Estimating Janka Hardness from Specific Gravity for Tropical and Temperate Species

Total Page:16

File Type:pdf, Size:1020Kb

Estimating Janka Hardness from Specific Gravity for Tropical and Temperate Species United States Department of Agriculture Estimating Janka Forest Service Forest Hardness from Speci¿ c Products Laboratory Gravity for Tropical and Research Paper FPL-RP-643 Temperate Species Michael C. Wiemann David W. Green Abstract Contents Using mean values for basic (green) specific gravity and Page Janka side hardness for individual species obtained from Executive Summary ............................................................. i the world literature, regression equations were developed to predict side hardness from specific gravity. Statistical Introduction .......................................................................... 1 and graphical methods showed that the hardness–specific Background .......................................................................... 1 gravity relationship is the same for tropical and temperate Materials and Methods .........................................................2 hardwoods, but that the relationship for softwoods is dif- ferent from that for hardwoods. As expected, the relation- Specific Gravity and Hardness Definitions .....................2 ship for green wood is different from that for wood at 12% Data Sources ................................................................... 3 moisture content. Separation of Data into Groupings ................................. 3 Keywords: Janka hardness, specific gravity, temperate Selection of Model Form ................................................. 3 hardwoods, tropical hardwoods, softwoods Data Analysis ................................................................... 4 Acknowledgments Results .................................................................................. 4 Funding for this study was provided by the Forest Products Development of Predictive Equations ............................ 4 Laboratory. The authors are grateful for the reviews of Matt Adequacy of the Fit .........................................................7 Myers (Armstrong World Industries), James P. Armstrong (West Virginia University), and David E. Kretschmann Discussion ............................................................................ 8 (Forest Products Laboratory). Modeling Property–Specific Gravity Relationships ....... 8 Predictive Equations Based on Specific Gravity at 12% MC ...................................................................... 9 Effect of MC on Hardness ............................................ 10 Conclusions ........................................................................ 11 Literature Cited .................................................................. 11 Appendix 1—Specific Gravity, Side Hardness, Number of Trees Sampled, and Sources of Data for Species Used to Derive Equations (1) to (8) ............................................ 14 Appendix 2—Specific Gravity, Side Hardness, and Sources of Data for Species Not Used in the Derivations September 2007 of the Equations ................................................................. 20 Appendix 3—Meyer hardness (H ) as a function of MC Wiemann, Michael C.; Green, David W. 2007. Estimating Janka hardness M from speci¿ c gravity for tropical and temperate species. Research Paper (Sekiya 1936) .....................................................................21 FPL-RP-643. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 21 p. A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726–2398. This publication is also available online at www.fpl.fs.fed.us. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere. The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. The use of trade or ¿ rm names in this publication is for reader information and does not imply endorsement by the United States Department of Agriculture (USDA) of any product or service. The USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orienta- tion, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program informa- tion (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To ¿ le a complaint of discrimi- nation, write to USDA, Director, Of¿ ce of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer. Executive Summary Discussion Background The equations for hardness at 12% MC given above differ from those historically used in the Wood Handbook. The There is increasing interest in using species from foreign Wood Handbook equations relating hardness to speci¿ c origins, especially tropical hardwoods, for À ooring. The gravity for dry wood have traditionally been based on hard- Wood Handbook (FPL 1999) contains side hardness values ness and speci¿ c gravity determined at 