Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-Cost Lagrange-Point Missions

Total Page:16

File Type:pdf, Size:1020Kb

Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-Cost Lagrange-Point Missions SSC15-II-5 Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-cost Lagrange-point Missions Chris Pearson, Marissa Stender, Christopher Loghry, Joe Maly, Valentin Ivanitski Moog Integrated Systems 1113 Washington Avenue, Suite 300, Golden, CO, 80401; 303 216 9777, extension 204 [email protected] Mina Cappuccio, Darin Foreman, Ken Galal, David Mauro NASA Ames Research Center PO Box 1000, M/S 213-4, Moffett Field, CA 94035-1000; 650 604 1313 [email protected] Keats Wilkie, Paul Speth, Trevor Jackson, Will Scott NASA Langley Research Center 4 West Taylor Street, Mail Stop 230, Hampton, VA, 23681; 757 864 420 [email protected] ABSTRACT Rideshare is a well proven approach, in both LEO and GEO, enabling low-cost space access through splitting of launch charges between multiple passengers. Demand exists from users to operate payloads at Lagrange points, but a lack of regular rides results in a deficiency in rideshare opportunities. As a result, such mission architectures currently rely on a costly dedicated launch. NASA and Moog have jointly studied the technical feasibility, risk and cost of using an Orbital Maneuvering Vehicle (OMV) to offer Lagrange point rideshare opportunities. This OMV would be launched as a secondary passenger on a commercial rocket into Geostationary Transfer Orbit (GTO) and utilize the Moog ESPA secondary launch adapter. The OMV is effectively a free flying spacecraft comprising a full suite of avionics and a propulsion system capable of performing GTO to Lagrange point transfer via a weak stability boundary orbit. In addition to traditional OMV ’tug’ functionality, scenarios using the OMV to host payloads for operation at the Lagrange points have also been analyzed. This analysis has led to definition of a mission concept to allow space weather monitoring at the Earth-Sun L1 point as well as perform the technology demonstration of an advanced solar sail payload. INTRODUCTION ~92 million miles ~1 million miles NASA Ames Research Center (ARC), NASA Langley Research Center (LARC) and Moog Incorporated (Moog) have performed initial mission and spacecraft L1 system design enabling a low-cost combined operational and technology demonstration mission at the Sun-Earth L1 Lagrange point (L1). L1 is ideally suited for making observations of the Sun-Earth system given that objects at this location are never shadowed by the Earth or Moon. The motivation for this activity was to offer reduced cost for missions looking to operate at L1 and provide a platform for future development for other missions on the edges and outside of Earth orbit. This mission concept is called Figure 1: Earth Sun L1 Lagrange Point The Example Low-cost Lagrange Investigation Exploration (ELLIE). Pearson 1 29th Annual AIAA/USU Conference on Small Satellites Mission Partners and along with other Moog Space has collaborated with ARC is a world-class research facility located in the NASA since the mid-80’s. heart of Silicon Valley. For more than 75 years, ARC EXISTING AND FUTURE USE OF LAGRANGE has led NASA in conducting world-class research and POINT ORBITS development in aeronautics, space exploration technologies, small spacecraft innovation, astrophysics, Missions at Lagrange Points aerospace, Earth and space science. ARC has a history of developing low-cost small spacecraft for science Launched in 1978, the International Sun-Earth Explorer mission. Starting in the early 1960’s, ARC developed 3 (ISEE-3) was the first spacecraft to be put into orbit spacecraft for the Pioneer Program, followed by the around a libration point (L1) where it operated for four Pioneer Venus Probe, the Galileo Probe, and finally years investigating the interaction between the Earth’s Lunar Prospector. In the past 15 years, ARC magnetic field and the solar wind. developed, launched, and/or executed operations for Kepler, LCROSS, IRIS, and LADEE. NASA Ames Currently in operation at the L1 libration point is the Research Center is committed to find ways to design a NASA Advanced Composition Explorer (ACE) low-cost spacecraft to operate critical missions for spacecraft that monitors the solar wind in real-time. NASA and across other US government agencies. Data from ACE is supplied to the Space Weather ARC has enjoyed successful partnerships with industry Prediction Center (SWPC) that is part of the National in developing low-cost small spacecraft. Heritage from Oceanographic and Atmospheric Administration LCROSS and LADEE fed into the concept discussed in (NOAA) to enable advance warnings of geomagnetic this paper to transport secondary payloads from storms. The Solar and Heliospheric Observatory GTO/GEO to L1. (SOHO) is a European led mission that has been operating at L1 since 1996 following multiple mission LaRC has a successful history of developing extensions and also provides near real-time solar data lightweight and deployable structures and materials for space weather prediction. The NASA Wind technologies for space applications dating back to spacecraft has also been in operation at L1 since 2004 Project Echo in the 1960s. Ongoing spacecraft and provides complete plasma, energetic particle, and structures research includes large solar arrays, inflatable magnetic field input for magnetospheric and aerodynamic decelerators, advanced polymers, ionospheric studies. composite materials, and solar sail structures and systems. LaRC is the developer of Clear Polyimide-1 Geomagnetic storms can impact the electric power grid, (CP1), the state-of-the-art