Asteroid Retrieval Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature -
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance -
Optimisation of Propellant Consumption for Power Limited Rockets
Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets. -
An Examination of the Mass Limit for Stability at the Triangular Lagrange
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2015 An Examination of the Mass Limit for Stability at the Triangular Lagrange Points for a Three-Body System and a Special Case of the Four-Body Problem Sean Kemp San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Kemp, Sean, "An Examination of the Mass Limit for Stability at the Triangular Lagrange Points for a Three-Body System and a Special Case of the Four-Body Problem" (2015). Master's Theses. 4546. DOI: https://doi.org/10.31979/etd.4tf8-hnqx https://scholarworks.sjsu.edu/etd_theses/4546 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. AN EXAMINATION OF THE MASS LIMIT FOR STABILITY AT THE TRIANGULAR LAGRANGE POINTS FOR A THREE-BODY SYSTEM AND A SPECIAL CASE OF THE FOUR-BODY PROBLEM A Thesis Presented to The Faculty of the Department of Physics and Astronomy San José State University In Partial Fulllment of the Requirements for the Degree Master of Science by Sean P. Kemp May 2015 c 2015 Sean P. Kemp ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled AN EXAMINATION OF THE MASS LIMIT FOR STABILITY AT THE TRIANGULAR LAGRANGE POINTS FOR A THREE-BODY SYSTEM AND A SPECIAL CASE OF THE FOUR-BODY PROBLEM by Sean P. -
Design of Small Circular Halo Orbit Around L2
Design of Small Circular Halo Orbit around L2 Kohta Tarao* and Jun’ichiro Kawaguchi** *Graduate Student, Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo ** The Institute of Space and Astronautics Science / Japan Aerospace Exploration Agency (ISAS/JAXA) 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, JAPAN. Abstract A Lagrange point of Sun-Earth system, L1 or L2 is conceived one of the best point for astronomy and connection ports for outer planets. This paper describes a new useful control method for realizing and keeping small circular Halo orbits around the L2 point. First, a control law is mathematically derived from the restricted three body problem formulation and the associated properties are discussed. And next, some useful cases for the space mission are verified numerically using real ephemeris. The resulted Halo orbit is compact and circular realized with satisfactorily small thrust. The paper concludes the strategy is applied to many kinds of missions. L2 点周りの小円ハロー軌道設計 多羅尾康太(東大・工・院)、川口淳一郎(ISAS/JAXA) 摘要 太陽―月・地球系におけるラグランジュ点の中で、L2 点は太陽と地球との距離がほぼ一定で、太 陽、地球との幾何学的関係が保たれ、またダウンリンク通信が太陽の影響を受けない点で L1 点よ りも有利である。そのため L2 点周辺の軌道は、赤外線天文衛星や外惑星探査のための起・終点と しての宇宙港の軌道として利用が考えられている。本論文では、新しい制御法により L2 点回りに 小さな円形の Halo 軌道が作れることを示す。まず初めに、円制限三体問題における線形化された 方程式から理論的に制御則を導く。その後、実軌道要素を用いて軌道制御方法を検証する。軌道制 御に必要な推力は十分小さく大変実用的な制御方法である。 INTRODUCTION million kilometers and also due to its highly alternating geometry. A Lissajous orbit also exists A Lagrange point is the point where the gravity of around the L2 point naturally, however, the orbital two planets such as Sun and Earth is equal to plane rotates and the solar power availability is centrifugal force by their circular motions. L1 and often restricted due to the shadow by the Earth. -
Up, Up, and Away by James J
www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe. -
Future Space Launch Vehicles
Future Space Launch Vehicles S. Krishnan Professor of Aerospace Engineering Indian Institute of Technology Madras Chennnai - 600 036, India (Written in 2001) Introduction Space technology plays a very substantial role in the economical growth and the national security needs of any country. Communications, remote sensing, weather forecasting, navigation, tracking and data relay, surveillance, reconnaissance, and early warning and missile defence are its dependent user-technologies. Undoubtedly, space technology has become the backbone of global information highway. In this technology, the two most important sub-technologies correspond to spacecraft