Flowering and Fruiting of "Burlat" Sweet Cherry on Size-Controlling Rootstock

Total Page:16

File Type:pdf, Size:1020Kb

Flowering and Fruiting of HORTSCIENCE 29(6):611–612. 1994. chart uses eight color chips to assess fruit color: 1 = light red to 8 = very dark, mahogany red. At the end of the growing season, all Flowering and Fruiting of ‘Burlat’ current-season’s shoot growth, >2.5 cm, was measured on each branch unit. Sweet Cherry on Size-controlling We analyzed the data as a factorial, ar- ranged in a completely randomized design, Rootstock with rootstock and age of branch portions as main effects. The least significant difference Frank Kappel was used for mean separation of main effects. Agriculture Canada, Research Station, Summerland, B.C. VOH IZO, Canada Results Jean Lichou The sample branches had similar BCSA, Ctifl, Centre de Balandran, BP 32, 30127 Bellegarde, France with the mean ranging from 3 to 3.7 cm2 for the Additional index words. Prunus avium, Prunus cerasus, Prunus mahaleb, fruit size, fruit branch units of the trees on the three root- stock. The mean for the branch units’ total numbers, dwarfing, Edabriz, Maxma 14, F12/1 shoot length ranged from 339 to 392 cm. Abstract. The effect of rootstock on the flowering and fruiting response of sweet cherries ‘Burlat’ branches on Edabriz had more (Prunus avium L.) was investigated using 4-year-old branch units. The cherry rootstock flowers than ‘Burlat’ branches on F1 2/1 or Edabriz (Prunus cerasus L.) affected the flowering and fruiting response of ‘Burlat’ sweet Maxma 14 when expressed as either total cherry compared to Maxma 14 and F12/1. Branches of trees on Edabriz had more flowers, number of flowers or number standardized by more flowers per spur, more spurs, more fruit, higher yields, smaller fruit, and a reduced shoot length (Table 1). There were more than fruit set compared to the standard rootstock, F12/1. One-year-old branch sections had double the number of flowers for ‘Burlat’ on more flowers and fruit, higher fruit weight, and heavier fruit size compared to older Edabriz than for trees on F1 2/1 (either total branch portions. number or number per unit shoot length). ‘Burlat’ branches on Maxma 14 had »30% Size-controlling or dwarfing rootstock for Balandran, near Nîmes in southern France. more flowers total than branches of trees on sweet cherries that are precocious and produc- Rootstock were Edabriz, Maxma 14, and F1 2/1. Flowers per shoot length did not differ tive could allow developing more productive F12/1 (control). The trees were spaced 6 m between Maxma 14 and F12/1. orchard systems. These orchards would be between rows and 4 m within rows. Trees were Across rootstock, the l-year-old wood more labor efficient because most of the prun- allowed to develop naturally with little train- had more flowers (expressed as total number ing and harvesting could be done from the ing or pruning over the years. Some smaller or per unit shoot length) than the older portions ground. Edabriz and Maxma 14 are among the lateral branches were removed in 1991, and in of the branches. The 3- and 4-year-old por- rootstock that have been selected for dwarf- Spring 1992, one or two major branches were tions had about half the number of total flow- ing potential. Edabriz is from Prunus cerasus, removed from each tree. ers of the 1-year-old wood. which is size-controlling and precocious in its In Spring 1992, three 4-year-old branch There was, however, a significant interac- effect on sweet cherry scions (Edin et al, units of similar vigor were chosen in each tree; tion between rootstock and age of wood, with 1989). Maxma 14’ is believed to be derived these branches had not been pruned in 1991. thedifferent-aged portions of ‘Burlat’ branches from across between mazzard (Prunus avium) There were four trees of each rootstock. The on Edabriz having more flowers than the other and Prunus mahaleb L. (Perry, 1987). Trials in branch cross-sectional area (BCSA) of each two rootstock. The branches of ‘Burlat’ on France demonstrated that Maxma 14 was branch unit was measured at the base of the Edabriz had at least one flower per cm on all semi-dwarfing and improved the precocity of 4-year-old portion (just distal to the ring of bud four ages of wood, whereas for the other two the scion cultivar (Edin et al., 1989). German scale scars). The total length of each branch rootstock, only the 1-year-old wood had at researchers showed that rootstock can affect portion of similar age was measured. During least one flower per cm. the fruiting characteristics of cherry trees. the bloom period, the