Meriympäristöjen Hyönteiset

Total Page:16

File Type:pdf, Size:1020Kb

Meriympäristöjen Hyönteiset Meriympäristöjen hyönteiset Aurelia Suvitie Pro gradu -tutkielma Akvaattiset tieteet Bio- ja ympäristötieteellinen tiedekunta Helsingin yliopisto Lokakuu 2020 Tiedekunta Koulutusohjelma Bio- ja ympäristötieteellinen tiedekunta Akvaattisten tieteiden koulutusohjelma Tekijä Aurelia Suvitie Työn nimi Meriympäristöjen hyönteiset Oppiaine Akvaattiset tieteet Työn laji Aika Sivumäärä Pro gradu -tutkielma Lokakuu 2020 95 +15 Tiivistelmä Hyönteiset (Insecta) ovat tunnetulta lajistoltaan maapallon runsaslukuisin luokka. Valtavan monimuotoisuuden ansiosta hyönteisiä löytyy lähes kaikenlaisista ympäristöistä. Yli 1 000 000 tunnetusta hyönteislajista n. 90 % on kuitenkin terrestrisiä. Vaikka meret kattavat maapallon pinta-alasta yli 70 %, mereisiä hyönteisiä tunnetaan alle 2 000 lajia. Tämän työn tarkoitus on antaa mahdollisimman kokonaisvaltainen käsitys mereisestä hyönteislajistosta, sekä tekijöistä, jotka ovat aiheuttaneet hyönteisten vähäisyyden merissä. Vastaavaa monitahoista katsausta aiheeseen ei ole aiemmin tehty. Katsauksen ensimmäinen tavoite on määritellä ja listata hyönteistaksonit, jotka sisältävät mereisiä lajeja, sekä tarkastella näiden lajien habitaattivalintoja ja elintapoja. Tässä tarkoituksessa mereisten hyönteisten lajikirjo ja elintavat on kartoitettu World Register of Marine Species -tietokannan (WoRMS), sekä mereisiä hyönteisiä käsittelevien yleisteosten, katsausartikkeleiden ja tutkimusartikkeleiden avulla. Pääasiassa WoRMS-tietokannan perusteella mereisiksi on määritelty 1 318 hyönteislajia kymmenestä lahkosta. Näiden lisäksi seitsemästä lahkosta tavataan tuntematon määrä mereisiä lajeja. Lajiston lahkokohtaisen tarkastelun lisäksi työssä käydään läpi mereisten hyönteisten asuttamat elinympäristöt litoraalissa ja pelagiaalissa, ja millaisia sopeumia näissä ympäristöissä eläminen hyönteisiltä vaatii. Katsauksen toinen tavoite on käsitellä mereisten hyönteisten vähäisyyttä ilmiönä. Aiheen pohjustamiseksi lukijalle selvitetään työn alussa miksi ja miten hyönteisten valtava lajirikkaus on syntynyt. Työn loppupuolella siirrytään tarkastelemaan tekijöitä, jotka ovat estäneet vastaavan rikastumisen merissä, kuten osmoottiseen säätelyyn ja hengitysjärjestelmiin liittyvät ongelmat, hyönteisten lisääntymisen ja elinkierron ominaispiirteet, sekä yksinkertaisesti se, että siirtymät fysiologisesti erilaisten habitaattien välillä ovat harvinaisia. Tätä varten käydään läpi myös hyönteisten kehityshistoria, jonka tuloksena lahkon levittäytymistä meriin haittaavat ominaisuudet ovat syntyneet. Pohjimmiltaan mereisten hyönteislajien vähäisyys johtuu siitä, että hyönteiset ovat Pancrustacea-kladin maalle suuntautunut kehityslinja. Vaikka mereisyys on lahkossa poikkeuksellista, ei se ole läheskään ennenkuulumatonta. Mereisiä lajeja on syntynyt monessa hyönteisten kehityslinjassa, ja nämä lajit sopeutuvat ympäristöönsä lukuisin eri tavoin. Hyönteisten levittäytymistä meriin koskevien jatkoselvitysten ja analyysien kannalta mereiset hyönteislajit, sekä niiden elintavat ja sopeumat meriympäristöihin tulisi kartoittaa vielä yksityiskohtaisemmin. Tämä katsaus tarjoaa toivottavasti tulevaisuudessa perustan tarkemmille selvityksille mereisestä hyönteislajistosta, sekä mereisten hyönteisten vähäisyyttä selittävistä tekijöistä. Avainsanat Hyönteiset, Insecta, monimuotoisuus, evoluutio, Halobates, sopeumat, Pancrustacea Ohjaajat Jaanika Blomster, Lauri Kaila Säilytyspaikka Helsingin yliopiston digitaalinen arkisto HELDA Muita tietoja Tiivistelmä suomeksi ja englanniksi Faculty Degree Programme Faculty of Biological and Environmental Sciences Aquatic Sciences Author Aurelia Suvitie Title Insects of marine environments Subject Aquatic sciences Level Month and year Number of pages Master’s degree thesis October 2020 95 +15 Abstract Insects (Insecta) are the most species-rich class of organisms on earth. Due to their vast biodiversity, insects are found in almost every environment. However, approximately 90 % of the over 1 000 000 insect species described are terrestrial. The ocean covers over 70 % of the earths surface, but less than 2 000 marine insect species are known. The purpose of this thesis is to give the reader a comprehensive understanding of marine insect biodiversity and what has caused its sparceness in the seas. Such a multi-faceted review of the topic has not previously been written. The first aim of this review is to catalogue all insect taxons containing marine species, and to examine the habitat choices and ecology of these species. For this purpose, marine insect species have been researched using the World Register of Marine Species (WoRMS) and reference literature, as well as reviews and other articles. Based mostly on WoRMS, the number of marine insect species is determined to