material for high aircraft operations, the accuracy of the Global performance solar sail membranes, used on NASA’s Positioning System (GPS) as well as affecting both NanoSail D solar sail mission.1 LaRC also leads the unmanned and manned spacecraft. For example, in agency in solar sail structures modeling, simulation, July 2012, a massive solar storm missed Earth by one week purely due to the instantaneous position of the structural analysis, and ground validation testing, 3 serving as the structures validation lead for NASA’s Earth with respect to the sun at that time . It is thought that if Earth had been hit by the storm, the event would ST7 and ST9 solar sail studies, and the In-Space 4 Propulsion Technology (ISPT) development project, have been as powerful as the 1859 Carrington event NASA’s most significant solar sail technology likely with devastating consequences for may development project to date.2 Under the ISPT program, technological systems. LaRC coordinated ground validation testing and Most recently, in February 2015, (NOAA) Deep Space analysis activities for the project’s two 20-m solar sail Climate Observatory (DSCOVR) was launched and in ground demonstrator systems. Both ISPT solar sail June 2015 arrived at the L1 Lagrange point. DSCOVR systems have since been studied for potential L1 will eventually replace ACE as America’s primary technology demonstration missions. One such mission warning system for solar magnetic storms headed concept is described below as an example OMV towards Earth but, for now, the two spacecraft operate rideshare opportunity. in tandem. In addition to space weather-monitoring Moog is a worldwide designer, manufacturer, and instruments, DSCOVR is carrying two NASA Earth- integrator of precision motion control products and observing instruments that will gather a range of systems for a variety of markets including satellites and measurements from ozone and aerosol amounts, to space vehicle. Moog Integrated Systems provides a changes in Earth's radiation budget—the balance focal point to harness the breadth and depth of Moog’s between incoming radiation (largely from the sun) and capability for customers at the advanced mission stage. that which is reflected from Earth. Moog’s Mountain View operation is very near ARC Pearson 2 29th Annual AIAA/USU Conference on Small Satellites Future Missions at Lagrange Points durations desired for an operational space weather early warning system (10 years or more) solar sail propulsion Many missions are in the proposal phase for operations 5 at L1 but the next spacecraft destined for launch is the systems have been proposed . A solar sail uses a large, lightweight reflective membrane to develop thrust from European Space Agency (ESA) and NASA-led Laser direct momentum transfer of reflected solar photons6. Interferometer Space Antenna (LISA) Pathfinder. Since this requires no propellant, a solar sail can, in LISA Pathfinder will place two test masses in a nearly principle, provide thrust indefinitely, subject only to the perfect gravitational free-fall, and will control and measure their relative motion with unprecedented durability of its membrane sail in the space accuracy. LISA Pathfinder will prove key systems such environment. as drag-free attitude control of a spacecraft with two Since the technological maturity of solar sails is still proof masses, the feasibility of laser interferometry in a relatively low, a technology demonstration mission specific frequency band as well as the general reliability (TDM) for a solar sail system capable of meeting the of key components. A successful LISA Pathfinder requirements for an improved warning time space mission would allow the full LISA system to be built weather monitoring system is needed. Ideally, this and deployed that would be able to detect and solar sail TDM would demonstrate deployment and accurately measure gravitational waves. operability of the solar sail system in its eventual In this paper, a set of requirements relevant to such operational environment,
Recommended publications
  • The Utilization of Halo Orbit§ in Advanced Lunar Operation§
    NASA TECHNICAL NOTE NASA TN 0-6365 VI *o M *o d a THE UTILIZATION OF HALO ORBIT§ IN ADVANCED LUNAR OPERATION§ by Robert W. Fmqcbar Godddrd Spctce Flight Center P Greenbelt, Md. 20771 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY 1971 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-6365 5. Report Date Jul;v 1971. 6. Performing Organization Code 8. Performing Organization Report No, G-1025 10. Work Unit No. Goddard Space Flight Center 11. Contract or Grant No. Greenbelt, Maryland 20 771 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address Technical Note J National Aeronautics and Space Administration Washington, D. C. 20546 14. Sponsoring Agency Code 5. Supplementary Notes 6. Abstract Flight mechanics and control problems associated with the stationing of space- craft in halo orbits about the translunar libration point are discussed in some detail. Practical procedures for the implementation of the control techniques are described, and it is shown that these procedures can be carried out with very small AV costs. The possibility of using a relay satellite in.a halo orbit to obtain a continuous com- munications link between the earth and the far side of the moon is also discussed. Several advantages of this type of lunar far-side data link over more conventional relay-satellite systems are cited. It is shown that, with a halo relay satellite, it would be possible to continuously control an unmanned lunar roving vehicle on the moon's far side. Backside tracking of lunar orbiters could also be realized.