number of flowers and Branches of trees on Maxma 14 had sig- Clonally propagated hybrid rootstocks affected spurs were counted (a shoot <2.5 cm was nificantly more spurs than those on F1 2/1 the growing and fruiting characteristics of considered a spur). After June drop, the num- (Table 1). Edabriz was intermediate between cherry trees compared to trees on F12/1 ber of fruit remaining was counted. At com- Maxma 14 and F12/1. However, when spur (Franken-Bembenek and Gruppe, 1985; mercial harvest, the fruit from each section of counts were standardized (by shoot length), Schaumberg and Gruppe, 1985). Understand- similar-aged wood were counted and weighed. branches of trees on Edabriz carried more ing the flowering and fruiting response of trees The color of each fruit was rated using the Ctifl spurs per unit shoot length than the other two on new rootstock compared to F 12/1, a stan- cherry color chart, and a mean color score was rootstock. Two-year-old wood had signifi- dard-sized rootstock, is necessary to design determined for each fruit sample. The Ctifl cantly more spurs than either 3- or 4-year-old new pruning and training systems. Our objec- tive was to measure the effect of two potential size-controlling rootstock compared to F12/ 1, a standard-sized rootstock, on the flow- ering and fruiting response of sweet cherry. Materials and Methods The ‘Burlat’ trees used for this study were planted in 1983 at the Ctifl station, Centre de Received for publication 2 Aug. 1993. Accepted for publication 8 Nov. 1993. Summerland Research Station contribution no. 845. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact. HORTSCIENCE, VOL. 29(6), JUNE 1994 611 even with a lower rate of fruit set (87% of the fruit set of F1 2/1), Edabriz still produced more fruit than F12/1. Schaumberg and Gruppe (1985) showed that fruiting of some of the ‘Hedelfingen’ trees on clonal hybrid root- stock was higher than for trees on F1 2/1. Perry (1987) suggested that fruit size gen- erally is not affected by rootstock; instead, it tends to be a result of crop load. Proebsting (1990) reported that ‘Bing’ cherry fruit size is negatively related to yield if leaf area is rela- tively constant. In our study, mean fruit weight was higher on trees on F1 2/1 than on the others; when we analyzed fruit weight using an index for crop load (number of fruit per shoot length) as a covariate, it did not change wood, but when standardized for shoot length, teraction between rootstock and branch age. the results. Thus, fruit from trees on F1 2/1 there was no effect due to wood age. Fruit from trees on FI 2/1 were 26% heavier remained significantly heavier. Fruit weight Branches of trees on Edabriz had almost (mean fruit weight) than fruit from trees on could also be related to cropping history. Yield twice as many flowers per spur than trees on Edabriz or Maxma 14 (Table 3). The fruit from efficiency of trees on Edabriz was five to six the other two rootstock (Table 1). The num- l-year-old wood was significantly heavier than times the yield efficiency of trees on F12/1 the ber of flowers per spur remained constant fruit from any of the other branch portions. previous 2 years ( 1990 and 1991). Fruit weight regardless of the age of the wood. There was no significant interaction between did appear to be related to the amount of Branches of ‘Burlat’ on Edabriz had >20% rootstock and age of wood. current-season’s shoot growth, and current- and >75 % more fruit per branch in absolute When the relationship between mean fruit season’s shoot growth can be used as an indi- terms than similar branches on trees on Maxma weight and current-season’s shoot growth was cation of leaf area. This relationship was stron- 14 and F12/1, respectively (Table 2). When examined, the strength of the relationship de- ger for fruit from trees on Edabriz than for fruit fruit counts were expressed as number per pended on the rootstock. The strongest rela- from trees on F12/1 or Maxma 14. This result centimeter of shoot length, this increase was tionships existed for branches of trees on suggests that mean fruit weight for fruit from 36% and 79%, respectively. One-year-old Edabriz, where average fruit weight was sig- trees on Edabriz could be increased by in- branch sections had the most fruit in either nificantly related to total shoot length (r2 = creasing shoot growth (increasing leaf area) in absolute terms or when standardized to shoot 0.699), number of shoots (r2= 0.502), and the current season. This increase in shoot length. There was a significant rootstock x age mean shoot length (r2= 0.8 18).
