Performance of Nitrogen Oxides (NOX) Emission Controls at U.S. Power Plants

Total Page:16

File Type:pdf, Size:1020Kb

Performance of Nitrogen Oxides (NOX) Emission Controls at U.S. Power Plants Inquiry into health impacts of air pollution in Victoria Submission 67 - attachment 2 Performance of Nitrogen Oxides (NOX) Emission Controls at U.S. Power Plants A comparison of combustion and post-combustion control technologies for coal-fired power plants Jeremy Schreifels (石智锐) 2008380009 PhD Candidate 80050012 ʹ 能源与环境 贺克斌教授 2008 Winter Ta ble of C onte nt s Abbreviations and Acronyms ......................................................................... i Notes ......................................................................................................... i Introduction ............................................................................................... 1 Health and Environmental Impacts of Nitrogen Oxides .................................... 2 Air Quality Standards for Nitrogen Dioxide and Secondary Pollutants ................ 4 Sources of Nitrogen Oxides Emissions ........................................................... 6 Formation of Nitrogen Oxides Emissions........................................................ 9 Technologies for Reducing or Controlling Nitrogen Oxides ..............................11 Combustion Modification Technologies ....................................................12 Post-Combustion Control Technologies ....................................................18 Emerging and Advanced Control Technologies ..........................................28 Technology Performance and Costs .........................................................29 Bibliography ..............................................................................................31 Abbreviations and Acronyms BOFA boosted over-fire air NH4HSO4 ammonium bisulfate BOOS burner out of service NH3 ammonia Btu British thermal units NO nitric oxide ;ϭƚƵуϭ͘ϬϱϱŐŝŐĂũŽƵůĞƐͿ NO2 nitrogen dioxide - CAA US Clean Air Act NO3 nitrate CCOFA close-coupled over-fire air NOX nitrogen oxides CFB circulating fluidized bed NSPS New Source Performance CO carbon monoxide Standards (US Clean Air Act) EPA US Environmental Protection O3 ozone Agency OFA over-fire air ESP electrostatic precipitator OH hydroxyl radical FGD flue gas desulfurization PM2.5 fine particles (particulate GW gigawatt matter smaller than 2.5 H2SO4 sulfuric acid microns) HCN hydrogen cyanide ROFA rotating opposed fire air HNCO isocyanic acid SCR selective catalytic reduction HNO2 nitrous acid SNCR selective non-catalytic HNO3 nitric acid reduction LNB low-NOX burner SO2 sulfur dioxide - LOI loss-on-ignition SO3 sulfur trioxide MW megawatt SOFA separated over-fire air NAAQS US National Ambient Air UBC unburned carbon Quality Standards US United States NCO isocyanate WHO World Health Organization (NH4)2SO4 ammonium sulfate Notes 1. All monetary figures are in 2007 US dollars unless otherwise noted. Inflators were based on CPI available at http://oregonstate.edu/cla/polisci/faculty- research/sahr/cv2007rsx1.pdf. 2. All measurements are in metric units (i.e., metric tons) unless otherwise noted. 3. NOX emission data ranges (e.g., minimum and maximum) and quartiles for specific coal-fired electric power plants , boiler categories, and control technologies are based on the 5st and 95th percentile unless otherwise noted. This was done to eliminate outliers͕͞ƐƵďƐƚŝƚƵƚĞ͟ĞŵŝƐƐŝŽŶĚĂƚĂƚŚĂƚƉƵƌƉŽƐĞůLJŽǀĞƌĞƐƚŝŵĂƚĞƐĂĐƚƵĂůĞŵŝƐƐŝŽŶƐ͕ start-up and shutdown periods, and out-of-range data. i Introduction Nitrogen oxides (NOX) in the atmosphere contribute to a number of environmental issues that can have significant impacts on human health and the environment. As the science of atmospheric chemistry, air quality management, and epidemiology improves our understanding of the impacts of NOX and secondary pollutants related to NOX, national and local governments are implementing regulations and policies to reduce NOX emissions from key sectors and emission sources. For these regulations to be effective, policymakers must understand the extent of the problem and the potential solutions. The following questions are therefore important to ensure that the problems are resolved efficiently