12% MC (G .) The obtained by the Janka test procedure for most domestic spe- 12 equations for dry lumber given above are based on hardness cies and for almost 80 species commonly imported into the at 12% MC and speci¿ c gravity when green. These equa- United States from countries other than Canada. However, tions may be converted to the G form using adjustment there are beginning to be more requests for hardness values 12 procedures given in ASTM D 2395-02 (2006). Using these for foreign species for which we do not have Janka hardness adjustments, Equations (5b) and (8b) become results. The Wood Handbook also has equations that can be used to estimate Janka hardness from speci¿ c gravity. These 12% hardness, temperate softwoods equations were derived from data on domestic species and H(lbf) = 2,560(G12/(1+0.162G12)) do not contain species with speci¿ c gravity values as high as 12% hardness, all hardwoods those of many tropical hardwoods. H(lbf) = 4,090(G12/(1+0.162G12)) Objective where H is given in pounds force and G12 is speci¿ c gravity The objective of this study was to develop equations relating based on ovendry weight and volume at 12% MC. Janka hardness to speci¿ c gravity for both temperate and tropical hardwoods and temperate softwoods. Conclusions Materials and Methods 1. The variability (range and standard deviation) of spe- ci¿ c gravity for temperate softwoods is less than that of Basic speci¿ c gravity, also called green speci¿ c gravity temperate hardwoods and much less than that of tropical (Gg), is the ovendry weight of a sample divided by the hardwoods. weight of water displaced by the sample’s green volume. 2. The hardness of dry wood is greater than that of green Because it is calculated from the maximum volume and wood. For temperate softwoods, this increase is about minimum weight, the speci¿ c gravity is less variable than 43%; for temperate hardwoods, it is about 31%; and for speci¿ c gravity values calculated using the weight of dis- tropical hardwoods, it is about 26%. placed water at other moisture contents (MCs). Data on the 3. For both green and dry wood, the relationship between mean side hardness and mean Gg for 237 hardwood and 47 hardness and speci¿ c gravity of temperate softwoods is softwood species was taken from the Wood Handbook and different from that of hardwoods. other world literature (Appendix 1). Power models of the 4. For both green and dry wood, the relationship between b form Hardness = a(Gg) were ¿ t to these data. hardness and speci¿ c gravity of temperate hardwoods Results does not differ from that of tropical hardwoods. Thus the The side hardness–speci¿ c gravity relationships determined recommended estimation equations are Equations (1b) in this study are as follows. (Equation numbers are the same and (4b) for green wood and Equations (5b) and (8b) for as those given in the text; the suf¿ x “b” indicates the coef- wood at 12% MC. ¿ cient is for pounds force (lbf) rather than newtons (N).) Green hardness, temperate softwoods 1.50 2 H(lbf) = 1,560(Gg) r = 0.70 (1b) Green hardness, temperate hardwoods 2.17 2 H(lbf) = 3,500(Gg) r = 0.91 (2b) Green hardness, tropical hardwoods 1.91 2 H(lbf) = 3,000(Gg) r = 0.90 (3b) Green hardness, all hardwoods 1.96 2 H(lbf) = 3,060(Gg) r = 0.90 (4b) 12% hardness, temperate softwoods 1.65 2 H(lbf) = 2,560(Gg) r = 0.73 (5b) 12% hardness, temperate hardwoods 2.14 2 H(lbf) = 4,470(Gg) r = 0.91 (6b) 12% hardness, tropical hardwoods 2.06 2 H(lbf) = 4,040(Gg) r = 0.94 (7b) 12% hardness, all hardwoods 2.05 2 H(lbf) = 4,090(Gg) r = 0.93 (8b) Estimating Janka Hardness from Specific Gravity for Tropical and Temperate Species Michael C. Wiemann, Botanist David W. Green, Research Engineer Emeritus Forest Products Laboratory, Madison, Wisconsin Introduction In the United States, Janka hardness (ASTM D 143-94 (ASTM 2006)) was initially used as a minimally destruc- tive test for estimating the strength and stiffness properties of wood (Green et al. 2006). Currently side hardness, de- termined using the Janka test, is a primary method used to assess the suitability of wood species for use as residential and commercial À ooring. The Wood Handbook
Recommended publications
  • Special Edition
