Biology and Immature Stages of Brachydeutera Sturtevanti (Diptera: Ephydridae), a Hyponeustic Generalist

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Immature Stages of Brachydeutera Sturtevanti (Diptera: Ephydridae), a Hyponeustic Generalist ECOLOGY AND POPULATION BIOLOGY Biology and Immature Stages of Brachydeutera sturtevanti (Diptera: Ephydridae), a Hyponeustic Generalist J. B. KEIPER AND W. E. WALTON Department of Entomology, University of California, Riverside, CA 92521 Ann. Entomol. Soc. Am. 93(3): 468Ð475 (2000) ABSTRACT Brachydeutera sturtevanti Wirth is a shore ßy found commonly in a variety of lentic habitats, including ephemeral pools, in the American Southwest and northern Mexico. We con- ducted Þeld studies and laboratory rearings to elucidate the morphology and trophic ecology of this colonizer species important to newly ßooded habitats such as constructed wetlands. The larvae are generally hyponeustic, suspended from the water surface by hydrofuge hairs on the posterior spiracles. All instars exhibit extremely versatile feeding strategies by collecting or scraping algae and detritus from solid substrates, or by bringing their mouthparts to the water surface and creating a vortex to initiate Þlter feeding. The mouthhooks are modiÞed to form dorsoventrally-ßattened plates lined with stout projections that facilitate the versatile larval feeding. The incubation period under laboratory conditions (20Ð22ЊC) was 1Ð4 d; the three stadia lasted 3Ð5 d each while the pupal period was 6Ð8 d. The results of a colonization experiment with 15 liter tubs containing distilled water (controls, C), oligotrophic lake water (L), lake water with a tule extract (T), lake water supple- mented with the green alga Chlamydomonas (A), or lake water with both a tule extract and algae (TA) illustrated the ability of B. sturtevanti to colonize and complete larval development in habitats varying broadly in food quality. Adults were equally attracted to all treatments and each treatment produced equivalent numbers of puparia. The mean dry weight per puparium formed in each treatment showed an increasing trend of tule extract and algae Ͼ A Ͼ T Ͼ L Ͼ C, but dry weights among treatments were statistically equal. These data illustrate the generalist and opportunist nature of B. sturtevanti. The egg, three instars, and puparium are described and illustrated, and a preliminary key to Brachydeutera third instars from North America north of Mexico is given. KEY WORDS Brachydeutera sturtevanti, shore ßies, larval feeding habits, r-strategist, wetlands, keys THE BIOLOGY OF shore ßies (Diptera: Ephydridae) has adventive species from the Oriental region and re- received considerable attention by entomologists and mains unreared; no biological observations have been ecologists; however, the immatures of most species published for this species (Mathis and Steiner 1986). remain unknown. These small ßies exploit many tro- The third instars of B. hebes (Williams 1938), B. phic and spatial niches in aquatic ecosystems, and argentata (Johannsen 1935), and B. neotropica (Liz- although some exhibit specialized feeding or micro- arralde de Grosso 1972) have been described, whereas habitat preferences, larvae of many genera use a broad those of B. longipes and B. sturtevanti have not. No spectrum of resources (Foote 1995, Courtney et al. published information on the morphology of early 1996). The genus Brachydeutera Loew contains 15 instars of Brachydeutera is available. Herein, we give species worldwide (Mathis and Zatwarnicki 1995) and information on the biology and morphology of all is represented by Þve species in North America and immature stages of B. sturtevanti from southern Cal- Hawaii (Williams 1938, Mathis and Steiner 1986). Lar- ifornia. We also present the results of an experiment vae are present in a variety of lentic habitats and that addressed the hypotheses that adults are not se- appear to be trophic generalists. Adults and larvae are lective in their use of water containing different po- found at the water surface, usually among emergent tential larval food sources as breeding sites, and that vegetation. Williams (1938) reared B. hebes Cresson in the mean time until formation of the puparium and Hawaii and reported that larvae scraped materials pupal mass are equal regardless of the food source from dead and living leaves, consumed algal Þlaments, provided to larvae. Species of Brachydeutera appear to and scavenged dead animal tissues. Brachydeutera ar- be important colonizers, and frequently we have ob- gentata (Walker) (Johannsen 1935) and B. neotropica served B. sturtevanti adults and immatures in large Wirth (Lizarralde de Grosso 1972) also exhibit