be 1 318, divided between 10 insect orders. In addition, seven insect orders are noted to include an unknown number of marine species. As well as examining marine insect biodiversity order-by-order, this work considers the littoral and pelagic habitats in which marine insects live, and the adaptations that are required of insects living in these environments. The second aim of this review is to investigate the lack of insects in marine environments as a phenomenon. The groundwork is laid at the beginning of the review with an examination of why and how insects have diversified so successfully. Later on, possible factors to prevent a similarily successful diversification in marine environments are presented, such as issues with osmoregulation and breathing systems, the typical features of insect reproduction and life cycles, and the fact that transitions between physically contrasting habitats are rare. Pertaining to this the evolutionary history of insects, which has produced the aforementioned features impeding radiation to the seas is also explored. Ultimately insect species in the oceans are few, because insects are a terrestrial evolutionary branch of Pancrustacea. Even though marine habits are uncommon among insects, they are not unheard of. Marine species have emerged in several insect clades and these species have adapted to their environment in numerous ways. For the purposes of further analyses and research on the radiation and biodiversity of marine insects, further surveying of the species and their habits and adaptations is recommended. This work will hopefully offer a point of reference for more detailed future studies and reviews of marine insect biodiversity and the factors that have led to the near-exclusion of insects from the seas. Keywords Insects, Insecta, biodiversity, evolution, Halobates, adaptations, Pancrustacea Supervisors Jaanika Blomster, Lauri Kaila Where deposited Digital Repository of the University of Helsinki HELDA Additional information Abstract in Finnish and English Sisällysluettelo 1 Johdanto 1 1.1 Työn tarkoitus ......................................................................................................... 2 1.2 Menetelmät ja kirjallisuus ....................................................................................... 3 2 Miksi hyönteisiä on niin paljon? 4 2.1 Proksimaattiset tekijät ............................................................................................ 6 2.1.1 Kladin ikä .......................................................................................................... 6 2.1.2 Monimuotoistumisnopeus............................................................................... 7 2.2 Ultimaattiset tekijät ................................................................................................ 8 2.2.1 Morfologiset ominaisuudet ............................................................................. 8 2.2.1.1 Siivet.......................................................................................................... 8 2.2.1.2 Täydellinen muodonvaihdos .................................................................. 10 2.2.1.3 Muut morfologiset ominaisuudet .......................................................... 11 2.2.2 Lajienväliset ja lajinsisäiset vuorovaikutukset ............................................... 12 3 Mereisen hyönteisen ja mereisen habitaatin määrittely 14 3.1 Yleisesti.................................................................................................................. 14 3.2 Mereisen hyönteisen määrittely tässä työssä ...................................................... 16 3.2.1 Pääsääntö ....................................................................................................... 16 3.2.2 Poikkeukset .................................................................................................... 18 4 Mereiset hyönteistaksonit 21 4.1 Siimahäntäiset (Archaeognatha) ........................................................................... 23 4.2 Päivänkorennot (Ephemeroptera) ........................................................................ 24 4.3 Sudenkorennot (Odonata) .................................................................................... 25 4.4 Suorasiipiset (Orthoptera)..................................................................................... 26 4.5 Kummitussirkat (Phasmida) .................................................................................. 27 4.6 Pihtihäntäiset (Dermaptera) ................................................................................. 27 4.7 Torakat ja termiitit (ent. Isoptera ja Blattaria, nyk. Blattodea) ............................ 28 4.8 Jäytiäiset (Psocoptera) .........................................................................................