Recommended publications
  • CHERRY Training Systems
    PNW 667 CHERRY training systems L. Long, G. Lang, S. Musacchi, M. Whiting A Pacific Northwest Extension Publication OREGON STATE UNIVERSITY n WASHINGTON STATE UNIVERSITY n UNIVERSITY OF IDAHO in cooperation with MICHIGAN STATE UNIVERSITY CHERRY training systems Contents Understanding the Natural Tree....................................................................................................................................................... 3 Training System Options.......................................................................................................................................................................... 4 Rootstock Options.......................................................................................................................................................................................... 5 Pruning and Training Techniques.....................................................................................................................................................5 Kym Green Bush............................................................................................................................................................................................ 10 Spanish Bush.....................................................................................................................................................................................................18 Steep Leader......................................................................................................................................................................................................25
    [Show full text]
  • A Study of the Pollination of the Sour Cherry, Prunus Cerasus Linnaeus
    THE S IS on A STUDY OF THE POLLINATION OF THE SOUR CHERRY PRTJNIJS ERASUS L INNAEUS Submitted to the OREGON AGRICULTURAL COLLEGE In Partial Fulfillment of the Require!rßnte For the Degree of MASTER OF SCIENCE by Loue Arrowood 1etchor May 5, 126. PRQYO: Redacted for privacy £eoc1at ProfEor of In ohare of Major Redacted for privacy 4-.----- - - - - 'j Road of Dopartnent of Redacted for privacy of Redacted for privacy atzn of comi.ttee on Graivate Study. III QNQLEDGE lIE NT The writer wishes to express hie appreciation to Dr. E. M. Harvey of the Research Division, for hie untiring help and many suggestion. which aided greatly in carrying out the following prob- leì; and to Prcfesaor C. E. Schuster, for his critciems and timely suggestions on the field work; and to Mr. R. V. Rogers of Eugene, for use of his trees; and to Professor J. S. Brown, who made this problem poasble. Iv - INDEX- Page. Title Page I Approval Sheet II Acknowledgment III Index IV List of Table. V List of Plates VI Introduction i Review of Literature 3 Methods and Materials 10 Germination Tests 12 Preliminary Survey of Work 14 Sterility Tests 15 Cross Pollination Studies 20 Dicusiion 28 Si.ary 29 Histological Studies 31 Methode and Materials A - Bud Development Studies 31 B - Pieti]. Studies 33 Methods and Materials 33 Diecuseion of Results A - Bud Development Studies 35 B - Pistil Studies 37 Swary 38 Explanation of Plates 39 Platos 42 BiblIography 47 V -LIST OF TABLES- Table No. Pag. I Germination Teats 13 II Sterility Test.