and effectively: x What are the human health and environmental impacts of NOX emissions and secondary pollutants? x What are the pathways by which NOX emissions and secondary pollutants are formed and transported? x What are the sources of NOX emissions that contribute to the problem? x What levels of NOX reductions are necessary to address the human health and environmental challenges? x What technologies and practices are (or will be) commercially available to reduce NOX? x What are the costs of these technologies and practices? x What are the impacts of these technologies and practices on the operations of power plants and industrial facilities? This paper briefly addresses these questions, with an emphasis on assessing the real-world effectiveness of commercially-available NOX emission control technologies in the United States (US). In particular, this paper focuses on combustion modifications and post-combustion NOX control technologies commonly installed at US coal-fired electric power plants. These facilities are the largest stationary sources of NOX emissions in the US and they have more than a decade of experience with advanced NOX controls. This paper is organized into five sections. 1. Health and environmental impacts of NOX explores the human health and environmental effects of nitrogen dioxide (NO2) and secondary pollutants formed from NOX. 2. Air quality standards highlights US national ambient air quality standards for nitrogen dioxide (NO2), fine particles (PM2.5), and ozone (O3) and air quality levels across the US. 3. Source of NOX emissions provides details on NOX emissions from different source categories including coal-fired electric power plants and the policies implemented to control those emissions. 4. Formation of NOX emissions describes the formation of NOX during coal combustion and opportunities for reducing its formation. 5. Technologies for controlling NOX describes primary (i.e., combustion) controls for reducing NOX formation and secondary (i.e., post-combustion) controls for removing NOX from flue gas. Each of these technologies has distinct advantages and disadvantages that are discussed in this paper. The final section also includes case studies demonstrating how three coal-fired electric power plants reduced emissions. The first case study is for a 126 megawatt (MW) plant in New York that installed combustion modifications (low-NOX burners with boosted over-fire air technology) to reduce NOX emissions by 60 percent. The second case study is for a 1,300 MW plant in Florida that upgraded combustion technologies (advanced low-NOX burners with over-fire air technology) to reduce NOX emissions by an additional 35 percent. The final case study is for a 2,600 MW plant in Ohio that installed combustion modifications (low-NOX burners) in combination with post-combustion controls (selective catalytic reduction) to reduce NOX by approximately 90 percent. However, the Ohio plant experienced a number of problems related to the SCR. These problems, and the attempted solutions, are reviewed in the case study. 1 Health and Environmental Impacts of Nitrogen Oxides NOX is a generic term for a group of gases that contain nitrogen and varying amounts of oxygen. While there are a number of different gases that meet this definition1, we are most concerned with nitric oxide (NO) and NO2 ʹ two gases that are emitted in large quantities from fuel combustion. NOX emissions and - secondary pollutants formed from NOX (e.g., O3, nitrate (NO3 ), and acid aerosols) are often transported over long distances, creating regional problems beyond the geographic and political boundaries of the areas where the NOX is emitted. These regional impacts can include the direct health effects of NO2 [1; 2; 3; 4] pollution ʹ NO2 can be a severe respiratory irritant and can lead to premature death ʹ as well as acid deposition, tropospheric ozone, fine particles, eutrophication of waterways, and regional haze. Acid Deposition Acid deposition is the general term for both wet (e.g., rain, snow) and dry deposition of acid particles. In the atmosphere, NOX can oxidize into a variety of compounds that dissolve in water and decompose to 2 form nitric acid (HNO3) or nitrous acid (HNO2). These acid gases and neutralized salts