Douglasfirdouglasfirfacts About

Total Page:16

File Type:pdf, Size:1020Kb

Douglasfirdouglasfirfacts About DouglasFirDouglasFirfacts about Douglas Fir, a distinctive North American tree growing in all states from the Rocky Mountains to the Pacific Ocean, is probably used for more Beams and Stringers as well as Posts and Timber grades include lumber and lumber product purposes than any other individual species Select Structural, Construction, Standard and Utility. Light Framing grown on the American Continent. lumber is divided into Select Structural, Construction, Standard, The total Douglas Fir sawtimber stand in the Western Woods Region is Utility, Economy, 1500f Industrial, and 1200f Industrial grades, estimated at 609 billion board feet. Douglas Fir lumber is used for all giving the user a broad selection from which to choose. purposes to which lumber is normally put - for residential building, light Factory lumber is graded according to the rules for all species, and and heavy construction, woodwork, boxes and crates, industrial usage, separated into Factory Select, No. 1 Shop, No. 2 Shop and No. 3 poles, ties and in the manufacture of specialty products. It is one of the Shop in 5/4 and thicker and into Inch Factory Select and No. 1 and volume woods of the Western Woods Region. No. 2 Shop in 4/4. Distribution Botanical Classification In the Western Douglas Fir is manufactured by a large number of Western Woods Douglas Fir was discovered and classified by botanist David Douglas in Woods Region, Region sawmills and is widely distributed throughout the United 1826. Botanically, it is not a true fir but a species distinct in itself known Douglas Fir trees States and foreign countries. Obtainable in straight car lots, it can as Pseudotsuga taxifolia. In the Western Woods Region, Douglas Fir trees are found at are found at elevations of 1500 feet and higher, they grow to maximum elevations of 1500 also be purchased in mixed cars together with an assortment of the Douglas Fir is one feet and higher, Western Pines and other species of the Region. of the nation’s finest diameters of more than seven feet and heights of 200 feet. they grow to For the consumer, it may be secured at most retail lumberyards. structural materials. While Douglas Fir grows most frequently in pure stands, it is often maximum Its permanence, diameters of more For list of Douglas Fir manufacturers, complete grading rules or strength, intermingled with other species of the Region - Idaho White Pine, Ponderosa Pine, Sugar Pine, Western Larch, White Fir, Lodge Pole Pine, than seven feet and further information, write: dimensional heights of 200 feet. Western Wood Products Association stability and high Engelmann Spruce, Western Hemlock, Incense Cedar and Western Red Yeon Building nail-holding Cedar. In the Inland Empire area (eastern Washington, northern Idaho, tenacity have led to Portland, Oregon 97204 its use in western Montana and northeastern Oregon), where Douglas Fir is logged warehouses, factory and manufactured with Larch, many mills combine the two into a buildings, bridges common product known as Fir and Larch or Larch-Douglas Fir. and other structures Straightness, Foliage on mature Douglas Fir trees is usually a deep yellow-green; subject to needles are 3/4 inch to 1-1/2 inches long. Bark is ridged, deeply furrowed heavy stresses. stiffness, load- and a very dark gray-brown in color. Cones vary from 1-1/2 to 4-1/2 bearing capacity inches long and are a cinnamon or reddish-brown. The Douglas Fir is a prolific seed producer. Individual trees favorably and nail-holding located bear seeds nearly every season. Seeds average 44,000 per pound power of Douglas with an average germination of 50 percent. Fir of the Western Properties Woods Region Douglas Fir is straight grained and moderately heavy. Although classed as a resinous wood, the amount of resin is limited. The sapwood ring is make it a favorable almost pure white and very narrow. Heartwood is orange-red and the framing material. color contrast between springwood and summerwood is quite distinct. The wood weighs 31 pounds per cubic foot and specific gravity is 0.44 at 12 percent moisture content. Pound for pound, Douglas Fir is one of the strongest of the softwoods. Its load bearing capacity equals many mild steels and, of course, it is considerably lighter in weight. Its strength This material has been reproduced with the permission of the Western Wood Products Association. makes it the nation’s first-line wood for structural purposes. Originally published 1956. Because it is moderately heavy, Douglas Fir will shrink concrete and then applied to the building as sheathing more in drying than most woods of lighter weight. or subflooring. Volumetric shrinkage when dried from a green state Siding of properly dried Douglas Fir presents an down to 12-15 percent moisture content is 5.4 percent, attractive appearance and meets the durability records compared to the softwood range of 3.4-6.6 percent. of virtually every other wood species commonly used miscellaneous uses as there are for lumber of all a limited number of small knots, small pitch pockets