    [Show full text]
  • The Invasiveness of Crataegus Monogyna and Prunus Mahaleb, at Armidale, New South Wales, Australia
    THE INVASIVENESS OF CRATAEGUS MONOGYNA AND PRUNUS MAHALEB, AT ARMIDALE, NEW SOUTH WALES, AUSTRALIA By DAVID ANDREW BASS A Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the University of New England, Armidale. Department of Geography and Planning University of New England, Armidale New South Wales, Australia 30 March 1994 TABLE OF CONTENTS Page TITLE PAGE CONTENTS ii LIST OF TABLES vii LIST OF FIGURES xii LIST OF PLATES xv CERTIFICATE xvi ACKNOWLEDGEMENTS xvii ABSTRACT xx CHAPTER 1: INTRODUCTION 1 1.1 Biological invasions: introduction and literature 1 review. 1.1.1 Terminology of biological invasions 4 1.1.2 Characteristics of biological invasions with 9 reference to Australia 1.1.3 Ornamental plant invasions in Australia 18 1.1.4 Impacts of invasive plants 21 1.1.5 Focus of biological invasion research 23 1.1.6 Attributes of biological invaders 25 1.1.7 Attributes of invaded environments 27 1.1.8 Safe sites and biological invasions 29 1.2 The project 31 1.3 Study region 33 1.4 Study sites 35 1.4.1 Armidale State Forest (ASF) 35 1.4.2 Saleyards site 37 1.4.3 University of New England site (UNE) 38 ii CHAPTER 2: TAXONOMY, MORPHOLOGY, PHENOLOGY 40 AND REPRODUCTIVE ECOLOGY OF CRATAEGUS MONOGYNA AND PR UNUS MAHALEB 2.1 Crataegus monogyna 40 2.1.1 Uses of Crataegus monogyna 41 2.1.2 Taxonomy 42 2.1.3 Morphology 45 2.1.4 Phenology 46 2.1.5 Reproductive ecology 48 2.1.6 Distribution 48 2.2 Prunus mahaleb 51 2.2.1 Taxonomy 51 2.2.2 Morphology 52 2.2.3 Phenology 53 2.2.4 Reproductive ecology 54 2.2.5 Distribution 54 CHAPTER 3: HISTORY OF INTRODUCTION AND RATES 56 OF SPREAD OF CRATAEGUS MONOGYNA AND PRUNUS MAHALEB IN AUSTRALIA 3.1.
    [Show full text]
  • Transmission and Latency of Cherry Necrotic Ring Spot Virus in Prunus Tomentosa Glen Walter Peterson Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1958 Transmission and latency of cherry necrotic ring spot virus in Prunus tomentosa Glen Walter Peterson Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Peterson, Glen Walter, "Transmission and latency of cherry necrotic ring spot virus in Prunus tomentosa " (1958). Retrospective Theses and Dissertations. 1639. https://lib.dr.iastate.edu/rtd/1639 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. TRANSMISSION AND LATENCY OF CHERRY NECROTIC RING SPOT VIRUS IN PRUNUS TOMENTOSA Glenn Walter Peterson A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Plant Pathology Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State College 1958 il TABLE OF CONTENTS INTRODUCTION 1 REVIEW OF LITERATURE 3 MATERIALS AND METHODS 19 Virus Sources .. 19 Trees 19 Handling of Trees 21 Inoculations 22 EXPERIMENTS 24 Latency 24 Symptom expression of necrotic ring spot virus infected P. tomentosa seedlings one year after inoculation 25 Symptom expression of necrotic ring spot virus infected P. tomentosa seedlings after defoliation 32 Transmission 34 Contact periods required for the transmission of necrotic ring spot virus 35 P.
    [Show full text]
  • Chemical Constituents and Ovicidal Effects of Mahlab, Prunus Mahaleb L. Kernels Oil on Cotton Leafworm, Spodoptera Littoralis (Boisd.) Eggs
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 56, No. 3 (2016) Chemical constituents and ovicidal effects of mahlab, Prunus mahaleb L. kernels oil on cotton leafworm, Spodoptera littoralis (Boisd.) eggs Hala M. Mead*, Samah N. El-Shafiey, Hend M. Sabry Plant Protection Research Institute, Agricultural Research Center, Dokki, 44516 Giza, Egypt Received: April 1, 2016 Accepted: August 19, 2016 Abstract: The carried out investigations evaluated ovicidal activity of mahlab, Prunus mahaleb L. kernel oil against cotton leafworm, Spodoptera littoralis (Boisd.). The chemical constituents of the fixed oil of mahlab were analyzed using gas-liquid chromatography (GLC). Timnodonic (33.07%), oleic (28.71%) and linoleic (24.35%) were the basic fatty acids, while the major hydrocarbon and sterol were found to be heneicosane (62.57%) and β-sitosterol (10.57%). The LC50 values for the one-day-old egg masses were found to be more susceptible than 3-day-old ones. Moreover, the leaf dip technique occurred to be more efficient than spraying technique. The results also showed abnormalities in the external morphology of egg shell, chorion surface, shell imprints and aeropyles of S. littora- lis eggs treated with mahlab and KZ oils as compared to a control by using scanning electron microscope. Generally, the tested oils significantly reduced the activities of transaminase enzymes (AST and ALT), acid and alkaline phosphatases and total soluble protein except mahlab oil on acid phosphatase as compared to a control. Additionally, the oils of both mahlab and KZ oil affected some bio- logical aspects such as incubation period, larval duration, larval mortality and pupal weight comparing to a control.