contribute to acid rain. The primary acidic compound ʹ HNO3 ʹ is produced when NO2 reacts with hydroxyl radicals (OH), water, or O3 (see Equations 1, 2, and 3). During daytime conditions, OH and NO2 (Equation 1) are the dominant source of air-phase HNO3. During nighttime conditions, Equation 3 is the dominant source of aqueous- [5 ] phase HNO3. Equation 1: NO2 + OH → HNO3 Equation 2: 3NO2 + H2O → 2HNO3 + NO Equation 3: O3 + NO2 → NO3 + O2 ⇄ N2O5 N2O5 + H2O → 2HNO3 Because it is extremely water soluble, HNO3 rapidly deposits on particles and water droplets in the atmosphere. [5] When these acidic particles or moisture fall to earth they: x Impair waterways; x Damage aquatic ecosystems; x Reduce forest and agricultural productivity; and x Damage paint finishes, buildings, infrastructure, and historical monuments. [5; 6; 7; 8; 9] Tropospheric Ozone Tropospheric ozone, often referred to as ground-level ozone or smog, is a photo-oxidant that is formed when NO2 dissociates in the presence of sunlight (wavelengths shorter than 420 nanometers) and the resulting atomic oxygen reacts with molecular oxygen (see equation 4). [3; 5] Equation 4: NO2 + hv → NO + O O + O2 → O3 O3 can have serious health impacts
Recommended publications
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13374 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-25481-6 Toxicology; National Research Council 356 pages 6 x 9 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • Nitrogen Oxides (Nox), Why and How They Are Controlled
    United States Office of Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use. Copies of this report are available form the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, telephone number (800) 553-6847. CORRECTION NOTICE This document, EPA-456/F-99-006a, corrects errors found in the original document, EPA-456/F-99-006. These corrections are: Page 8, fourth paragraph: “Destruction or Recovery Efficiency” has been changed to “Destruction or Removal Efficiency;” Page 10, Method 2. Reducing Residence Time: This section has been rewritten to correct for an ambiguity in the original text. Page 20, Table 4. Added Selective Non-Catalytic Reduction (SNCR) to the table and added acronyms for other technologies. Page 29, last paragraph: This paragraph has been rewritten to correct an error in stating the configuration of a typical cogeneration facility.
    [Show full text]
  • The Chemistry of Solvated Nitric Oxide
    The Chemistry of Solvated Nitric Oxide: As the Free Radical and as Super-saturated Dinitrogen Trioxide Solutions By Kristopher A. Rosadiuk March, 2015 A thesis submitted to McGill University in partial fulfillment of the requirements in the degree of: DOCTORATE OF PHILOSOPHY Department of Chemistry, Faculty of Science McGill University Montreal, Quebec, Canada © Kristopher Rosadiuk, 2015. Abstract The unusual behaviour of the mid-oxidation state nitrogen oxides, nitric oxide (NO) and dinitrogen trioxide (N2O3), are explored in solution. Nitric oxide is shown to catalyze the cis-trans isomerizations of diazo species in aqueous and organic solutions, and a model is presented by which this proceeds by spin catalysis, making use of the unpaired electron of NO to permit access to triplet patways. Five diazo compounds are tested and compared to stilbene, which is not found to isomerize under these conditions. Dinitrogen trioxide is found to form easily in organic solvents, which stabilize the molecule even above room temperature. Solutions can be formed at chemically useful concentrations and levels of purity, and this result is compared with the sparse literature concerning this phenomenon. The chemistry of these solutions at 0˚C is surveyed extensively, with 23 distinct organic reactions and 15 inorganic reactions being described. The first reported room temperature adduct of dinitrogen trioxide is presented, as well as novel syntheses for nitrosyl chloride and nitrosylsulfuric acid. X-ray structures are also given for a previously reported benzoquinone-phenol adduct, as well as a new mixed valent-mercury nitride salt of the form Hg4N4O9. Résumé Le comportement inhabituel des oxydes d'azote aux états d’oxydations moyens, comme l’oxyde nitrique (NO) et le trioxyde dinitrique (N2O3), est exploré en solution.