Recommended publications
  • HELFORD Voluntary Marine Conservation Area Newsletter No
    HELFORD Voluntary Marine Conservation Area Newsletter No. 36 Spring 2008 Visitors to Constantine Choughs © RSPB In little more than 10 years Little Egrets have become well-established, with hundreds of nesting pairs nationwide. The Choughs will take a little longer, but have already raised 32 young on the Lizard peninsula in the first six years – a success rate none of us would have dared to expect. So, for our next trick…. the Cattle Egret? Since November there has been an unprecedented Little egret © D Chapman influx to our shores of these small, warm-weather herons. Once upon a time – a year or two ago, say! – Are we heading for a happy hat-trick of rarities in this the chance of seeing even a single Cattle Egret would corner of Cornwall – a third breeding bird success fetch out every battalion of the Twitchers’ Army. But story? now…. with more than 30 of these beautiful birds in Cornwall quietly feeding all the way from Bude In the last few years we have seen the arrival in or to Buryan, the Cattle Egret-shaped future must look near the Helford of Little Egrets, first to feed and promising. shelter and now to nest; and the re-arrival after more than 50 years’ absence of the county’s totemic Cattle Egrets are easy to differentiate from those Little Chough. Egrets already familiar along our muddy foreshores: Aim: To safeguard the marine life of the Helford River by any appropriate means within its status as a Voluntary Marine Conservation Area, to increase the diversity of its intertidal community and raise awareness of its marine interest and importance.
    [Show full text]
  • Keys to Families of Beetles in America North of Mexico
    816 · Key to Families Keys to Families of Beetles in America North of Mexico by Michael A. Ivie hese keys are specifically designed for North American and, where possible, overly long lists of options, but when nec- taxa and may lead to incorrect identifications of many essary, I have erred on the side of directing the user to a correct Ttaxa from outside this region. They are aimed at the suc- identification. cessful family placement of all beetles in North America north of No key will work on all specimens because of abnormalities Mexico, and as such will not always be simple to use. A key to the of development, poor preservation, previously unknown spe- most common 50% of species in North America would be short cies, sexes or variation, or simple errors in characterization. Fur- and simple to use. However, after an initial learning period, most thermore, with more than 30,000 species to be considered, there coleopterists recognize those groups on sight, and never again are undoubtedly rare forms that escaped my notice and even key them out. It is the odd, the rare and the exceptional that make possibly some common and easily collected species with excep- a complex key necessary, and it is in its ability to correctly place tional characters that I overlooked. While this key should work those taxa that a key is eventually judged. Although these keys for at least 95% of specimens collected and 90% of North Ameri- build on many previous successful efforts, especially those of can species, the specialized collector who delves into unique habi- Crowson (1955), Arnett (1973) and Borror et al.