    www.bearing-news.com SPECIAL EDITION ISSUE 202018 • P918438 BEARING INDUSTRY MAGAZINE SKF EITAN VESELY BEARINGS FOR THE FOOD & BEVERAGE INDUSTRY [email protected] or +44 (0) 1227 793 334 In our industry, the highest standard we can achieve for our Quality Management System is the ISO 9001 certification - awarded by TUV Rheinland. It is the global benchmark that guarantees a total focus on customer service and continual improvement. www.zen.biz All at ZEN Group Wish You Merry Christmas and a Happy New Year ! Online BEARING EXPO & B2B MEETINGS in 2021 Publisher Together with this new special edition of the interview that highlights the current technological BEARINGNEWS COMMV BearingNEWS magazine, I am pleased to announce the level and where the bearing industry is heading to. Camille Huysmanslaan 27/15 online BEARING EXPO & B2B MEETINGS event 2020 Antwerpen - BELGIUM on 15 – 17 March 2021. BEARING EXPO & B2B Mergers & Acquisitions MEETINGS is a unique chance and perfect opportunity More than ever before, small, and medium size Phone : +32 (0)489 32 85 21 Fax : +32 (0)3 303 52 82 to catch the moment and expand bearing and power bearing, and power transmission companies E-mail : [email protected] transmission companies digital presence worldwide are willing to move into strategic mergers and Web : www.bearing-news.com through this first ever, top tier online organization. long-term partnerships. An overview of M&A projects and specific acquisition searches by ICT Do not let the travel restrictions thwart your product Advisory Division can be read on page 40-41.
    [Show full text]
  • CHERRY Training Systems
    PNW 667 CHERRY training systems L. Long, G. Lang, S. Musacchi, M. Whiting A Pacific Northwest Extension Publication OREGON STATE UNIVERSITY n WASHINGTON STATE UNIVERSITY n UNIVERSITY OF IDAHO in cooperation with MICHIGAN STATE UNIVERSITY CHERRY training systems Contents Understanding the Natural Tree....................................................................................................................................................... 3 Training System Options.......................................................................................................................................................................... 4 Rootstock Options.......................................................................................................................................................................................... 5 Pruning and Training Techniques.....................................................................................................................................................5 Kym Green Bush............................................................................................................................................................................................ 10 Spanish Bush.....................................................................................................................................................................................................18 Steep Leader......................................................................................................................................................................................................25
    [Show full text]
  • 93 47. Hymenaea Courbaril L
    47. Hymenaea courbaril L. - loksi var. courbaril 47a. Hymenaea oblongifolia Huber var. davisii (Sandw. Lee & Langenh.) Synonym (47) : Hymenaea davisii Sandw. Family : Leguminosae (Caesalpinioideae) Vernacular names Suriname : Rediloksi / Rode lokus Guyana : Locust / Kawanari / Moire / Stinking toe French Guiana : Courbaril / Loka Bolivia : Algarbobo Brazil : Jatoba / Copal / Copinol / Jutai Colombia : Algarrobo Venezuela : Jatahv / Algarrobo Peru : Azucar-huayo International trade name : Courbaril, Jatoba Occurrence : Suriname, Guianas, Brazil, Venezuela, Colombia, Central America Tree description Bole length : bole 18 - 24 m: tree height 30 - 45 m Diameter : 0.50 – 1.50 m Log shape : straight, cylindrical; tree base swollen or buttressed Wood description Sapwood : distinct, whitish to cream white Heartwood : orange brown with dark veins or light brown to purplish brown Grain : generally straight, sometimes interlocked Texture : fine to moderately coarse Technological characteristics Physical properties (47) H. courbaril Green density (g/cm3): 1.10 Air dry density at 12% MC (g/cm3): 0.87 Total tangential shrinkage (%) : 8.5 Total radial shrinkage (%) : 4.4 Total volumetric shrinkage (%) : 12.6 93 Mechanical properties (47) H. courbaril Bending strength at 12% MC (N/mm2): 173 Modulus of elasticity (MOE) at 12% MC (N/mm2): 19800 Crushing strength at 12% MC (N/mm2): 98 Processing Sawing : difficult, power required; blunting effect: moderate Drying : slow drying recommended; difficult to air-season; US Kiln schedule T3 – C2 for 25-38 mm and T3 – C1 for 50 mm stock Machining : special tools recommended Gluing : good in dry and interior condition Nailing : pre-boring necessary Finishing : good Veneering : slices well; peeling difficult due to hardness Natural durability Decay fungi : moderate to very good Termites : very good Marine borers : moderate Treatability (heartwood) : poor End uses : exterior and interior joinery, marine constructions, high grade furniture and cabinet work, flooring, stairs, decorative veneer and fittings, turnery, arched articles.