and space launch vehicles. Spacecraft The term spacecraft is a general one. While the spacecraft that undertakes a deep space mission bears this general terminology, the one that orbits around a planet is also a spacecraft but called specifically a satellite more strictly an artificial satellite, moons around their planets being natural satellites. Cassini is an example for a spacecraft. This was developed under a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. Cassini spacecraft, launched in 1997, is continuing its journey to Saturn (about 1274 million km away from Earth), where it is scheduled to begin in July 2004, a four- year exploration of Saturn, its rings, atmosphere, and moons (18 in number). Cassini executed two gravity-assist flybys (or swingbys) of Venus one in April 1998 and one in June 1999 then a flyby of Earth in August 1999, and a flyby of Jupiter (about 629 million km away) in December 2000, see Fig. 1. We may note here with interest that ISRO (Indian Space Research Organisation) is thinking of a flyby mission of a spacecraft around Moon (about 0.38 million km away) by using its launch vehicle PSLV. -
Low-Excess Speed Triple Cyclers of Venus, Earth, and Mars
AAS 17-577 LOW EXCESS SPEED TRIPLE CYCLERS OF VENUS, EARTH, AND MARS Drew Ryan Jones,∗ Sonia Hernandez,∗ and Mark Jesick∗ Ballistic cycler trajectories which repeatedly encounter Earth and Mars may be in- valuable to a future transportation architecture ferrying humans to and from Mars. Such trajectories which also involve at least one flyby of Venus are computed here for the first time. The so-called triple cyclers are constructed to exhibit low excess speed on Earth-Mars and Mars-Earth transit legs, and thereby reduce the cost of hyperbolic rendezvous. Thousands of previously undocumented two synodic pe- riod Earth-Mars-Venus triple cyclers are discovered. Many solutions are identified with average transit leg excess speed below 5 km/sec, independent of encounter epoch. The energy characteristics are lower than previously documented cyclers not involving Venus, but the repeat periods are generally longer. NOMENCLATURE ∆tH Earth-Mars Hohmann transfer flight time, days δ Hyperbolic flyby turning angle, degrees R;^ S;^ T^ B-plane unit vectors B B-plane vector, km µ Gravitational parameter, km3/sec2 θB B-plane angle between B and T^, degrees rp Periapsis radius, km T Cycler repeat period, days t0 Cycle starting epoch ∗ t0 Earth-Mars Hohmann transfer epoch tf Cycle ending epoch Tsyn Venus-Earth-Mars synodic period, days v1 Hyperbolic excess speed, km/sec INTRODUCTION Trajectories are computed which ballistically and periodically cycle between flybys of Venus, Earth, and Mars. Using only gravity assists, a cycling vehicle returns to the starting body after a flight time commensurate with the celestial bodies’ orbital periods, thereby permitting indefinite repetition. -
Martian Outpost the Challenges of Establishing a Human Settlement on Mars Erik Seedhouse
Martian Outpost The Challenges of Establishing a Human Settlement on Mars Erik Seedhouse Martian Outpost The Challenges of Establishing a Human Settlement on Mars Springer Published in association with ~ '· i €I Praxis Publishing PR i ~ . i •", . ~ Chichester, UK Dr Erik Seedhouse, F.B.I.S., As.M.A. Milton Ontario Canada SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason M.B.E., B.Sc., M.Sc., Ph.D. ISBN 978-0-387-98190-1 Springer Berlin Heidelberg New York Springer is a part of Springer Science + Business Media (springer.com) Library of Congress Control Number: 2009921645 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Copyright, 2009 Praxis Publishing Ltd. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Copy editor: Dr John Mason Typesetting: BookEns Ltd, Royston, Herts., UK Printed in Germany on acid-free paper Contents Preface ..................................................... xiii Acknowledgments................................................xv About the author .............................................. -
Asteroid Retrieval Feasibility Study
Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]