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit Emmanuel Blazquez, Laurent Beauregard, Stéphanie Lizy-Destrez, Finn Ankersen, Francesco Capolupo
    Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit Emmanuel Blazquez, Laurent Beauregard, Stéphanie Lizy-Destrez, Finn Ankersen, Francesco Capolupo To cite this version: Emmanuel Blazquez, Laurent Beauregard, Stéphanie Lizy-Destrez, Finn Ankersen, Francesco Capolupo. Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit. International Symposium on Space Flight Dynamics (ISSFD), Feb 2019, Melbourne, Australia. pp.1408-1413. hal-03200239 HAL Id: hal-03200239 https://hal.archives-ouvertes.fr/hal-03200239 Submitted on 16 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: h ttps://oatao.univ-toulouse.fr/22865 To cite this version : Blazquez, Emmanuel and Beauregard, Laurent and Lizy-Destrez, Stéphanie and Ankersen, Finn and Capolupo, Francesco Rendezvous Design in a Cislunar Near Rectilinear Halo Orbit.
    [Show full text]
  • Prescriptions for Excellence in Health Care a Collaboration Between Jefferson School of Population Health and Lilly Usa, Llc
    PRESCRIPTIONS FOR EXCELLENCE IN HEALTH CARE A COLLABORATION BETWEEN JEFFERSON SCHOOL OF POPULATION HEALTH AND LILLY USA, LLC ISSUE 23 | WINTER 2015 EDITORIAL TABLE OF CONTENTS ACOs Due for Their Annual Checkup David B. Nash, MD, MBA A Message from Lilly: Opportunities, Uncertainty Loom in 2015 for the Editor-in-Chief Health Exchange Marketplace Ryan Urgo, MPP ....................................................2 As 2013 drew to a close, Premier with more than 190,000 physicians Healthcare Alliance predicted and other health care professionals Biography of a New ACO Joel Port, FACHE .............................................4 that participation in accountable participating.2 Although the care organizations (ACOs) would number of Medicare ACOs has Evolving Health Care Models and double in 2014 as a result of more grown more rapidly than the the Impact on Value and Quality providers developing core ACO number of non-Medicare ACOs, Bruce Perkins ...................................................6 capabilities.1 Premier’s forecast 46-52 million Americans (15%- Employers and Accountable Care was made on the basis of its 18% of the total population) are Organizations: A Good Marriage? survey of 115 senior executives patients in organizations with ACO Laurel Pickering, MPH .....................................9 that revealed a growing trend in arrangements with at least 1 payer.2 high-risk population management, coupled with reductions in cost The next question is, are ACOs and increases in health care quality doing what they are designed to do and patient satisfaction. Of those (ie, improving quality and lowering who responded: costs)? Although it is far too early to draw conclusions, the Centers • More than 75% reported for Medicare & Medicaid Services Prescriptions for Excellence in Health that they were integrating (CMS) has begun to release Care is brought to Population Health clinical and claims data to financial and quality outcomes.
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • Asteroid Retrieval Mission
    Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech © 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works for Earth, Moon, Mars, Phobos, Deimos etc… very stable orbits Other Lunar Storage Orbit Options • Lagrange Points – Earth-Moon L1/L2 • Unstable; this instability enables many interesting low-energy transfers but vehicles require active station keeping to stay in vicinity of L1/L2 – Earth-Moon L4/L5 • Some orbits in this region is may be stable, but are difficult for MPCV to reach • Lunar Weakly Captured Orbits – These are the transition from high lunar orbits to Lagrange point orbits – They are a new and less well understood class of orbits that could be long term stable and could be easier for the MPCV to reach than DROs – More study is needed to determine if these are good options • Intermittent Capture – Weakly captured Earth orbit, escapes and is then recaptured a year later • Earth Orbit with Lunar Gravity Assists – Many options with Earth-Moon gravity assist tours Backflip Orbits • A backflip orbit is two flybys half a rev apart • Could be done with the Moon, Earth or Mars. Backflip orbit • Lunar backflips are nice plane because they could be used to “catch and release” asteroids • Earth backflips are nice orbits in which to construct things out of asteroids before sending them on to places like Earth- Earth or Moon orbit plane Mars cyclers 4 Example Mars Cyclers Two-Synodic-Period Cycler Three-Synodic-Period Cycler Possibly Ballistic Chen, et al., “Powered Earth-Mars Cycler with Three Synodic-Period Repeat Time,” Journal of Spacecraft and Rockets, Sept.-Oct.