scav- numbers in newly ßooded habitats. Constructed wet- enging habits. Scheiring and Foote (1973) reared B. lands are becoming common in the arid southwestern sturtevanti Wirth on decaying lettuce; the larvae prob- United States (Walton and Workman 1998), and ably obtained most of their nutriment from associated knowledge of the natural history and feeding ecology microorganisms. Brachydeutera longipes Hendel is an of early colonists is important to understanding the 0013-8746/00/0468Ð0475$02.00/0 ᭧ 2000 Entomological Society of America May 2000 KEIPER AND WALTON:BIOLOGY OF B. sturtevanti 469 community structure and ecosystem processes of Dishes were examined daily for larval hatch and sub- these anthropogenic environments. A preliminary key sequent larval development. Larvae were observed to species of Brachydeutera larvae from North America with a dissecting microscope at 6Ð50ϫ with a Þber- north of Mexico is given to provide ecologists a means optics light source at the lowest setting needed for to identify Þeld-collected larvae, and to provide mor- observation to avoid altering larval behavior. Duration phological comparisons among species to shed light on of the incubation period and each stadium was deter- the systematics of the genus. mined by direct observation of eclosion and molts, respectively. Only specimens killed in near boiling water and Materials and Methods Þxed in KahleÕs solution were used for description and Adults were taken in several areas of Riverside illustration. Immature stages were placed in petri County, CA, during this study. Several hundred were dishes of 70% ethanol, and tagged image format com- collected at the Hemet/San Jacinto Multipurpose puter Þles were obtained using a low-light camera Treatment Wetlands, an assemblage of constructed (Optronics Engineering DEI-470; Goleta, CA) at- wetlands supplied with secondary efßuent from a tached to a Wild MZ8 dissecting microscope and Im- nearby sewage treatment plant (Walton and Work- age Pro Plus software for an IBM personal computer. man 1998). Flies were pan trapped (Southwood 1978) Tagged image format Þles were printed and then and swept with an aerial net from around the periph- traced on a light table or used as a reference to facil- ery of stands of tules [Schoenoplectus californicus itate illustration. The cephalopharyngeal skeleton and (Meyer) Soja´k]. Approximately 200 were collected spiracles were dissected from specimens cut in half from the Prado Constructed Wetlands near the city of longitudinally from the breathing tube to the met- Corona; these wetlands were supplied with water di- athoracic segment and placed in 10% KOH overnight. verted from the Santa Ana River. Adults were taken Dissected materials were neutralized with a drop of from stands of tules and cattails (Typha spp.). The glacial acetic acid, and slide mounted with Canada University of California-Riverside Agricultural Exper- balsam. Tagged image format Þles of dissections were iment Station is the location of a diverse array of obtained using the low light camera attached to a shallow mesocosms designed for the study of aquatic compound microscope at 100Ð400ϫ. entomology; adults were taken while resting on the To determine if adults were differentially attracted water surface or positioned on ßoating algal mats. The to newly inundated habitats with different potential last, and the most ephemeral habitat studied, was shal- larval food sources, 25 black plastic tubs (15 liter), low pools at the margins of the Colorado River Aq- each containing 8 liters of water, were arranged ran- ueduct near the city of Whitewater. These pools were domly in Þve rows of Þve at the University of Cali- formed when the level of the aqueduct receded, and fornia-Riverside Agricultural Experiment Station on water puddled in concavities of the rocky shore. 30 April 1999. Each tub was separated by 2 m. Treat- Immatures were usually located by hand at the ments were lake water only (L), lake water with a tule water surface near vertical structures such as emer- extract (T), lake water spiked with a culture of the gent vegetation and along the edges of mesocosms; unicellular green alga Chlamydomonas spp. (Chloro- larvae and pupae were collected with small mesh phyta) (A), tule extract coupled with the Chlamydo- scoops, whereas some specimens were collected with monas inocula, and control tubs (C) containing dis- standard 300-ml dippers during routine sampling for tilled water. Lake water obtained from holding ponds mosquitoes. Eggs were sometimes taken from ßoating on the premises that supported low densities of plank- algal mats where adults were observed to congregate. tonic algae (Ϸ700 cells per milliliter) and was sieved Field-collected immatures were saved for rearing, through a 1-mm mesh to remove large particles. The preserved in the Þeld with 50% ethanol (dips), or tule extract was prepared by adding 90 g of dried S. killed in near boiling water, Þxed in KahleÕs solution, californicus to 20 liters of lake water and left to incu- and preserved in 70% ethanol. Larvae saved for rear- bate at