    [Show full text]
  • Coleoptera) Deposited in the Natural History Museum of Barcelona, Spain
    Arxius de Miscel·lània Zoològica, 12(2014): 13–82 ISSN:Viñolas 1698 & –Masó0476 The collection of type specimens of the family Carabidae (Coleoptera) deposited in the Natural History Museum of Barcelona, Spain A. Viñolas & G. Masó Viñolas, A. & Masó, G., 2014. The collection of type specimens of the family Carabidae (Coleoptera) deposited in the Natural History Museum of Barcelona, Spain. Arxius de Miscel·lània Zoològica, 12: 13–82. Abstract The collection of type specimens of the family Carabidae (Coleoptera) deposited in the Natural History Museum of Barcelona, Spain.— The type collection of the family Carabidae (Coleop- tera) deposited in the Natural History Museum of Barcelona, Spain, has been organised, revised and documented. It contains 430 type specimens belonging to 155 different taxa. Of note are the large number of hypogean species, the species of Cicindelidae from Asenci Codina’s collection, and the species of Harpalinae extracted from Jacques Nègre’s collec- tion. In this paper we provide all the available information related to these type specimens. We therefore provide the following information for each taxon, species or subspecies: the original and current taxonomic status, original citation of type materials, exact transcription of original labels, and preservation condition of specimens. Moreover, the differences between original descriptions and labels are discussed. When a taxonomic change has occurred, the references that examine those changes are included at the end of the taxa description. Key words: Collection type, Coleoptera, Carabidae taxonomic revision family, Ground beetles. Resumen La colección de ejemplares tipo de la familia Carabidae(Coleoptera) depositados en el Museo de Ciencias Naturales de Barcelona, España.— Se ha organizado, revisado y documentado la colección de especímenes tipo de la familia Carabidae (Coleoptera) de- positados en el Museo de Ciencias Naturales de Barcelona.
    [Show full text]
  • Biodiversity Action Plan 2011-2014
    Falkirk Area Biodiversity Action Plan 2011-2014 A NEFORA' If you would like this information in another language, Braille, LARGE PRINT or audio, please call 01324 504863. For more information about this plan and how to get involved in local action for biodiversity contact: The Biodiversity Officer, Falkirk Council, Abbotsford House, David’s Loan, Falkirk FK2 7YZ E-mail: [email protected] www.falkirk.gov.uk/biodiversity Biodiversity is the variety of life. Biodiversity includes the whole range of life - mammals, birds, reptiles, amphibians, fish, invertebrates, plants, trees, fungi and micro-organisms. It includes both common and rare species as well as the genetic diversity within species. Biodiversity also refers to the habitats and ecosystems that support these species. Biodiversity in the Falkirk area includes familiar landscapes such as farmland, woodland, heath, rivers, and estuary, as well as being found in more obscure places such as the bark of a tree, the roof of a house and the land beneath our feet. Biodiversity plays a crucial role in our lives. A healthy and diverse natural environment is vital to our economic, social and spiritual well being, both now and in the future. The last 100 years have seen considerable declines in the numbers and health of many of our wild plants, animals and habitats as human activities place ever-increasing demands on our natural resources. We have a shared responsibility to conserve and enhance our local biodiversity for the good of current and future generations. For more information
    [Show full text]
  • Position Specificity in the Genus Coreomyces (Laboulbeniomycetes, Ascomycota)
    VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 217–228 doi.org/10.3114/fuse.2018.01.09 Position specificity in the genus Coreomyces (Laboulbeniomycetes, Ascomycota) H. Sundberg1*, Å. Kruys2, J. Bergsten3, S. Ekman2 1Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2Museum of Evolution, Uppsala University, Uppsala, Sweden 3Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden *Corresponding author: [email protected] Key words: Abstract: To study position specificity in the insect-parasitic fungal genus Coreomyces (Laboulbeniaceae, Laboulbeniales), Corixidae we sampled corixid hosts (Corixidae, Heteroptera) in southern Scandinavia. We detected Coreomyces thalli in five different DNA positions on the hosts. Thalli from the various positions grouped in four distinct clusters in the resulting gene trees, distinctly Fungi so in the ITS and LSU of the nuclear ribosomal DNA, less so in the SSU of the nuclear ribosomal DNA and the mitochondrial host-specificity ribosomal DNA. Thalli from the left side of abdomen grouped in a single cluster, and so did thalli from the ventral right side. insect Thalli in the mid-ventral position turned out to be a mix of three clades, while thalli growing dorsally grouped with thalli from phylogeny the left and right abdominal clades. The mid-ventral and dorsal positions were found in male hosts only. The position on the left hemelytron was shared by members from two sister clades. Statistical analyses demonstrate a significant positive correlation between clade and position on the host, but also a weak correlation between host sex and clade membership. These results indicate that sex-of-host specificity may be a non-existent extreme in a continuum, where instead weak preferences for one host sex may turn out to be frequent.