    [Show full text]
  • Nasa Langley Research Center 2012
    National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model.
    [Show full text]
  • An Examination of the Mass Limit for Stability at the Triangular Lagrange
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2015 An Examination of the Mass Limit for Stability at the Triangular Lagrange Points for a Three-Body System and a Special Case of the Four-Body Problem Sean Kemp San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Kemp, Sean, "An Examination of the Mass Limit for Stability at the Triangular Lagrange Points for a Three-Body System and a Special Case of the Four-Body Problem" (2015). Master's Theses. 4546. DOI: https://doi.org/10.31979/etd.4tf8-hnqx https://scholarworks.sjsu.edu/etd_theses/4546 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. AN EXAMINATION OF THE MASS LIMIT FOR STABILITY AT THE TRIANGULAR LAGRANGE POINTS FOR A THREE-BODY SYSTEM AND A SPECIAL CASE OF THE FOUR-BODY PROBLEM A Thesis Presented to The Faculty of the Department of Physics and Astronomy San José State University In Partial Fulllment of the Requirements for the Degree Master of Science by Sean P. Kemp May 2015 c 2015 Sean P. Kemp ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled AN EXAMINATION OF THE MASS LIMIT FOR STABILITY AT THE TRIANGULAR LAGRANGE POINTS FOR A THREE-BODY SYSTEM AND A SPECIAL CASE OF THE FOUR-BODY PROBLEM by Sean P.
    [Show full text]
  • Design of Small Circular Halo Orbit Around L2
    Design of Small Circular Halo Orbit around L2 Kohta Tarao* and Jun’ichiro Kawaguchi** *Graduate Student, Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo ** The Institute of Space and Astronautics Science / Japan Aerospace Exploration Agency (ISAS/JAXA) 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, JAPAN. Abstract A Lagrange point of Sun-Earth system, L1 or L2 is conceived one of the best point for astronomy and connection ports for outer planets. This paper describes a new useful control method for realizing and keeping small circular Halo orbits around the L2 point. First, a control law is mathematically derived from the restricted three body problem formulation and the associated properties are discussed. And next, some useful cases for the space mission are verified numerically using real ephemeris. The resulted Halo orbit is compact and circular realized with satisfactorily small thrust. The paper concludes the strategy is applied to many kinds of missions. L2 点周りの小円ハロー軌道設計 多羅尾康太(東大・工・院)、川口淳一郎(ISAS/JAXA) 摘要 太陽―月・地球系におけるラグランジュ点の中で、L2 点は太陽と地球との距離がほぼ一定で、太 陽、地球との幾何学的関係が保たれ、またダウンリンク通信が太陽の影響を受けない点で L1 点よ りも有利である。そのため L2 点周辺の軌道は、赤外線天文衛星や外惑星探査のための起・終点と しての宇宙港の軌道として利用が考えられている。本論文では、新しい制御法により L2 点回りに 小さな円形の Halo 軌道が作れることを示す。まず初めに、円制限三体問題における線形化された 方程式から理論的に制御則を導く。その後、実軌道要素を用いて軌道制御方法を検証する。軌道制 御に必要な推力は十分小さく大変実用的な制御方法である。 INTRODUCTION million kilometers and also due to its highly alternating geometry. A Lissajous orbit also exists A Lagrange point is the point where the gravity of around the L2 point naturally, however, the orbital two planets such as Sun and Earth is equal to plane rotates and the solar power availability is centrifugal force by their circular motions. L1 and often restricted due to the shadow by the Earth.
