4.2.4 STM Computation . 59 4.2.5 Case B Transfer Results . 60 4.2.6 Case B with Perturbations . 64 4.3 Sundman-Transformed DDP in Modified Equinoctial Elements . 68 4.3.1 Sundman Transformations in Modified Equinoctial Elements . 71 4.3.2 The Augmented Modified Equinoctial Element State Vector . 71 4.4 GTO to GEO Transfer in Modified Equinoctial Elements . 73 4.4.1 Boundary Conditions . 73 4.4.2 Augmented Lagrangian Cost Function . 74 4.4.3 Numerical Setup . 75 4.4.4 GTO to GEO Results . 76 4.5 Conclusion . 80 5 A Smoothed Eclipse Model 85 5.1 Conical Eclipse Geometry . 85 5.2 Smoothed Sunlight Fraction . 87 5.3 Trajectory Optimization Example . 90 5.3.1 Constant power with smoothed eclipsing . 90 5.3.2 Boundary conditions and dynamics . 91 5.3.3 Initial results . 92 5.4 Penumbra Terminator Detection . 98 5.4.1 Calculation method for penumbra entry and exit . 99 5.4.2 Mesh adjustment for penumbra entry and exit . 101 5.5 Results with Penumbra Detection . 102 5.6 Conclusion . 104 x 6 A Penalty Method for Path Inequality Constraints 107 6.1 Case E Transfer . 109 6.1.1 Apsis Constraints . 110 6.1.2 Augmented Lagrangian Cost Function . 111 6.1.3 Case E Transfer Results . 111 6.2 Maximum Eclipse Duration . 115 6.2.1 Cylindrical Shadow Geometry . 119 6.2.2 Spacecraft Beta Angle . 121 6.2.3 Eclipse Maps . 122 6.2.4 The Shadow Quartic . 124 6.2.5 Evaluating the Eclipse Duration and its Derivatives . 126 6.2.6 Eclipse-Constrained Mars Orbit Transfer . 127 6.3 Conclusion . 132 7 Differential Dynamic Programming in the Three-Body Problem 134 7.1 Minimum-Radius Constraint . 135 7.2 Time Variables . 135 7.3 Transfers in the CRTBP . 136 7.3.1 Single-Revolution DRO Transfer . 138 7.3.2 Multi-Revolution DRO Transfers . ..
Recommended publications
  • The Utilization of Halo Orbit§ in Advanced Lunar Operation§
    NASA TECHNICAL NOTE NASA TN 0-6365 VI *o M *o d a THE UTILIZATION OF HALO ORBIT§ IN ADVANCED LUNAR OPERATION§ by Robert W. Fmqcbar Godddrd Spctce Flight Center P Greenbelt, Md. 20771 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY 1971 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-6365 5. Report Date Jul;v 1971. 6. Performing Organization Code 8. Performing Organization Report No, G-1025 10. Work Unit No. Goddard Space Flight Center 11. Contract or Grant No. Greenbelt, Maryland 20 771 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address Technical Note J National Aeronautics and Space Administration Washington, D. C. 20546 14. Sponsoring Agency Code 5. Supplementary Notes 6. Abstract Flight mechanics and control problems associated with the stationing of space- craft in halo orbits about the translunar libration point are discussed in some detail. Practical procedures for the implementation of the control techniques are described, and it is shown that these procedures can be carried out with very small AV costs. The possibility of using a relay satellite in.a halo orbit to obtain a continuous com- munications link between the earth and the far side of the moon is also discussed. Several advantages of this type of lunar far-side data link over more conventional relay-satellite systems are cited. It is shown that, with a halo relay satellite, it would be possible to continuously control an unmanned lunar roving vehicle on the moon's far side. Backside tracking of lunar orbiters could also be realized.