    [Show full text]
  • Phylogenetic Inferences in Prunus (Rosaceae) Using Chloroplast Ndhf and Nuclear Ribosomal ITS Sequences 1Jun WEN* 2Scott T
    Journal of Systematics and Evolution 46 (3): 322–332 (2008) doi: 10.3724/SP.J.1002.2008.08050 (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences 1Jun WEN* 2Scott T. BERGGREN 3Chung-Hee LEE 4Stefanie ICKERT-BOND 5Ting-Shuang YI 6Ki-Oug YOO 7Lei XIE 8Joey SHAW 9Dan POTTER 1(Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA) 2(Department of Biology, Colorado State University, Fort Collins, CO 80523, USA) 3(Korean National Arboretum, 51-7 Jikdongni Soheur-eup Pocheon-si Gyeonggi-do, 487-821, Korea) 4(UA Museum of the North and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-6960, USA) 5(Key Laboratory of Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China) 6(Division of Life Sciences, Kangwon National University, Chuncheon 200-701, Korea) 7(State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) 8(Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403-2598, USA) 9(Department of Plant Sciences, MS 2, University of California, Davis, CA 95616, USA) Abstract Sequences of the chloroplast ndhF gene and the nuclear ribosomal ITS regions are employed to recon- struct the phylogeny of Prunus (Rosaceae), and evaluate the classification schemes of this genus. The two data sets are congruent in that the genera Prunus s.l. and Maddenia form a monophyletic group, with Maddenia nested within Prunus.
    [Show full text]
  • Botanical Name Common Name
    Approved Approved & as a eligible to Not eligible to Approved as Frontage fulfill other fulfill other Type of plant a Street Tree Tree standards standards Heritage Tree Tree Heritage Species Botanical Name Common name Native Abelia x grandiflora Glossy Abelia Shrub, Deciduous No No No Yes White Forsytha; Korean Abeliophyllum distichum Shrub, Deciduous No No No Yes Abelialeaf Acanthropanax Fiveleaf Aralia Shrub, Deciduous No No No Yes sieboldianus Acer ginnala Amur Maple Shrub, Deciduous No No No Yes Aesculus parviflora Bottlebrush Buckeye Shrub, Deciduous No No No Yes Aesculus pavia Red Buckeye Shrub, Deciduous No No Yes Yes Alnus incana ssp. rugosa Speckled Alder Shrub, Deciduous Yes No No Yes Alnus serrulata Hazel Alder Shrub, Deciduous Yes No No Yes Amelanchier humilis Low Serviceberry Shrub, Deciduous Yes No No Yes Amelanchier stolonifera Running Serviceberry Shrub, Deciduous Yes No No Yes False Indigo Bush; Amorpha fruticosa Desert False Indigo; Shrub, Deciduous Yes No No No Not eligible Bastard Indigo Aronia arbutifolia Red Chokeberry Shrub, Deciduous Yes No No Yes Aronia melanocarpa Black Chokeberry Shrub, Deciduous Yes No No Yes Aronia prunifolia Purple Chokeberry Shrub, Deciduous Yes No No Yes Groundsel-Bush; Eastern Baccharis halimifolia Shrub, Deciduous No No Yes Yes Baccharis Summer Cypress; Bassia scoparia Shrub, Deciduous No No No Yes Burning-Bush Berberis canadensis American Barberry Shrub, Deciduous Yes No No Yes Common Barberry; Berberis vulgaris Shrub, Deciduous No No No No Not eligible European Barberry Betula pumila
    [Show full text]
  • Anomalous Dark Growth Rings in Black Cherry
    FIELD NOTE Anomalous Dark Growth Rings in Black Cherry Robert P. Long, David W. Trimpey, Michael C. Wiemann, and Susan L. Stout Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or more dark rings were found in 30 of the 36 cross sections. The most frequent years in which dark rings formed were 1994, on 55% of cross sections, and 1995, on 72% of cross sections. Both years were coincident with widespread cherry scallop shell moth (Hydria prunivorata) outbreaks. GIS layers and maps obtained from the Allegheny National Forest were used to document cherry scallop shell moth defoliations in these stands. These rings show a darkened discoloration through all or portions of the annual ring without characteristics typical of gum spots or gum defects caused ABSTRACT by traumatic injury from bark beetles or cambium miners. Microscopic examination of the rings revealed darkened fiber cell walls, but no other cellular abnormalities. Dark rings are more common in stands with a high proportion of the total basal area composed of black cherry. These stands also are more susceptible to repeated defoliations from cherry scallop shell moth. lack cherry (Prunus serotina) is one of the most valuable east- Methods ern hardwood timber species, and some of the highest quality Thirty-six cross sections or partial cross sections from nine dif- Bcherry originates in northwestern Pennsylvania (Wieden- ferent stands were obtained from a private industrial landowner in beck et al.