    [Show full text]
  • Proposed Adipic Acid Production Protocol
    ADIPIC ACID PRODUCTION PROJECT PROTOCOL Proposed Protocol October 26, 2019 ClimeCo Corporation One E Philadelphia Ave Boyertown, Pennsylvania 19512 (484) 415-0501 climeco.com Adipic Acid Production Project Protocol Prepared by: Bill Flederbach & James Winch, ClimeCo Corporation Version: 2.0 (Proposed Public Protocol) Version Date: 10/26/2019 This proposed protocol, initially developed by ClimeCo Corporation, is for use by the Climate Action Reserve in the development and evaluation process for a standardized offset project protocol reducing N2O emissions from adipic acid production. Contact Information: Bill Flederbach, Jr. ClimeCo Corporation One E Philadelphia Ave, Boyertown, Pennsylvania 19512 (484) 415-0501 [email protected] Tip Stama ClimeCo Corporation One E Philadelphia Ave, Boyertown, Pennsylvania 19512 (484) 415-0501 [email protected] i Adipic Acid Production Project Protocol Table of Contents 1. Introduction .......................................................................................................................................... 2 2. The GHG Reduction Project .................................................................................................................. 3 2.1. Background ............................................................................................................................... 3 2.2. Project Definition ...................................................................................................................... 4 2.3. The Project Developer .............................................................................................................
    [Show full text]
  • III) Carbonate 3. Chromium (IV
    I. Write the chemical formula from the names of inorganic compounds 1. Silver hydroxide 2. Iron (III) carbonate 3. Chromium (IV) nitrate 4. Dinitrogen tetraoxide 5. Ammonium sulfite 6. Gold (III) hydride 7. Bismuth (V) periodate 8. Gallium carbonate 9. Sodium sulfide 10. Cobalt (II) hypochlorite 11. Hydrosulfuric acid 12. Sulfuric acid 13. Tetraphosphorus hexafluoride 14. Calcium nitrate 15. Palladium (IV) phosphate 16. Nickel (III) nitrate 17. Hydrogen sulfide 18. Iodic acid 19. Aluminum bromide 20. Potassium iodide 21. Carbon disulfide 22. Dinitrogen tetroxide 23. Carbon tetrachloride 24. Trisulfur pentoxide 25. Hydroarsenic acid 26. Calcium bromide 27. Zinc sulfide 28. Chromium (II) nitrate 29. Aluminum acetate 30. Barium sulfite 31. Potassium chloride 32. Iron (II) permanganate 33. Hydrofluoric acid 34. Fluorous acid 35. Ammonium nitride 36. Cobalt (II) hypochlorite 37. Barium chloride 38. Lead (II) nitrate 39. Titanium (III) iodide 40. Ammonium hydroxide 41. Potassium chromate 42. Cobalt (II) oxide 43. Magnesium perchlorate 44. Copper (II) sulfate 45. Sodium sulfite 46. Iron (III) chloride 47. Calcium cyanide 48. Copper (II) sulfide 49. Copper (I) sulfide 50. Silver carbonate 51. Cadmium hypochlorite 52. Tin (IV) oxide 53. Sodium carbonate 54. Aluminum acetate 55. Nickel (II) phosphate 56. Barium nitride 57. Nitrogen trihydride 58. Dinitrogen dioxide 59. Carbon disulfide 60. Disulfur heptoxide II. Naming of inorganic compounds from their molecular formula or formula unit 1. K2SO 4 2. NH 4Cl 3. Mg(NO 3)2 4. FeCl 3 5. NaHCO 3 6. NaOH 7. CaO 8. CaCO 3 9. CS 2 10. PCl 3 11. N2O 12. N2O5 13. CO 2 14.