    [Show full text]
  • AAS 13-250 Hohmann Spiral Transfer with Inclination Change Performed
    AAS 13-250 Hohmann Spiral Transfer With Inclination Change Performed By Low-Thrust System Steven Owens1 and Malcolm Macdonald2 This paper investigates the Hohmann Spiral Transfer (HST), an orbit transfer method previously developed by the authors incorporating both high and low- thrust propulsion systems, using the low-thrust system to perform an inclination change as well as orbit transfer. The HST is similar to the bi-elliptic transfer as the high-thrust system is first used to propel the spacecraft beyond the target where it is used again to circularize at an intermediate orbit. The low-thrust system is then activated and, while maintaining this orbit altitude, used to change the orbit inclination to suit the mission specification. The low-thrust system is then used again to reduce the spacecraft altitude by spiraling in-toward the target orbit. An analytical analysis of the HST utilizing the low-thrust system for the inclination change is performed which allows a critical specific impulse ratio to be derived determining the point at which the HST consumes the same amount of fuel as the Hohmann transfer. A critical ratio is found for both a circular and elliptical initial orbit. These equations are validated by a numerical approach before being compared to the HST utilizing the high-thrust system to perform the inclination change. An additional critical ratio comparing the HST utilizing the low-thrust system for the inclination change with its high-thrust counterpart is derived and by using these three critical ratios together, it can be determined when each transfer offers the lowest fuel mass consumption.
    [Show full text]
  • Appendix a Orbits
    Appendix A Orbits As discussed in the Introduction, a good ¯rst approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational ¯eld of a spherical planet. This leads to the classical two-body problem. Since we use the term body to refer to a spacecraft of ¯nite size (as in rigid body), it may be more appropriate to call this the two-particle problem, but I will use the term two-body problem in its classical sense. The basic elements of orbital dynamics are captured in Kepler's three laws which he published in the 17th century. His laws were for the orbital motion of the planets about the Sun, but are also applicable to the motion of satellites about planets. The three laws are: 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times. 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun. The ¯rst law applies to most spacecraft, but it is also possible for spacecraft to travel in parabolic and hyperbolic orbits, in which case the period is in¯nite and the 3rd law does not apply. However, the 2nd law applies to all two-body motion. Newton's 2nd law and his law of universal gravitation provide the tools for generalizing Kepler's laws to non-elliptical orbits, as well as for proving Kepler's laws.
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit Emmanuel Blazquez, Laurent Beauregard, Stéphanie Lizy-Destrez, Finn Ankersen, Francesco Capolupo
    Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit Emmanuel Blazquez, Laurent Beauregard, Stéphanie Lizy-Destrez, Finn Ankersen, Francesco Capolupo To cite this version: Emmanuel Blazquez, Laurent Beauregard, Stéphanie Lizy-Destrez, Finn Ankersen, Francesco Capolupo. Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit. International Symposium on Space Flight Dynamics (ISSFD), Feb 2019, Melbourne, Australia. pp.1408-1413. hal-03200239 HAL Id: hal-03200239 https://hal.archives-ouvertes.fr/hal-03200239 Submitted on 16 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: h ttps://oatao.univ-toulouse.fr/22865 To cite this version : Blazquez, Emmanuel and Beauregard, Laurent and Lizy-Destrez, Stéphanie and Ankersen, Finn and Capolupo, Francesco Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit.
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • Download Paper
    Ever Wonder What’s in Molniya? We Do. John T. McGraw J. T. McGraw and Associates, LLC and University of New Mexico Peter C. Zimmer J. T. McGraw and Associates, LLC Mark R. Ackermann J. T. McGraw and Associates, LLC ABSTRACT Molniya orbits are high inclination, high eccentricity orbits which provide the utility of long apogee dwell time over northern continents, with the additional benefit of obviating the largest orbital perturbation introduced by the Earth’s nonspherical (oblate) gravitational potential. We review the few earlier surveys of the Molniya domain and evaluate results from a new, large area unbiased survey of the northern Molniya domain. We detect 120 Molniya objects in a three hour survey of ~ 1300 square degrees of the sky to a limiting magnitude of about 16.5. Future Molniya surveys will discover a significant number of objects, including debris, and monitoring these objects might provide useful data with respect to orbital perturbations including solar radiation and Earth atmosphere drag effects. 1. SPECIALIZED ORBITS Earth Orbital Space (EOS) supports many versions of specialized satellite orbits defined by a combination of satellite mission and orbital dynamics. Surely the most well-known family of specialized orbits is the geostationary orbits proposed by science fiction author Arthur C. Clarke in 1945 [1] that lie sensibly in the plane of Earth’s equator, with orbital period that matches the Earth’s rotation period. Satellites in these orbits, and the closely related geosynchronous orbits, appear from Earth to remain constantly overhead, allowing continuous communication with the majority of the hemisphere below. Constellations of three geostationary satellites equally spaced in orbit (~ 120° separation) can maintain near-global communication and terrestrial surveillance.