or With a moisture content compatible with surrounding in contemporary house building. For interior paneling, species. It is excellent for all of the many odd jobs their equivalents, but no serious combination of any. conditions, Douglas Fir will stay in place well and trim and cabinetwork, it renders efficient, long-lasting about the farm requiring stout material. For barn C Select is much like B & Better Select but admissible undergo a minimum of shrinkage and swelling. service with a minimum of maintenance. Paneling in cornices, siding, boards and battens, chicken houses characteristics may be more numerous or larger. D Douglas Fir ranks approximately midway among all clear grades is particularly desirable for present-day and feeders, cribbing, barn flooring, flumes, pens, gates Select includes all stock between C Select and commercial softwoods in nail-holding ability. Safe modern styles. and fences, chutes, granaries, troughs, hog houses and Common grades and admits fairly marked defects if the resistance to withdrawal of eight-penny nails driven Douglas Fir is one of the most popular and serviceable sheds, it furnishes the rugged durability necessary to piece retains good appearance. perpendicular to the grain into seasoned stock is 28 softwood floorings known. Finished naturally or hard farm usage. The are five grades of Common lumber in Douglas Fir. pounds per lineal inch of length, while other softwoods painted, it is highly suitable for a variety of installations As stock for fabrication into finished articles it is Number 1 includes sound tight knotted stock with the range from 17 to 39 pounds. Blunt-pointed or ordinary and is widely used under linoleum or carpeting. successfully used for cabinets, doors, door frames, size of the knot the determining factor. Light pitch, common nails are recommended because Douglas Fir, windows and window frames, interior trim, ironing small pitch pockets, light stain, season checks or of relatively high specific gravity, tends to split more Heavy Construction boards, gates and fences, mouldings, furniture, ladders, equivalent characteristics are admissible. Number 2 is readily than softer textured woods. Douglas Fir stands unsurpassed for heavy structural lattice work, swings, toy stock and many other wood subject to the same general inspection as No. 1 but The wood works readily with machine tools, and, if timbers. It is one of the strongest tools are in good condition, easily by hand. woods per pound of weight in For a successful, lasting paint finish on Douglas Fir, the the softwood field. Where wood should have a moisture content of from 12 to 15 strength is the primary factor, percent, or as close to the prevailing humidity as Strength, toughness and nail-holding power Douglas Fir meets all possible. Care should be exercised in selection of the requirements, and its priming coat. White lead or aluminum paint is straightness, ease of fabrication recommended. and availability in a wide range Douglas Fir sapwood can be treated very readily. of sizes and stress grades furnish Heartwood, due to its density, does not easily absorb of Douglas Fir fit it ideally to railroad uses. bonus qualities. preservatives but depth of penetration secured is For posts, beams, stringers, joists, sufficient for most practical purposes. Where greater bracing, flooring and decking, penetration is desired, incising is usually done. rafters, roof decking, and for the Douglas Fir has an exceptionally long use life even many different members that under conditions favoring decay; heartwood is rated in For car siding, decking and nailing posts and make up trusses for factory and the upper bracket by the Forest Products Laboratory for warehouse roofs, it is the perfect durability under decay-fostering conditions. In heavy-duty wood. glueability, it is rated in Group 2, next to the top. It is also the first-choice wood material for railroad use - ties, for bridges, trestles, ties and other structural Uses bridges, trestles, buildings, Combining raw strength with delightful grain general maintenance and rolling configuration, Douglas Fir is suitable for the heaviest of equipment including car lining, structural work to the finest of high-grade finish siding, decking and nailing posts. purposes and for the many utility uses in between. Nail-holding ability, dimensional purposes, it is unexcelled. Douglas Fir, carefully manufactured, seasoned and stability under stress, decay graded, may be used economically and successfully resistance and sheer toughness, Properly seasoned throughout residential and light commercial account for its long history of high Douglas Fir forms a specialty products. admissible characteristics are larger or more construction. Used in accordance with its properties performance in the railroad field. dimensionally For crating, the high nail-holding ability and pronounced. Number 3 takes in part of the lower and with proper installation, it will give many years of Mine timbers and planking stable, paintable exceptional strength make Douglas Fir a primary product of the log and the characteristics are more siding that will last material.