    [Show full text]
  • Properties of Western Larch and Their Relation to Uses of the Wood
    TECHNICAL BULLETIN NO. 285 MARCH, 1932 PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD BY R. P. A. JOHNSON Engineer, Forest Products Laboratory AND M. I. BRADNER In Charge^ Office of Forest Products y Region I Branch of Research, Forest Service UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. TECHNICAL BULLETIN NO. 285 MARCH, 1932 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD By R. P. A. JOHNSON, Engineer, Forest Products Laboratory^^ and M. I. BRADNER, in Charge, Office of Forest Products, Region 1, Branch of Research, Forest Service * CONTENTS Page Page Introduction 1 Mechanical and physical properties—Con. The larch-fir mixture 2 Resistance to decay, weathering, and Character and range of the western larch insects 39 forest __ 4 Reaction to preservative treatment 42 Occurrence 4 Heat and insulating properties 42 Character 4 Permeability by liquids 42 Size of stand 7 Tendency to impart odor or ñavor___:. _. 43 Cut and supply 9 Tendency to leach or exude extractives. _ 43 Merchandising practices 10 Chemical properties 43 distribution lO Fire resistance ., 43 Percentage of cut going into various lum- Characteristic defects of western larch 44 ber items 12 Natural defects 44 Descriptive properties of western larch 13 Seasoning defects 46 General description of the wood 13 Manufacturing defects 47 Heartwood content of lumber 13 Grades and their characteristics 47 Growth rings 14 Grade yield and production 48 Summer-wood content 14 Heartwood content 50 Figure. 14 Width of rings 50 How to distinguish western larch from other Grade descriptions .
    [Show full text]
  • CITES Appendix II
    PC20 Inf. 7 Annex 9 INTRODUCTION TO CITES AND AGARWOOD OVERVIEW Asian Regional Workshop on Agarwood; 22-24 November 2011 By Milena Sosa Schmidt, CITES Secretariat: [email protected] A bit of history Several genera from the family Thymeleaceae are agarwood producing taxa. These are: Aquilaria, Enkleia, Aetoxylon, Gonystylus, Wikstroemia, Gyrinops. They produce different qualities of agarwood from which Aquilaria seems to be the best (see Indonesia report of 2003). From these six genera we have currently three listed on CITES Appendix II. The history of these listings is as follows: THYMELAEACEAE (AQUILARIACEAE) (E) Agarwood, ramin; (S) Madera de Agar, ramin; (F) Bois d'Agar, ramin Aquilaria spp. II 12/01/05 #1CoP13 II/r AE 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r KW 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r QA 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r SY 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 Aquilaria malaccensis II 16/02/95 #1CoP9 II 12/01/05 Included in Aquilaria spp. Incluida en Aquilaria spp. Inclus dans Aquilaria spp. Gonystylus spp. III ID 06/08/01 #1CoP11 III/r MY 17/08/01 II 12/01/05 #1CoP13 II/r MY 12/01/05 II/w MY 07/06/05 II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 Gyrinops spp. II 12/01/05 #1CoP13 II/r AE 12/01/05 II/r KW 12/01/05 II/r QA 12/01/05 II/r SY 12/01/05 II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 The current annotation for these taxa is #4 and reads: All parts and derivatives, except: 1 PC20 Inf.