    [Show full text]
  • Dipole Moment of Nitrogen Dioxide and Dinitrogen Dioxide—
    DIPOLE MOMENT OF NITROGEN DIOXIDE AND DINITROGEN DIOXlDE--THE STRUCTURE OF THE DIMER BY S. V. ANANTAKRISHNAN, F.A.Sc. ANI)D. SETU RAO ( Contribution from the Department of Chemistry, Madres Christian College, Tambaram, Madras--45) Received January 13, 1964 THERE have been numerous studies on the properties of these eompounds and there have beon roviows of theso n,L12 but one property that appeared to be out of tuno with the accepted structuro of the dimer is the dielectric constant: 7 It appeared worthwhile studying this aspeet further. A difficulty in the measurements is the ease with which nitrogen dioxide and the dimer form complexes with a variety of otherwise desirablo solvents for these studies. Our measurements have ther•foro been cortfined to solvents with available pi-orbital electrons and to non-donor solvents whieh are non-aromatic. EXPERIMENTAL Solvents.--Benzene was purified by standard methods of chemical treatment and fractional crystallisation, distillod over sodium, allowed to stand over sodium partially meltod and the residuo then stored ovor sodium. p-Xylene was purified by similar methods and fractional crystallisation to constant freezing point was adopted for the final purification. Carbon tetrachloride was purified as in earlier studies frorn these labo- ratories and stored over sticks of potassium hydroxide. Phosphorus pen- toxide was unsuitable as drying agent and we confirm the observations of Smith and Witten ~1 on this. Cyclohexane was puri¡ by the method of Gillam and Stern9, washed froe from acid, treated with diluto pormanganate, dried first over caleium chloride and then over sodium and fractionated? Liquid dinitrogen tetro- xide was prepared from lead nitrate, freed from dissolved oxygon by repeated low pressure distillationTM and stored in sealed tubos.
    [Show full text]
  • Low Nox Reducing the Thermal Nox
    TECHNICAL SERVICE DEPARTMENT Technical Service Bulletin 1-800-432-8373 Low NOx Reducing the Thermal NOx The earth has plentiful air; but the quality of the air depends largely on the amount of industrial wastes and other pollutants (impurities) that people add to the atmosphere. Air pollution is a serious problem in most of the world's big cities. Polluted air harms our health. It also injures plants and animals, damages building materials, and even affects the weather. Rheem is committed to reducing pollutants through our Low NOx programs. Low NOx burners are one of several combustion technologies Rheem Manufacturing Company is using to reduce emissions of Nitrogen Oxides (NOx.). By reducing the flame temperature on the main burner, we can reduce the amount of nitrogen oxides that are created. Let me explain. What is NOx? (pronounced like the animal ox – with an ‘n’ in front) NOx represents a family of seven compounds. The Environmental Protection Agency (EPA) regulates only nitrogen dioxide (NO2) as a surrogate for this family of compounds because it is the most prevalent, human caused form of NOx in the atmosphere. Nitrogen dioxide is not only an important air pollutant by itself, but also reacts in the atmosphere to form ozone (O3) and acid rain. The family of NOx compounds are listed in the table below: Formula Name Properties N2O Nitrous oxide Colorless gas, water soluble NO Nitric oxide Colorless gas, slightly water soluble N2O2 Dinitrogen dioxide N2O3 Dinitrogen trioxide Black solid, water soluble, decomposes in water NO2 Nitrogen dioxide Red-brown gas, very water soluble, decomposes in water N2O4 Dinitrogen tetroxide N2O5 Dinitrogen pentoxide White solid, very water soluble, decomposes in water Nitrogen oxides pollute the air.