Recommended publications
  • Comparative Analysis of the Properties of Tamarack (Larix Laricina (Du Roi) K
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009 2014 Comparative analysis of the properties of tamarack (Larix laricina (Du Roi) K. Koch) particleboard and thermally treated oriented strand board (OSB) Wang, Le http://knowledgecommons.lakeheadu.ca/handle/2453/1637 Downloaded from Lakehead University, KnowledgeCommons COMPARATIVE ANALYSIS OF THE PROPERTIES OF TAMARACK {Larix laricina (Du Roi) K. Koch) PARTICLEBOARD AND THERMALLY TREATED ORIENTED STRAND BOARD (OSB) Le Wang A thesis submitted to the faculty of graduate studies Lakehead University in partial fulfillment of the requirements for the degree of Master of Science in Forestry Wood Science and Technology Lakehead University Copyright © Le Wang 2014 ProQuest Number: '10611966 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProOuest ProQuest 10611966 Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition ® ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 ABSTRACT Engineered wood products (EWPs), for example, particleboard and oriented strand board (OSB), are normally made from wood residuals or small particles of under- utilized wood species for replacing solid sawn products as its cost effective, more uniform, and a more efficient method of using available timber resources.
    [Show full text]
  • Psme 46 Douglas-Fir-Incense
    PSME 46 DOUGLAS-FIR-INCENSE-CEDAR/PIPER'S OREGONGRAPE Pseudotsuga menziesii-Calocedrus decurrens/Berberis piperiana PSME-CADE27/BEPI2 (N=18; FS=18) Distribution. This Association occurs on the Applegate, Ashland, and Prospect Ranger Districts, Rogue River National Forest, and the Tiller and North Umpqua Ranger Districts, Umpqua National Forest. It may also occur on the Butte Falls Ranger District, Rogue River National Forest and adjacent Bureau of Land Management lands. Distinguishing Characteristics. This is a drier, cooler Douglas-fir association. White fir is frequently present, but with relatively low covers. Piper's Oregongrape and poison oak, dry site indicators, are also frequently present. Soils. Parent material is mostly schist, welded tuff, and basalt, with some andesite, diorite, and amphibolite. Average surface rock cover is 8 percent, with 8 percent gravel. Soils are generally deep, but may be moderately deep, with an average depth of greater than 40 inches. PSME 47 Environment. Elevation averages 3000 feet. Aspects vary. Slope averages 35 percent and ranges between 12 and 62 percent. Slope position ranges from the upper one-third of the slope down to the lower one-third of the slope. This Association may also occur on benches and narrow flats. Vegetation Composition and Structure. Total species richness is high for the Series, averaging 44 percent. The overstory is dominated by Douglas-fir and ponderosa pine, with sugar pine and incense-cedar common associates. Douglas-fir dominates the understory. Incense-cedar, white fir, and Pacific madrone frequently occur, generally with covers greater than 5 percent. Sugar pine is common. Frequently occurring shrubs include Piper's Oregongrape, baldhip rose, poison oak, creeping snowberry, and Pacific blackberry.
    [Show full text]
  • Properties of Western Larch and Their Relation to Uses of the Wood
    TECHNICAL BULLETIN NO. 285 MARCH, 1932 PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD BY R. P. A. JOHNSON Engineer, Forest Products Laboratory AND M. I. BRADNER In Charge^ Office of Forest Products y Region I Branch of Research, Forest Service UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. TECHNICAL BULLETIN NO. 285 MARCH, 1932 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD By R. P. A. JOHNSON, Engineer, Forest Products Laboratory^^ and M. I. BRADNER, in Charge, Office of Forest Products, Region 1, Branch of Research, Forest Service * CONTENTS Page Page Introduction 1 Mechanical and physical properties—Con. The larch-fir mixture 2 Resistance to decay, weathering, and Character and range of the western larch insects 39 forest __ 4 Reaction to preservative treatment 42 Occurrence 4 Heat and insulating properties 42 Character 4 Permeability by liquids 42 Size of stand 7 Tendency to impart odor or ñavor___:. _. 43 Cut and supply 9 Tendency to leach or exude extractives. _ 43 Merchandising practices 10 Chemical properties 43 distribution lO Fire resistance ., 43 Percentage of cut going into various lum- Characteristic defects of western larch 44 ber items 12 Natural defects 44 Descriptive properties of western larch 13 Seasoning defects 46 General description of the wood 13 Manufacturing defects 47 Heartwood content of lumber 13 Grades and their characteristics 47 Growth rings 14 Grade yield and production 48 Summer-wood content 14 Heartwood content 50 Figure. 14 Width of rings 50 How to distinguish western larch from other Grade descriptions .