    [Show full text]
  • FSC Public Search
    CERTIFICATE Information from 2018/08/28 - 14:26 UTC Certificate Code CU-COC-816023 License Code FSC-C102167 MAIN ADDRESS Name Timber Link International Ltd. Address The Timber Office,Hazelwood Cottage,Maidstone Road,Hadlow Tonbridge TN11 0JH Kent UNITED KINGDOM Website http://www.timberlinkinternational.com CERTIFICATE DATA Status Valid First Issue Date 2010-10-16 Last Issue Date 2017-01-12 Expiry Date 2022-01-11 Standard FSC-STD-40-004 V3-0 GROUP MEMBER/SITES No group member/sites found. PRODUCTS Product Trade Species Primary Secondary Main Type Name Activity Activity Output Category W5 Solid Acer spp.; Alnus rubra var. pinnatisecta Starker; Alnus brokers/traders FSC wood serrulata; Apuleia leiocarpa; Betula spp.; Castanea sativa without physical Mix;FSC (sawn, P.Mill.; Cedrela odorata; Cedrus libani A. Rich.; Chlorocardium posession 100% chipped, rodiei (R.Schomb.) R.R.W.; Cylicodiscus gabunensis (Taub.) peeled) Harms; Dicorynia guianensis Amsh., D. paraensis Benth.; W5.2 Solid Dipterocarpus spp; Dipteryx odorata; Dryobalanops spp.; wood Dyera costulata (Miq.) Hook.f.; Entandrophragma cylindricum; boards Entandrophragma spp.; Entandrophragma utile; Eucalyptus spp; Fagus sylvatica L.; Fraxinus excelsior; Fraxinus americana; Gonystylus bancanus; Guibourtia spp.; Hymenaea courbaril; Intsia bijuga; Juglans nigra L.; Juglans regia L.; Khaya spp.; Larix sibirica; Liriodendron tulipifera L.; Lophira alata; Manilkara bidentata (A.DC.) A.Chev.; Microberlinia spp.; Milicia excelsa; Millettia laurentii; Nauclea diderrichii; Parashorea spp. (Urat mata, white seraya, gerutu); Peltogyne spp.*; Pinus rigida; Platanus occidentalis L; Prunus avium; Prunus serotina Ehrh.; Pseudotsuga menziesii; Pterocarpus soyauxii; Quercus alba; Quercus petraea; Quercus robur; Robinia pseudoacacia L.; Shorea balangeran; Shorea laevis Ridl.; Shorea spp.; Swietenia macrophylla; Tabebuia spp.; Tectona grandis; Terminalia ivorensis A.