    [Show full text]
  • NASA Langley Research Center Dedicated As Vertical Flight Heritage Site N Friday, May 8 (The W
    NASA Langley Research Center Dedicated as Vertical Flight Heritage Site n Friday, May 8 (the W. F. Durand. The paper states day after Forum 71), “The gravest charge against ONASA Langley Research the helicopter is its lack of hosted a ceremony for the means of making a safe recognition of the Center as descent when the engine has an AHS International Vertical stopped.” It disproved two Flight Heritage Site. The common misperceptions that ceremony featured remarks the parachute effect of the by NASA Administrator, stopped blades or the blades Charles Bolden; Associate spinning backwards could Administrator for Aeronautics, create a safe landing. It then Jaiwon Shin; Acting Center provided a mathematical Director Dave Bowles; US treatment of the principle Congressman Scott Rigell (via of autorotation. This video); the Honorable George principle was later to be a Wallace, Mayor of the City of major feature in Juan de la Hampton; and AHS Executive Cierva’s autogyro work and, Director Mike Hirschberg. Sikorsky YR-4B in the NACA Langley Full Scale Wind Tunnel in 1944. (All eventually, in satisfactory NASA debuted a photos courtesy of NASA) helicopter behavior following historical overview video of a power failure. This 1920 NASA Langley’s rotorcraft be dedicated since AHS began the technical publication even contributions created specifically for the Vertical Flight Heritage Sites Program demonstrated some understanding of event. Administrator Bolden predicted in 2013. The initiative is intended to twist and rotor inflow considerations. the impact that vertical flight aircraft recognize and help preserve sites of Throughout the years, Langley would have on relieving ground traffic the most noteworthy and significant researchers continued exploring the congestion in the future, citing the long contributions made in both the theory complex problem of vertical flight.
    [Show full text]
  • Npl Fact Sheets (Initial Title)
    Region 3: Mid-Atlantic Region Hazardous Site Cleanup Division Serving: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia Recent Additions | Contact Us | Print Version Search: EPA Home > OSWER Home > Region 3 HSCD > Virginia Superfund Sites > Langley Air Force Base > Current Site Information Superfund Current Site Information (NPL Pad) Brownfields / Redevelopment Langley Air Force Base / NASA Langley Initiatives Research Center Administrative Record EPA Region 3 EPA ID# VA2800005033 Last Update: May 2000 Virginia Risk Assessment / Hampton 2nd Congressional District Other Names: None RBC Tables Resources / State Links Current Site Status Specialist Listing Several sites are currently in the remedial investigation/feasibility study (RI/FS) stage. Records of Decision have been signed by Oil Pollution NASA and the EPA for the Area E Warehouse Operable Unit (OU) and the Tabbs Creek OU. Two Records of Decision have been Freedom of signed for the LAFB. Dredging of soils contaminated with PCBs Information Act (Polychlorinated Biphenyls) and PCTs (Polychlorinated Terphenyls) Requests (FOIA) along Tabbs Creek began in December 1999 and should take six to eight months to complete. Site Description The Langley Air Force Base (LAFB)/NASA Langley Research Center (NASA LaRC) site in Hampton, Virginia consists of two Federal facilities. LAFB covers 3,152 acres, has been an airfield and aeronautical research center since 1917, and is the home base for the First Fighter Wing. NASA LaRC is consists of 787 acres and is a research facility that conducts numerous operations in nearly 200 buildings and 40 wind tunnels. Wastes generated at LAFB include petroleum, oils and lubricants, fuels, solvents, paints, pesticides, photographic chemicals, polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs) and heavy metals.
    [Show full text]
  • NASA Langley Research Center
    National Aeronautics and Space Administration LANGLEY RESEARCH CENTER www.nasa.gov contents NASA is on a reinvigorated “path of exploration, innovation and technological development leading to an array of challenging destinations and missions. — Charles Bolden” NASA Administrator Director’s Message ........................................ 2-3 Exploration Developing a New Launch Crew Vehicle ................. 4-5 Aeronautics Forging Tomorrow’s Flight Today ............................... 6 NASA Tests Biofuels for Commercial Jets .................. 7 Science Tracking Dynamic Change ......................................... 8 Airborne Air-Quality Campaign Created a Buzz ........... 9 Systems Analysis Making the Complex Work ...................................... 10 Partnerships Collaborating to Transition NASA Technologies .......................................... 12-13 We Have Liftoff Two Launches Carried Langley Instruments into Space ..................................... 14-15 A Space Shuttle Tribute ........................... 16-17 Economics ................................................... 18-19 Langley People ........................................... 20-21 Outreach & Education .............................. 22-23 Awards & Patents ...................................... 24-26 Contacts/Leadership ...................................... 27 Virginia Air & Space Center ........................... 27 (Inside cover) Splashdown of a crew A conference room in Langley’s new headquarters capsule mockup in Langley’s new Hydro building uses
    [Show full text]