    [Show full text]
  • Seasoning and Handling of Ramin1
    U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY MADISON,WIS. In Cooperation with the University of Wisconsin U. S. FOREST SERVICE RESEARCH NOTE FPL- 0172 SEPTEMBER 1967 SEASONING AND HANDLING OF RAMIN1 By JOHN M. McMILLEN, Technologist Forest Products Laboratory, Forest Service U.S. Department of Agriculture Abstract One of the imported woods that is finding increasing use for specific purposes is ramin (Gonystylus spp.). It originates in the Southwest Pacific and has seasoning properties somewhat like oak. Many importers, custom dryers, and users are not aware of the special seasoning and handling requirements of this wood. As a result, some firms have experienced heavy losses. This note brings together suggestions that should greatly reduce or eliminate these losses. Ramin--Production and Properties Ramin (pronounced ray-min) is the common name used in the United States for wood from Gonystylus spp., principally G. bancanus growing in Sarawak, Malaysia. Another common name used in Malaya is melawis. The trees grow 1 Partly based on information from experienced importers, custom dryers, and users of ramin. in fresh water swamp forests and have straight, clean boles averaging 60 feet long and 2 feet in diameter near the base. Principal sources are the river valleys of Sarawak and the west coast of Malaya. In the Philippines, G. macrophyllus is common in the primary forests. An undetermined species is fairly comon in the Solomon Islands, Ramin is an attractive, high-class utility hardwood having about the same weight as sycamore or paper birch. Both the sapwood and the heartwood are white to pale straw in color.
    [Show full text]
  • Purpleheart Tree PREZ SEYZ 2
    FEBRUARY 2019 What’s Inside PREZ SEYZ Page 2 GALLERY OF BOWLS Page 4 TEN HARDEST WOODS Page 12 USE OF SPACER BLOCKS WITH PENS Page 15 PEN WOOD OF MONTH Page 18 Purpleheart Tree PREZ SEYZ 2 Hey woodturners, How you doing? What can I say, just keep shoveling! So much for a mild win- ter. As most of you are aware, the February meeting was canceled because of weath- er. If you didn't get the email notice, I apologize. It may have gone out on an older mailing list. So that being a situa- tion, if you need to send info out to club members, make sure you have the latest list. You can get it from Randy. If you have bowls yet for "Feed My People " please contact me at [email protected] and I will get them from you. Each of you who are signed up to do a demo at a club meeting, please just move your demo forward one month. If that can't work, let me know. We are always looking for new ideas for demos for club meetings. If you would like a demonstration on a given area of wood turning, let me know and we will try to get in in the schedule. For those of you who like to turn natural edge bowls, now is the time to cut the trees before the sap starts to flow. The bark is less likely to loosen. Obviously because on no meeting this month our letter will be somewhat shorter. I give Tom credit for his creativity in making it informative, Thanks Tom ! Well again as Bugs Bunny sez, "That's all folks" Prez Duane.