    [Show full text]
  • Antioxidant and Anti-Inflammatory Properties of Cherry Extract
    foods Review Antioxidant and Anti-Inflammatory Properties of Cherry Extract: Nanosystems-Based Strategies to Improve Endothelial Function and Intestinal Absorption Denise Beconcini 1,2,3,* , Francesca Felice 2 , Angela Fabiano 3, Bruno Sarmento 4,5,6 , Ylenia Zambito 3,7 and Rossella Di Stefano 2,7,* 1 Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100 Siena, Italy 2 Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy; [email protected] 3 Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; [email protected] (A.F.); [email protected] (Y.Z.) 4 i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-153 Porto, Portugal; [email protected] 5 INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal 6 CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal 7 Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, via Borghetto 80, 56100 Pisa, Italy * Correspondence: [email protected] (D.B.); [email protected] (R.D.S.) Received: 31 December 2019; Accepted: 14 February 2020; Published: 17 February 2020 Abstract: Cherry fruit has a high content in flavonoids. These are important diet components protecting against oxidative stress, inflammation, and endothelial dysfunction, which are all involved in the pathogenesis of atherosclerosis, which is the major cause of cardiovascular diseases (CVD).
    [Show full text]
  • Cherry Fire Blight
    ALABAMA A&M AND AUBURN UNIVERSITIES Fire Blight on Fruit Trees and Woody Ornamentals ANR-542 ire blight, caused by the bac- Fterium Erwinia amylovora, is a common and destructive dis- ease of pear, apple, quince, hawthorn, firethorn, cotoneaster, and mountain ash. Many other members of the rose plant family as well as several stone fruits are also susceptible to this disease (Table 1). The host range of the Spur blight on crabapple fire blight pathogen includes cv ‘Mary Potter’. nearly 130 plant species in 40 genera. Badly diseased trees and symptoms are often referred to shrubs are usually disfigured and as blossom blight. The blossom may even be killed by fire blight phase of fire blight affects blight. different host plants to different degrees. Fruit may be infected Symptoms by the bacterium directly through the skin or through the The term fire blight describes stem. Immature fruit are initially Severe fire blight on crabapple the blackened, burned appear- water-soaked, turning brownish- cv ‘Red Jade’. ance of damaged flowers, twigs, black and becoming mummified and foliage. Symptoms appear in as the disease progresses. These Shortly after the blossoms early spring. Blossoms first be- mummies often cling to the trees die, leaves on the same spur or come water-soaked, then wilt, for several months. shoot turn brown on apple and and finally turn brown. These most other hosts or black on Table 1. Plant Genera That Include Fire Blight Susceptible Cultivars. Common Name Scientific Name Common Name Scientific Name Apple, Crabapple Malus Jetbead Rhodotypos
    [Show full text]
  • Fruit-Trees-Means-Nursery-2017.Pdf
    BOT_NAME COM_NAME TYPE FEATURES Developed by the University of Minnesota in 1991, a cross of Macoun and Honeygold. Crisp, juicy, sweet apple ranked as one of the highest quality apples. Over 3" Apple is richly coral-colored with a Malus Dwf Honey Crisp Apple Honey Crisp Apple Dwarf Tree/Fruit Apple yellow background. Stores Well. Pollenizer reccomended. Vigorous, compact, spreading tree. Large waxy fruits ripen in late fall. Crisp, juicy white flesh has a long-lasting sweet, snappy flavor. Excellent for cooking with a good shelf life. Self-fertile. Malus 'Granny Smith' S.D. Apple Semi-Dwf. Granny Smith Tree/Fruit Apple Deciduous. Developed in 1953 in New York, a cross between the crisp Golden Delicious and the blush-crimson Jonathan. They form a large sweet fruit with a thin skin. Jonagold is triploid, with sterile pollen, and Malus Jonagold Apple SD Jonagold Apple Semi Dwf Apple Tree/Fruit Apple as such, requires a second type of apple for pollen and is incapable of pollenizing other cultivars Known simply as King, the large yellow-green apples with red stripes are excellent for eating fresh, for Malus 'King' S.D. Apple Semi-Dwf. King Tree/Fruit Apple cooking and for making cider. They also keep well. Developed by the University of Minnesota in 1991, a cross of Macoun and Honeygold. Crisp, juicy, sweet apple ranked as one of the highest quality apples. Over 3" Apple is richly coral-colored with a Malus SD Honey Crisp Apple Honey Crisp Apple Semi Dwarf Tree/Fruit Apple yellow background. Stores Well. Pollenizer reccomended. Deciduous fruiting tree produces small pink single flowers in spring which turn white.
    [Show full text]