    [Show full text]
  • Calibration Gas
    CALIBRATION GAS 2020 Visit our websites: www.gazdetect.com ▸ Online store: www.safetygas.com Visit our websites: www.gazdetect.com Online store: www.safetygas.com Calibration gas cylinders Calibration gas cylinders for bump tests, calibration and periodical checkings of gas detectors Product description GazDetect supplies standard and custom gas mixtures as well as pure gases in a range of lightweight, single-use, aluminum cylinders that are ideal for applications where portability is essential. Gaseous mixtures are mixed gravimetrically by generally applying the ISO6142 standard. Guarantying precision, optimum stability and maximum shelf life. These gaseous mixtures are mainly used for checkings and calibrations of gas detectors (fixed or portable) and other instru- ments : • Combustible gas detection • Toxic gas detection • Refrigerant gas detection • Breathalyzers and Ethanol • Gas chromatography Technical specifications • Analysis of agro-food atmospheres • Medical gas analysis • Wide range of standard or custom mixtures • Environmental monitoring • Gravimetric mixing for maximum accuracy • Standards (ISO 6142) and European legislation compliant The available offer covers a complete range from simple LEL cylinders. binary blends to complex and multiple lab mixtures with very low • From 6 to 60 months mixture stability (depending on gases) ppm levels.. Analysis certificated automatically provided • We have a large stock of the most common mixtures (especially • Portable, convenient and easy to use those associated with gas detection
    [Show full text]
  • Contents 11/29 Molecular Constants
    Contents 11/29 Molecular Constants Subvolume D3 1 General Introduction 1 1.1 General remarks 1 1.2 Review articles and tables 1 1.3 Arrangement of tables, substances and parameters 1 1.4 Error notation 2 1.5 Selection of data 3 1.6 Abbreviations used for experimental methods 3 1.7 Selected fundamental constants and conversion factors 3 1.8 References for 1 5 2 Asymmetric Top Molecules: Introduction 6 2.1 Rotational parameters 6 2.1.1 Defining equations 6 2.1.2 List of tabulated rotational parameters 10 2.1.3 References for 2.1 12 2.2. Hyperfine coupling constants 13 2.2.1 Quadrupole coupling constants, defining equations 13 2.2.2 Magnetic-interaction constants, defining equations 15 2.2.3 List of tabulated asymmetric-top hfs parameters 20 2.2.4 References for 2.2 21 2.3 Internal rotation 23 2.3.1 Defining equations 23 2.3.2 List of tabulated internal-rotation parameters 26 2.3.3 Conversion factors 28 2.3.4 References for 2.3 28 2.4 Symmetric top electric dipole moments 29 2.4.1 References for 2.4 29 2.5 External field magnetic interaction parameters 30 2.5.1 Defining equations 30 2.5.2 List of tabulated asymmetric-top external-magnetic-field parameters 30 2.5.3 References for 2.5 30 3 Data (J. DEMAISON, J. VOGT) 31 581 C6HN 2-(Cyanoethynyl)-2-cyclopropen-l-ylidene 31 582 C6H2 l,2,3-Hexatrien-5-yn-l-ylidene 32 583 C6H2 1,2,3,4,5-Hexapentaenylidene 33 584 C6H2S 1,2,3,4,5-Hexapentaene-l-thione 34 585 C6H3ArF3 1,2,3-Trifluorobenzene-argon (1/1) 35 586 C6H4 (3Z)-3-Hexene-l,5-diyne 36 587 C6H4 l-Hexene-3,5-diyne 38 588 C6H4 l,3-Cydohexadien-5-yne
    [Show full text]
  • Equilibrium and Transport Properties of CO2+N2O and CO2+NO Mixtures : a Molecular Simulation and Equation of State Modelling Study
    Equilibrium and transport properties of CO2+N2O and CO2+NO mixtures : a molecular simulation and equation of state modelling study. V. Lachet, B. Creton, T. de Bruin, E. Bourasseau, Nicolas Desbiens, O. Wilhelmsen, M. Hammer To cite this version: V. Lachet, B. Creton, T. de Bruin, E. Bourasseau, Nicolas Desbiens, et al.. Equilibrium and trans- port properties of CO2+N2O and CO2+NO mixtures : a molecular simulation and equation of state modelling study.. Fluid Phase Equilibria, Elsevier, 2012, 322, pp.66-78. 10.1016/j.fluid.2012.03.011. hal-00681797 HAL Id: hal-00681797 https://hal-ifp.archives-ouvertes.fr/hal-00681797 Submitted on 22 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Equilibrium and transport properties of CO 2+N2O and CO 2+NO mixtures. A molecular simulation and equation of state modelling study. V. Lachet a,*, B. Creton a, T. de Bruin a, E. Bourasseau b, N. Desbiensb, Ø. Wilhelmsen c, M. Hammer c a IFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852 Rueil-Malmaison, France b CEA, DAM, DIF, F-91297 Arpajon, France c SINTEF Energy Research, Kolbjørn Hejes vei 1A, 7465 Trondheim, Norway Abstract In the present study, the thermodynamic behaviour and transport properties of CO 2+N2O and CO 2+NO mixtures have been investigated using molecular simulation and equation of state modelling.