    [Show full text]
  • Wood Identification and Chemistry' Covers the Physicalproperties and Structural Features of Hardwoods and Softwoods
    11 DOCUMENT RESUME ED 031 555 VT 007 853 Woodworking Technology. San Diego State Coll., Calif. Dept. of Industrial Arts. Spons Agency-Office of Education (DHEA Washington, D.C. Pub Date Aug 68 Note-252p.; Materials developed at NDEA Inst. for Advanced Studyin Industrial Arts (San Diego, June 24 -Au9ust 2, 1968). EDRS Price MF -$1.00 He -$13.20 Descriptors-Curriculum Development, *Industrial Arts, Instructional Materials, Learning Activities, Lesson Plans, Lumber Industry, Resource Materials, *Resource Units, Summer Institutes, Teaching Codes, *Units of Study (Sublect Fields), *Woodworking Identifiers-*National Defense Education Act TitleXIInstitute, NDEA TitleXIInstitute, Woodworking Technology SIX teaching units which were developed by the 24 institute participantsare given. "Wood Identification and Chemistry' covers the physicalproperties and structural features of hardwoods and softwoods. "Seasoning" explainsair drying, kiln drying, and seven special lumber seasoning processes. "Researchon Laminates" describes the bending of solid wood and wood laminates, beam lamination, lamination adhesives,. andplasticlaminates."Particleboard:ATeachingUnitexplains particleboard manufacturing and the several classes of particleboard and theiruses. "Lumber Merchandising" outhnes lumber grades andsome wood byproducts. "A Teaching Unitin Physical Testing of Joints, Finishes, Adhesives, and Fasterners" describes tests of four common edge pints, finishes, wood adhesives, and wood screws Each of these units includes a bibhography, glossary, and student exercises (EM) M 55, ...k.",z<ONR; z _: , , . "'zr ss\ ss s:Ts s , s' !, , , , zs "" z' s: - 55 Ts 5. , -5, 5,5 . 5, :5,5, s s``s ss ' ,,, 4 ;.< ,s ssA 11111.116; \ ss s, : , \s, s's \ , , 's's \ sz z, ;.:4 1;y: SS lza'itVs."4,z ...':',\\Z'z.,'I,,\ "t"-...,,, `,.
    [Show full text]
  • Guaiacum Sanctum: Lignum Vitae1 Edward F
    ENH445 Guaiacum sanctum: Lignum Vitae1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction Uses: tree lawn 3–4 feet wide; tree lawn 4–6 feet wide; tree lawn > 6 ft wide; sidewalk cutout (tree pit); parking lot Lignum vitae is an extremely slow-growing broadleaf island < 100 sq ft; parking lot island 100–200 sq ft; parking evergreen which ultimately reaches 30 feet in height and lot island > 200 sq ft; container or planter; specimen; deck casts light shade, but few people have seen plants of this or patio; Bonsai; highway median size because it is not grown in the trade. Most are seen 8 to 12 feet tall with a beautiful array of multiple trunks and a rounded canopy much like that of a mature crape-myrtle. The one to two-inch-long, leathery, dark green leaves are joined at many times throughout the year by the production of large clusters of bluish purple flowers, the old flowers fading to a light silvery-blue and creating a shimmering haze over the rounded canopy. These flowers are followed by small, heart-shaped, yellow orange berries, appearing on the tree at the same time as the bluish purple flowers and creating a lovely sight. General Information Figure 1. Full Form—Guaiacum sanctum: Lignum vitae Scientific name: Guaiacum sanctum Description Pronunciation: GWY-uh-kum SANK-tum Height: 10 to 30 feet Common name(s): Lignum vitae, holywood, tree of life Spread: 8 to 12 feet Family: Zygophyllaceae Crown uniformity: symmetrical USDA hardiness zones: 10B through 11 (Figure 2) Crown shape: round, vase Origin: native to Florida, the West Indies, Mexico, and Crown density: dense Central America Growth rate: slow UF/IFAS Invasive Assessment Status: native Texture: fine 1.