Recommended publications
  • Two New, Brachypterous Limnellia Species from the Venezuelan Andes (Diptera: Ephydridae)
    Zootaxa 4144 (3): 301–315 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4144.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:B73CFE90-BDF1-47EA-BBD6-52A8DB2B144C Two new, brachypterous Limnellia species from the Venezuelan Andes (Diptera: Ephydridae) DANIEL N. R. COSTA1, MARCOANDRE SAVARIS2, LUCIANE MARINONI2 & WAYNE N. MATHIS 3 1Fellowship of Departamento de Zoologia, Universidade Federal do Paraná, Jardim das Américas, 81531-980 - Curitiba, Paraná, Brazil. E-mail: [email protected] 2Departamento de Zoologia, Universidade Federal do Paraná, Jardim das Américas, 81531-980 - Curitiba, Paraná, Brazil. E-mails: [email protected] and [email protected] 3Department of Entomology, Smithsonian Institution, NHB 169, PO Box 37012, Washington, D.C. 20013-7012, USA. E-mail: [email protected] Abstract Two new, brachypterous species of Limnellia are described from specimens collected in the Venezuelan Andes: L. vounitis (Trujillo: Bocon, La Cristalina (Andes; 09°14.7′N, 70°19.1′W; 2500 m)) and L. flavifrontis (Mérida: Mérida, Sierra Ne- vada National Park (Laguna Negra; 8°47.1'N; 70°48.4'W; 3300 m)). To facilitate identification of these unusual species, we have included a diagnosis of the tribe Scatellini and of the genus Limnellia and have also provided an annotated key to the South American genera of this tribe. The descriptions are supplemented with illustrations, photographs, and scan- ning electron micrographs of external structures and structures of the male terminalia. Key words: Shore flies, Ephydrinae, Scatellini, L. flavifrontis, L.
    [Show full text]
  • Studies of Ephydrinae (Diptera: Ephydridae), IV: Revision of the Australian Species of Subgenus Neoscatella Malloch
    Studies of Ephydrinae (Diptera: Ephydridae), IV: Revision of the Australian Species of Subgenus Neoscatella Malloch WAYNE N. MATHIS and WILLIS W. WIRTH SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 325 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
    Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 02. Oct. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • (Diptera: Ephydridae), I: Revision of the Nearctic Species of Notiphila Fallen, Excluding the Caudata Group
    Studies of Notiphilinae (Diptera: Ephydridae), I: Revision of the Nearctic Species of Notiphila Fallen, Excluding the caudata Group WAYNE N. MATHIS SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 287 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Diptera: Ephydridae) from Brazil
    ZOOLOGIA 31 (6): 561–576, December, 2014 http://dx.doi.org/10.1590/S1984-46702014000600005 A review of Scatellini (Diptera: Ephydridae) from Brazil Wayne N. Mathis1, Luciane Marinoni2 & Daniel N.R. Costa2 1 Department of Entomology, NHB 169, PO Box 37012, Smithsonian Institution, Washington, D.C. 20013-7012, United States. E-mail: [email protected] 2 Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil. E-mail: [email protected]; [email protected] ABSTRACT. Scatellini was proposed by Wirth & Stone, 1956 and currently includes 242 described species in nine genera. The tribe has representatives in all biogeographic regions and about 70 species occur in the Neotropical Region. Prior to this study, only two species were recorded from Brazil: Scatella obscura and Limnellia itatiaia. In this paper, species of Scatellini from Brazil are reviewed with an emphasis on the fauna from southern Brazil, where six new species have been discovered and are described herein: Scatella praia, S. plaumanni, S. rara, Scatophila darrowae, S. dianneae, and S. prainha. To facilitate identification of the tribe and included genera and species, we have included diagnoses of these taxa and have also provided an annotated key to the Neotropical genera in Scatellini. We have also provided illustra- tions of structures of the male terminalia of all included species of the genus Scatophila. KEY WORDS. Neotropical Region; shore flies; taxonomy. In the Neotropical Region, the tribe Scatellini Wirth & MATERIAL AND METHODS Stone, 1956 is biologically diverse (MATHIS & ZATWARNICKI 1995), and many of the included species, perhaps a majority, are The descriptive terminology, with the exceptions noted undescribed.