    [Show full text]
  • Common Cations, Anions, Acids, Salts and Hydrate Nomenclature
    Common Cations, Anions, Acids, Salts and Hydrate Nomenclature Cations (positive ions) Anions (negative ions) Acids (H+ and anion) H+ Hydrogen ion (proton) H– Hydride ion + – NH4 Ammonium ion F Fluoride ion…………………………………… … HF Hydrofluoric acid Main Group Ions Cl – Chloride ion…………………………………… … HCl Hydrochloric acid Li+ Lithium ion Br – Bromide ion…………………………………… … HBr Hydrobromic acid Na+ Sodium ion I – Iodide ion …………………………………… … HI Hydroiodic acid K+ Potassium ion O2– Oxide ion Rb+ Rubidium ion OH– Hydroxide ion + 2– Cs Cesium ion O2 Peroxide ion 2+ 2– Be Beryllium ion S Sulfide ion …………………………………… … H2S Hydrosulfuric acid Mg2 Magnesium ion HS– Hydrogen sulfide ion Ca2+ Calcium ion Se2– Selenide Ion Sr2+ Strontium ion N3– Nitride ion 2+ – Ba Barium ion N3 Azide ion AI3+ Aluminum ion P3– Phosphide ion Sn2+ Tin(II) (stannous) ion As3- Arsinide ion Sn4+ Tin(IV) (stannic) ion C4– Carbide ion Pb2+ Lead(II) (plumbous) ion CN– Cyanide ion…………………………………… … HCN Hydrocyanic Acid Pb4+ Lead(IV) (plumbic) ion Oxoanions Oxoacids 3+ – Sb Antimony(III) (antimonous) ion CIO1 Hypochlorite ion……………………………… … HCIO Hypochlorous acid 5+ – Sb Antimony(V) (antimonic) ion CIO2 Chlorite ion…………………………………… … HCIO2 Chlorous acid 3+ – Bi Bismuth(III) (bismuthous) ion CIO3 Chlorate ion…………………………………… … HCIO3 Chloric acid 5+ – Bi Bismuth(V) (bismuthic) ion ClO4 Perchlorate ion ……………………………… … HClO4 Perchloric acid 2– Transition metal ions SO3 Sulfite ion……………………………………… … H2SO3 Sulfurous acid 2+ 2– Cr Chromium(II) (chromous) ion SO4 Sulfate ion …………………………………… … H2SO4 Sulfuric
    [Show full text]
  • Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: a Review
    polymers Review Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review Carolina Gutierrez Cisneros 1 , Veerle Bloemen 1,2 and Arn Mignon 1,* 1 Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; [email protected] (C.G.C.); [email protected] (V.B.) 2 Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium * Correspondence: [email protected] Abstract: Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiolog- ical processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications— infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective Citation: Gutierrez Cisneros, C.; is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer Bloemen, V.; Mignon, A.
    [Show full text]