    [Show full text]
  • UBC 1978 A6 7 C35.Pdf
    THE INFLUENCE OF TEMPERATURE AND SALINITY ON THE CUTICULAR PERMEABILITY OF SOME CORIXIDAE by SYDNEY GRAHAM CANNINGS B.Sc, University of British Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November, 19 77 © Sydney Graham Cannings, 1977 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ZOOLOGY The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date November 14, 1977 ABSTRACT Most terrestrial, and many aquatic insects are made waterproof by a layer of lipid in or on the epicuticle. At a specific temperature, which is determined by their composition, these lipids undergo a phase .transition which markedly increases the permeability of the integument. The major purpose of this study was to assess the possibility that epicutic.ular wax transition could differ• entially affect the distribution of four species of water boatmen: Cenocorixa bifida hungerfordi Lansbury, Ceno- corixa expleta (Uhler), Cenocorixa blaisdelli. (Hunger- ford) , and Callicorixa vulnerata (Uhler).
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Synopsis of the Heteroptera Or True Bugs of the Galapagos Islands
    Synopsis of the Heteroptera or True Bugs of the Galapagos Islands ' 4k. RICHARD C. JROESCHNE,RD SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 407 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Drought, Dispersal, and Community Dynamics in Arid-Land Streams
    AN ABSTRACT OF THE DISSERTATION OF Michael T. Bogan for the degree of Doctor of Philosophy in Zoology presented on July 10, 2012. Title: Drought, Dispersal, and Community Dynamics in Arid-land Streams Abstract approved: _____________________________________ David A. Lytle Understanding the mechanisms that regulate local species diversity and community structure is a perennial goal of ecology. Local community structure can be viewed as the result of numerous local and regional processes; these processes act as filters that reduce the regional species pool down to the observed local community. In stream ecosystems, the natural flow regime (including the timing, magnitude, and duration of high and low flow events) is widely recognized as a primary regulator of local diversity and community composition. This is especially true in arid- land streams, where low- and zero-flow events can occur frequently and for extended periods of time (months to years). Additionally, wetted habitat patches in arid-land stream networks are often fragmented within and among stream networks. Thus dispersal between isolated aquatic patches may also play a large role in regulating local communities. In my dissertation, I explored the roles that drought, dispersal, and local habitat factors play in structuring arid-land stream communities. I examined the impact of flow permanence and seasonal variation in flow and other abiotic factors on aquatic communities at both fine spatial scales over a long time period (8 years; Chapter 2) and at a broad spatial scale over a shorter time period (1-2 years; Chapter 4). Additionally, I quantified aquatic invertebrate aerial dispersal over moderate spatial scales (≤ 0.5 km) by conducting a colonization experiment using artificial stream pools placed along and inland from two arid-land streams (Chapter 4).
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • A Molecular Phylogeny Shows the Single Origin of the Pyrenean Subterranean Trechini Ground Beetles (Coleoptera: Carabidae)
    Molecular Phylogenetics and Evolution 54 (2010) 97–106 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae) A. Faille a,b,*, I. Ribera b,c, L. Deharveng a, C. Bourdeau d, L. Garnery e, E. Quéinnec f, T. Deuve a a Département Systématique et Evolution, ‘‘Origine, Structure et Evolution de la Biodiversité” (C.P.50, UMR 7202 du CNRS/USM 601), Muséum National d’Histoire Naturelle, Bât. Entomologie, 45 rue Buffon, F-75005 Paris, France b Institut de Biologia Evolutiva (CSIC-UPF), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain c Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 08006 Madrid, Spain d 5 chemin Fournier-Haut, F-31320 Rebigue, France e Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034, Gif-sur-Yvette, France f Unité ‘‘Evolution & Développement”, UMR 7138 ‘‘Systématique, Adaptation, Evolution”, Université P. & M. Curie, 9 quai St–Bernard, F-75005 Paris, France article info abstract Article history: Trechini ground beetles include some of the most spectacular radiations of cave and endogean Coleoptera, Received 16 March 2009 but the origin of the subterranean taxa and their typical morphological adaptations (loss of eyes and Revised 1 October 2009 wings, depigmentation, elongation of body and appendages) have never been studied in a formal phylo- Accepted 5 October 2009 genetic framework. We provide here a molecular phylogeny of the Pyrenean subterranean Trechini based Available online 21 October 2009 on a combination of mitochondrial (cox1, cyb, rrnL, tRNA-Leu, nad1) and nuclear (SSU, LSU) markers of 102 specimens of 90 species.
    [Show full text]