    [Show full text]
  • Chapter 2: Earth in Space
    Chapter 2: Earth in Space 1. Old Ideas, New Ideas 2. Origin of the Universe 3. Stars and Planets 4. Our Solar System 5. Earth, the Sun, and the Seasons 6. The Unique Composition of Earth Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Earth in Space Concept Survey Explain how we are influenced by Earth’s position in space on a daily basis. The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas • Why is Earth the only planet known to support life? • How have our views of Earth’s position in space changed over time? • Why is it warmer in summer and colder in winter? (or, How does Earth’s position relative to the sun control the “Earthrise” taken by astronauts aboard Apollo 8, December 1968 climate?) The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System sun • Geocentric orbit hypothesis - Ancient civilizations interpreted rising of sun in east and setting in west to indicate the sun (and other planets) revolved around Earth Earth pictured at the center of a – Remained dominant geocentric planetary system idea for more than 2,000 years The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Heliocentric orbit hypothesis –16th century idea suggested by Copernicus • Confirmed by Galileo’s early 17th century observations of the phases of Venus – Changes in the size and shape of Venus as observed from Earth The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Galileo used early telescopes to observe changes in the size and shape of Venus as it revolved around the sun The Good Earth, Chapter 2: Earth in Space Earth in Space Conceptest The moon has what type of orbit? A.
    [Show full text]
  • Positioning: Drift Orbit and Station Acquisition
    Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.
    [Show full text]
  • Elliptical Orbits
    1 Ellipse-geometry 1.1 Parameterization • Functional characterization:(a: semi major axis, b ≤ a: semi minor axis) x2 y 2 b p + = 1 ⇐⇒ y(x) = · ± a2 − x2 (1) a b a • Parameterization in cartesian coordinates, which follows directly from Eq. (1): x a · cos t = with 0 ≤ t < 2π (2) y b · sin t – The origin (0, 0) is the center of the ellipse and the auxilliary circle with radius a. √ – The focal points are located at (±a · e, 0) with the eccentricity e = a2 − b2/a. • Parameterization in polar coordinates:(p: parameter, 0 ≤ < 1: eccentricity) p r(ϕ) = (3) 1 + e cos ϕ – The origin (0, 0) is the right focal point of the ellipse. – The major axis is given by 2a = r(0) − r(π), thus a = p/(1 − e2), the center is therefore at − pe/(1 − e2), 0. – ϕ = 0 corresponds to the periapsis (the point closest to the focal point; which is also called perigee/perihelion/periastron in case of an orbit around the Earth/sun/star). The relation between t and ϕ of the parameterizations in Eqs. (2) and (3) is the following: t r1 − e ϕ tan = · tan (4) 2 1 + e 2 1.2 Area of an elliptic sector As an ellipse is a circle with radius a scaled by a factor b/a in y-direction (Eq. 1), the area of an elliptic sector PFS (Fig. ??) is just this fraction of the area PFQ in the auxiliary circle. b t 2 1 APFS = · · πa − · ae · a sin t a 2π 2 (5) 1 = (t − e sin t) · a b 2 The area of the full ellipse (t = 2π) is then, of course, Aellipse = π a b (6) Figure 1: Ellipse and auxilliary circle.
    [Show full text]