    [Show full text]
  • Douglasfirdouglasfirfacts About
    DouglasFirDouglasFirfacts about Douglas Fir, a distinctive North American tree growing in all states from the Rocky Mountains to the Pacific Ocean, is probably used for more Beams and Stringers as well as Posts and Timber grades include lumber and lumber product purposes than any other individual species Select Structural, Construction, Standard and Utility. Light Framing grown on the American Continent. lumber is divided into Select Structural, Construction, Standard, The total Douglas Fir sawtimber stand in the Western Woods Region is Utility, Economy, 1500f Industrial, and 1200f Industrial grades, estimated at 609 billion board feet. Douglas Fir lumber is used for all giving the user a broad selection from which to choose. purposes to which lumber is normally put - for residential building, light Factory lumber is graded according to the rules for all species, and and heavy construction, woodwork, boxes and crates, industrial usage, separated into Factory Select, No. 1 Shop, No. 2 Shop and No. 3 poles, ties and in the manufacture of specialty products. It is one of the Shop in 5/4 and thicker and into Inch Factory Select and No. 1 and volume woods of the Western Woods Region. No. 2 Shop in 4/4. Distribution Botanical Classification In the Western Douglas Fir is manufactured by a large number of Western Woods Douglas Fir was discovered and classified by botanist David Douglas in Woods Region, Region sawmills and is widely distributed throughout the United 1826. Botanically, it is not a true fir but a species distinct in itself known Douglas Fir trees States and foreign countries. Obtainable in straight car lots, it can as Pseudotsuga taxifolia.
    [Show full text]
  • Flowering and Fruiting of "Burlat" Sweet Cherry on Size-Controlling Rootstock
    HORTSCIENCE 29(6):611–612. 1994. chart uses eight color chips to assess fruit color: 1 = light red to 8 = very dark, mahogany red. At the end of the growing season, all Flowering and Fruiting of ‘Burlat’ current-season’s shoot growth, >2.5 cm, was measured on each branch unit. Sweet Cherry on Size-controlling We analyzed the data as a factorial, ar- ranged in a completely randomized design, Rootstock with rootstock and age of branch portions as main effects. The least significant difference Frank Kappel was used for mean separation of main effects. Agriculture Canada, Research Station, Summerland, B.C. VOH IZO, Canada Results Jean Lichou The sample branches had similar BCSA, Ctifl, Centre de Balandran, BP 32, 30127 Bellegarde, France with the mean ranging from 3 to 3.7 cm2 for the Additional index words. Prunus avium, Prunus cerasus, Prunus mahaleb, fruit size, fruit branch units of the trees on the three root- stock. The mean for the branch units’ total numbers, dwarfing, Edabriz, Maxma 14, F12/1 shoot length ranged from 339 to 392 cm. Abstract. The effect of rootstock on the flowering and fruiting response of sweet cherries ‘Burlat’ branches on Edabriz had more (Prunus avium L.) was investigated using 4-year-old branch units. The cherry rootstock flowers than ‘Burlat’ branches on F1 2/1 or Edabriz (Prunus cerasus L.) affected the flowering and fruiting response of ‘Burlat’ sweet Maxma 14 when expressed as either total cherry compared to Maxma 14 and F12/1. Branches of trees on Edabriz had more flowers, number of flowers or number standardized by more flowers per spur, more spurs, more fruit, higher yields, smaller fruit, and a reduced shoot length (Table 1).
    [Show full text]
  • English and French Cop17 Inf
    Original language: English and French CoP17 Inf. 77 (English and French only / Únicamente en inglés y francés / Seulement en anglais et français) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September – 5 October 2016 CONSERVATION, TIMBER IDENTIFICATION AND SUSTAINABLE MANAGEMENT OF CENTRAL AFRICAN BUBINGA (KEVAZINGO) SPECIES This document has been submitted by Gabon* and the European Union* in relation to proposal No. 56, Inclusion of Guibourtia tessmannii, Guibourtia pellegriniana and Guibourtia demeusei in Appendix II. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. CoP17 Inf. 77 – p. 1 Conservation, Timber Identification and Sustainable Management of Central African Bubinga (Kevazingo) species This information document has been produced in response to concerns over threats to the conservation of Bubinga in its range States. Recent increases in value and demand of Guibourtia tessmannii and Guibourtia pellegriniana wood has increased pressure on populations and encouraged the development of unmanaged and illegal logging networks. This, together with typically low natural population densities for both species throughout their ranges, constitutes a clear threat to both species’ conservation and their sustainable use. This Inf. doc for Bubinga complements the CITES Appendix II listing proposal for Bubinga (CoP17 Prop.
    [Show full text]