    [Show full text]
  • Susceptibility of Larch, Hemlock, Sitka Spruce, and Douglas-Fir to Phytophthora Ramorum1
    Proceedings of the Sudden Oak Death Fifth Science Symposium Susceptibility of Larch, Hemlock, Sitka Spruce, and 1 Douglas-fir to Phytophthora ramorum Gary Chastagner,2 Kathy Riley,2 and Marianne Elliott2 Introduction The recent determination that Phytophthora ramorum is causing bleeding stem cankers on Japanese larch (Larix kaempferi (Lam.) Carrière) in the United Kingdom (Forestry Commission 2012, Webber et al. 2010), and that inoculum from this host appears to have resulted in disease and canker development on other conifers, including western hemlock (Tsuga heterophylla (Raf.) Sarg.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Douglas ex D. Don) Lindl.), and Sitka spruce (Picea sitchensis (Bong.) Carrière), potentially has profound implications for the timber industry and forests in the United States Pacific Northwest (PNW). A clearer understanding of the susceptibility of these conifers to P. ramorum is needed to assess the risk of this occurring in the PNW. Methods An experiment was conducted to examine the susceptibility of new growth on European (L. decidua Mill.), Japanese, eastern (L. laricina (Du Roi) K. Koch), and western larch (L. occidentalis Nutt.); western and eastern hemlock (T. canadensis (L.) Carrière); Sitka spruce; and a coastal seed source of Douglas-fir to three genotypes (NA1, NA2, and EU1) of P. ramorum in 2011. In 2012, a similar experiment was conducted using only the four larch species. Container-grown seedlings or saplings were used in all experiments. Five trees or branches of each species were inoculated with a single isolate of the three genotypes by spraying the foliage with a suspension of zoospores (105/ml).
    [Show full text]
  • DOUGLAS's Datasheet
    DOUGLAS Page 1of 4 Family: PINACEAE (gymnosperm) Scientific name(s): Pseudotsuga menziesii Commercial restriction: no commercial restriction Note: Coming from North West of America, DOUGLAS FIR is often used for reaforestation in France and in Europe. Properties of european planted trees (young and with a rapid growth) which are mentionned in this sheet are different from those of the "Oregon pine" (old and with a slow growth) coming from its original growing area. WOOD DESCRIPTION LOG DESCRIPTION Color: pinkish brown Diameter: from 50 to 80 cm Sapwood: clearly demarcated Thickness of sapwood: from 5 to 10 cm Texture: medium Floats: pointless Grain: straight Log durability: low (must be treated) Interlocked grain: absent Note: Heartwood is pinkish brown with veins, the large sapwood is yellowish. Wood may show some resin pockets, sometimes of a great dimension. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,54 0,04 Crushing strength *: 50 MPa 6 MPa Monnin hardness *: 3,2 0,8 Static bending strength *: 91 MPa 6 MPa Coeff. of volumetric shrinkage: 0,46 % 0,02 % Modulus of elasticity *: 16800 MPa 1550 MPa Total tangential shrinkage (TS): 6,9 % 1,2 % Total radial shrinkage (RS): 4,7 % 0,4 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 1,5 Fiber saturation point: 27 % Musical quality factor: 110,1 measured at 2971 Hz Stability: moderately stable NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate.
    [Show full text]
  • Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
    AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies.
    [Show full text]
  • Western Larch, Which Is the Largest of the American Larches, Occurs Throughout the Forests of West- Ern Montana, Northern Idaho, and East- Ern Washington and Oregon
    Forest An American Wood Service Western United States Department of Agriculture Larch FS-243 The spectacular western larch, which is the largest of the American larches, occurs throughout the forests of west- ern Montana, northern Idaho, and east- ern Washington and Oregon. Western larch wood ranks among the strongest of the softwoods. It is especially suited for construction purposes and is exten- sively used in the manufacture of lumber and plywood. The species has also been used for poles. Water-soluble gums, readily extracted from the wood chips, are used in the printing and pharmaceutical industries. F–522053 An American Wood Western Larch (Lark occidentalis Nutt.) David P. Lowery1 Distribution Western larch grows in the upper Co- lumbia River Basin of southeastern British Columbia, northeastern Wash- ington, northwest Montana, and north- ern and west-central Idaho. It also grows on the east slopes of the Cascade Mountains in Washington and north- central Oregon and in the Blue and Wallowa Mountains of southeast Wash- ington and northeast Oregon (fig. 1). Western larch grows best in the cool climates of mountain slopes and valleys on deep porous soils that may be grav- elly, sandy, or loamy in texture. The largest trees grow in western Montana and northern Idaho. Western larch characteristically occu- pies northerly exposures, valley bot- toms, benches, and rolling topography. It occurs at elevations of from 2,000 to 5,500 feet in the northern part of its range and up to 7,000 feet in the south- ern part of its range. The species some- times grows in nearly pure stands, but is most often found in association with other northern Rocky Mountain con- ifers.