    [Show full text]
  • Mosquito Management Plan and Environmental Assessment
    DRAFT Mosquito Management Plan and Environmental Assessment for the Great Meadows Unit at the Stewart B. McKinney National Wildlife Refuge Prepared by: ____________________________ Date:_________________________ Refuge Manager Concurrence:___________________________ Date:_________________________ Regional IPM Coordinator Concured:______________________________ Date:_________________________ Project Leader Approved:_____________________________ Date:_________________________ Assistant Regional Director Refuges, Northeast Region Table of Contents Chapter 1 PURPOSE AND NEED FOR PROPOSED ACTION ...................................................................................... 5 1.1 Introduction ....................................................................................................................................................... 5 1.2 Refuge Location and Site Description ............................................................................................................... 5 1.3 Proposed Action ................................................................................................................................................ 7 1.3.1 Purpose and Need for Proposed Action ............................................................................................................ 7 1.3.2 Historical Perspective of Need .......................................................................................................................... 9 1.3.3 Historical Mosquito Production Areas of the Refuge ....................................................................................
    [Show full text]
  • Dipterists Digest: Contents 1988–2021
    Dipterists Digest: contents 1988–2021 Latest update at 12 August 2021. Includes contents for all volumes from Series 1 Volume 1 (1988) to Series 2 Volume 28(2) (2021). For more information go to the Dipterists Forum website where many volumes are available to download. Author/s Year Title Series Volume Family keyword/s EDITOR 2021 Corrections and changes to the Diptera Checklist (46) 2 28 (2): 252 LIAM CROWLEY 2021 Pandivirilia melaleuca (Loew) (Diptera, Therevidae) recorded from 2 28 (2): 250–251 Therevidae Wytham Woods, Oxfordshire ALASTAIR J. HOTCHKISS 2021 Phytomyza sedicola (Hering) (Diptera, Agromyzidae) new to Wales and 2 28 (2): 249–250 Agromyzidae a second British record Owen Lonsdale and Charles S. 2021 What makes a ‘good’ genus? Reconsideration of Chromatomyia Hardy 2 28 (2): 221–249 Agromyzidae Eiseman (Diptera, Agromyzidae) ROBERT J. WOLTON and BENJAMIN 2021 The impact of cattle on the Diptera and other insect fauna of a 2 28 (2): 201–220 FIELD temperate wet woodland BARRY P. WARRINGTON and ADAM 2021 The larval habits of Ophiomyia senecionina Hering (Diptera, 2 28 (2): 195–200 Agromyzidae PARKER Agromyzidae) on common ragwort (Jacobaea vulgaris) stems GRAHAM E. ROTHERAY 2021 The enigmatic head of the cyclorrhaphan larva (Diptera, Cyclorrhapha) 2 28 (2): 178–194 MALCOLM BLYTHE and RICHARD P. 2021 The biting midge Forcipomyia tenuis (Winnertz) (Diptera, 2 28 (2): 175–177 Ceratopogonidae LANE Ceratopogonidae) new to Britain IVAN PERRY 2021 Aphaniosoma melitense Ebejer (Diptera, Chyromyidae) in Essex and 2 28 (2): 173–174 Chyromyidae some recent records of A. socium Collin DAVE BRICE and RYAN MITCHELL 2021 Recent records of Minilimosina secundaria (Duda) (Diptera, 2 28 (2): 171–173 Sphaeroceridae Sphaeroceridae) from Berkshire IAIN MACGOWAN and IAN M.
    [Show full text]
  • Aquatic Insects
    Aquatic Insects (Ephemeroptera, Odonata, Hemiptera, Coleoptera, Trichoptera, Diptera) of Sand Creek Massacre National Historic Site on the Great Plains of Colorado Author(s): Boris C. Kondratieff and Richard S. Durfee Source: Journal of the Kansas Entomological Society, 83(4):322-331. 2010. Published By: Kansas Entomological Society DOI: 10.2317/JKES1002.15.1 URL: http://www.bioone.org/doi/full/10.2317/JKES1002.15.1 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 83(4), 2010, pp. 322–331 Aquatic Insects (Ephemeroptera, Odonata, Hemiptera, Coleoptera, Trichoptera, Diptera) of Sand Creek Massacre National Historic Site on the Great Plains of Colorado 1,2 3 BORIS C. KONDRATIEFF AND RICHARD S. DURFEE ABSTRACT: The Great Plains of Colorado occupies over two-fifths of the state, yet very little is known about the aquatic insects of this area. This paper reports on the aquatic insects found in temporary and permanent pools of Big Sandy Creek within the Sand Creek Massacre National Historic Site, on the Great Plains of Colorado.
    [Show full text]