    [Show full text]
  • Identification of Conifer Trees in Iowa This Publication Is Designed to Help Identify the Most Common Trees Found in Iowa
    Identification of Conifer Trees in Iowa This publication is designed to help identify the most common trees found in Iowa. It is based on vegetative characteristics including leaves, fruit, and bark. It is neither complete nor without possible oversights. Separate species are grouped by similar characteristics, mainly based on type and arrangement of leaves. These groups are; awl- or scale- like needles; single needles, flattened with rounded tips; single needles, square in cross section, with pointed tips; and needles in bundles or fasticles of two or more. Remember, vegetative character- istics are quite variable; use more than one specimen for comparison. Awl- or scale-like needles Juniperus Virginiana Eastern Red Cedar Leaves are dark green; leaves are both awl- and scale-like; cone is dark blue and berry-like. Thuja occidentalis Northern White Cedar Leaves are flattened and only of the scale type; cones have 4-6 scales; foliage is light green. Juniperus communis Common Juniper Leaves are awl shaped; cone is dark blue and berry-like. Pm-1383 | May 1996 Single needles, flattened with rounded tips Pseudotsuga menziesii Douglas Fir Needles occur on raised pegs; 3/4-11/4 inches in length; cones have 3-pointed bracts between the cone scales. Abies balsamea Abies concolor Balsam Fir White (Concolor) Fir Needles are blunt and notched at Needles are somewhat pointed, the tip; 3/4-11/2 inches in length. curved towards the branch top and 11/2-3 inches in length; silver green in color. Single needles, Picea abies Norway Spruce square in cross Needles are 1/2-1 inch long; section, with needles are dark green; foliage appears to droop or weep; cone pointed tips is 4-7 inches long.
    [Show full text]
  • Common Conifers in New Mexico Landscapes
    Ornamental Horticulture Common Conifers in New Mexico Landscapes Bob Cain, Extension Forest Entomologist One-Seed Juniper (Juniperus monosperma) Description: One-seed juniper grows 20-30 feet high and is multistemmed. Its leaves are scalelike with finely toothed margins. One-seed cones are 1/4-1/2 inch long berrylike structures with a reddish brown to bluish hue. The cones or “berries” mature in one year and occur only on female trees. Male trees produce Alligator Juniper (Juniperus deppeana) pollen and appear brown in the late winter and spring compared to female trees. Description: The alligator juniper can grow up to 65 feet tall, and may grow to 5 feet in diameter. It resembles the one-seed juniper with its 1/4-1/2 inch long, berrylike structures and typical juniper foliage. Its most distinguishing feature is its bark, which is divided into squares that resemble alligator skin. Other Characteristics: • Ranges throughout the semiarid regions of the southern two-thirds of New Mexico, southeastern and central Arizona, and south into Mexico. Other Characteristics: • An American Forestry Association Champion • Scattered distribution through the southern recently burned in Tonto National Forest, Arizona. Rockies (mostly Arizona and New Mexico) It was 29 feet 7 inches in circumference, 57 feet • Usually a bushy appearance tall, and had a 57-foot crown. • Likes semiarid, rocky slopes • If cut down, this juniper can sprout from the stump. Uses: Uses: • Birds use the berries of the one-seed juniper as a • Alligator juniper is valuable to wildlife, but has source of winter food, while wildlife browse its only localized commercial value.
    [Show full text]
  • End Jointing of Laminated Veneer Lumber for Structural Use
    End jointing of laminated veneer lumber for structural use J.A. Youngquist T.L. Laufenberg B.S. Bryant proprietary process for manufacturing extremely long Abstract lengths of the material both in panel widths and in LVL Laminated veneer lumber (LVL) materials rep- form. The proprietary process requires a substantial resent a design alternative for structural lumber users. capital investment, limiting production of LVL. If ex- The study of processing options for producing LVL in isting plywood facilities were adapted to processing of plywood manufacturing and glued-laminating facilities 5/8-inch- to 1-1/2-inch-thick panels, subsequent panel is of interest as this would allow existing production ripping and end jointing of the resultant structural equipment to be used. This study was conducted in three components could conceivably compete both in price and phases to assess the feasibility of using visually graded performance with the highest structural grades of lum- veneer to produce 8-foot LVL lengths which, when end ber. Herein lies the major concern of this study: Is it jointed, could be competitive with existing structural technically feasible to manufacture end-jointed LVL lumber products. Phase I evaluated panel-length from PLV panels made in conventional plywood 3/4-inch-thick LVL made from C- or D-grade 3/16-, 1/8-, presses? or 1/10-inch-thick veneer, and the effect of specimen width on flexural and tensile properties. Phase II evalu- An evaluation of the production and marketing ated the use of vertical and horizontal finger joints and feasibility of LVL products made from panel lengths scarfjoints to join 3/4-inch thicknesses of LVL.
    [Show full text]
  • Photosynthetic Characteristics of Dahurian Larch, Scotch Pine and White Birch Seedlings Native to Eastern Siberia Title Raised Under Elevated CO2
    Photosynthetic Characteristics of Dahurian Larch, Scotch Pine and White Birch Seedlings Native to Eastern Siberia Title Raised Under Elevated CO2 Author(s) Koike, T.; Yazaki, K.; Funada, R.; Kitao, M.; Maruyama, Y.; Takahashi, K.; Maximov, T. C.; Ivanov, B. I. Citation Eurasian Journal of Forest Research, 1, 31-37 Issue Date 2000-10 Doc URL http://hdl.handle.net/2115/22121 Type bulletin (article) File Information 1_P31-37.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Eurasian J. For. Res. 1: 31-37 , 2000 © Hokkaido University Forests, EJFC Photosynthetic Characteristics of Dahurian Larch, Scotch Pine and White Birch Seedlings Native to Eastern Siberia Raised Under Elevated CO2 Koike, T.1*, Yazaki, K.2, Funada, R.2, Kitao, M.3, Maruyama, Y.3, Takahashi, K.2, Maximov, T. C. 4 and Ivanov, B. 1.4 1 Hokkaido University Forests, Sapporo 060-0809, Japan 2 Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 3 Forestry and Forest Products Research Institute, Hokkaido Research Center, Sapporo 062-8515, Japan 4 Yakut Institute of Biology, The Russian Academy of Sciences, Siberia Division, Yakutsk 67789c, Republic of Sakha, Russia Abstract Growth pattern and biomass production of trees will be affected by increasing atmospheric CO2, which may change the vegetation pattern in eastern Siberian where continuous permafrost is present. In this phytotron experiment, effects of enriched CO2 on the shoot growth and photosynthetic parameters were examined to predict future regeneration capacity of major tree species in the permafrost region. The leader shoot of larch and white birch ceased to grow at 80-90 days after leaf unfolding, by contrast, Scotch pine stopped to shoot elongation at ca.
    [Show full text]
  • Current U.S. Forest Data and Maps
    CURRENT U.S. FOREST DATA AND MAPS Forest age FIA MapMaker CURRENT U.S. Forest ownership TPO Data FOREST DATA Timber harvest AND MAPS Urban influence Forest covertypes Top 10 species Return to FIA Home Return to FIA Home NEXT Productive unreserved forest area CURRENT U.S. FOREST DATA (timberland) in the U.S. by region and AND MAPS stand age class, 2002 Return 120 Forests in the 100 South, where timber production West is highest, have 80 s the lowest average age. 60 Northern forests, predominantly Million acreMillion South hardwoods, are 40 of slightly older in average age and 20 Western forests have the largest North concentration of 0 older stands. 1-19 20-39 40-59 60-79 80-99 100- 120- 140- 160- 200- 240- 280- 320- 400+ 119 139 159 199 240 279 319 399 Stand-age Class (years) Return to FIA Home Source: National Report on Forest Resources NEXT CURRENT U.S. FOREST DATA Forest ownership AND MAPS Return Eastern forests are predominantly private and western forests are predominantly public. Industrial forests are concentrated in Maine, the Lake States, the lower South and Pacific Northwest regions. Source: National Report on Forest Resources Return to FIA Home NEXT CURRENT U.S. Timber harvest by county FOREST DATA AND MAPS Return Timber harvests are concentrated in Maine, the Lake States, the lower South and Pacific Northwest regions. The South is the largest timber producing region in the country accounting for nearly 62% of all U.S. timber harvest. Source: National Report on Forest Resources Return to FIA Home NEXT CURRENT U.S.
    [Show full text]