Wood Identification and Chemistry' Covers the Physicalproperties and Structural Features of Hardwoods and Softwoods

Total Page:16

File Type:pdf, Size:1020Kb

Wood Identification and Chemistry' Covers the Physicalproperties and Structural Features of Hardwoods and Softwoods 11 DOCUMENT RESUME ED 031 555 VT 007 853 Woodworking Technology. San Diego State Coll., Calif. Dept. of Industrial Arts. Spons Agency-Office of Education (DHEA Washington, D.C. Pub Date Aug 68 Note-252p.; Materials developed at NDEA Inst. for Advanced Studyin Industrial Arts (San Diego, June 24 -Au9ust 2, 1968). EDRS Price MF -$1.00 He -$13.20 Descriptors-Curriculum Development, *Industrial Arts, Instructional Materials, Learning Activities, Lesson Plans, Lumber Industry, Resource Materials, *Resource Units, Summer Institutes, Teaching Codes, *Units of Study (Sublect Fields), *Woodworking Identifiers-*National Defense Education Act TitleXIInstitute, NDEA TitleXIInstitute, Woodworking Technology SIX teaching units which were developed by the 24 institute participantsare given. "Wood Identification and Chemistry' covers the physicalproperties and structural features of hardwoods and softwoods. "Seasoning" explainsair drying, kiln drying, and seven special lumber seasoning processes. "Researchon Laminates" describes the bending of solid wood and wood laminates, beam lamination, lamination adhesives,. andplasticlaminates."Particleboard:ATeachingUnitexplains particleboard manufacturing and the several classes of particleboard and theiruses. "Lumber Merchandising" outhnes lumber grades andsome wood byproducts. "A Teaching Unitin Physical Testing of Joints, Finishes, Adhesives, and Fasterners" describes tests of four common edge pints, finishes, wood adhesives, and wood screws Each of these units includes a bibhography, glossary, and student exercises (EM) M 55, ...k.",z<ONR; z _: , , . "'zr ss\ ss s:Ts s , s' !, , , , zs "" z' s: - 55 Ts 5. , -5, 5,5 . 5, :5,5, s s``s ss ' ,,, 4 ;.< ,s ssA 11111.116; \ ss s, : , \s, s's \ , , 's's \ sz z, ;.:4 1;y: SS lza'itVs."4,z ...':',\\Z'z.,'I,,\ "t"-...,,, `,.. .."\z..-,.,,,..\'',... -,-.",.'", '..?V"z`..,..n. , ,,, '',,,...,\,\ ..k.",..z,... s. \.,.. -',.:^:.,-;.,N.. -'\., .'' ,,,. ; 'N,..t.,:...'Ak'z' .,.._.,,..:,,_,..',iZ*,. ,,\', , .",,Z,Zz.lk,z,kk.ss:Z...,..V...,". ',Z.0,:,,z,z,,Z"Zz:',..zs:Z".,..Aaz;"'",'..`",zzZZ:ZZzo,..,-'," . ' '. '..5.:z.,,z, ,`,',, .,,,....:,...f: , .".... ,, ' ,.s " 4 `, , s ' 4 sss\ , ss, " s, .> ozz,. \ zA's , . , Ato s' : . , \ S \.. , , , , V 5551C003 Vc91, ,A, , -111, '14411 "77-A«,;711 4 U.S. DEPARTMENT OF HEALTH, EDUCATION 8.WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLi. AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT 0FFICIAL OFFICE OF EDUCATION 1968 POSITION OR POLICY. NDEA INSTITUTE for Advanced Study. in INDUSTRIAL ARTS * WOODWORKING TECHNOLOGY__ Six Week Session June 24 toAugust 2 in cooperation with U. S. Office of Education as authorisedunder Title XI of the NDEA (as amended) INDUSTRIAL ARTS DEPARTMENT SAN DIEGO STATE COLLEGE , San Diego, California FAgio,1711r., Mr714707 " qr FACULTY Dr. Gerald K.Hanzapr, Director Harold L. Marsters,Assistant Director frank E. Evans,Coordinator STAFF Gudrun Fairchild,Secretary Luther E. Daugherty,lab Assistant David B. Graham,Lab Assistant Harley J. Gasmann,Student Assistant Robert G. Hanlon,Student Assistant Charles J. Printz,Student ASsistant David W. Sykes,Student Assistant PART 3D IPANTS NUEA INST/TUTE IN WOODWORKING TECHNOLOGY ACKER,Robert A. LONG, Oreland, Pennsylvanist Blanchard, Pennsylvania AIIONE, Eugene D. MOORE,Robert J. Wheaton, 121inois Fargo, North Dakota NICER, Ervin G. MURDOCK, Percy Santa Baebara, California Picayune, Mississippi READING, Norman BONAN, Al L. E. ?bntrose, Colorado CauMbuSsOhiO DAVIS, RAY-M. RICHARDSON, Theral B. Tucson, Arizona Salt LakB Citys Utah DIENER, RobertF. ROSSI JamesN. Kansas Clity, _Missouri California SALA, Howard FOLTZ, ADA= W. Northridge, California Denver, Coi-orado FREEMAN, Dorlald B. SEIFERT, Hargy C. Cheyenne, Wytming San Diego, California GADWAH, Neal D. SMITH, Richard N. Hampton, New Hampshire Burlington, Iowa THORSEN, Michael 0. HARLOW, James Frank Abilene, Texas idinonds, Washington JOHNSON, Stanley J. WALKER, Belton L. Crane, Oregon Winter Park, Florida JONES,Benjamti H. WILIAM, A. D. Carlsbad, New Mexico Haynesville, Louisiana Vrorim,,vrt,- ;',; - . -, ', *.; c ,';.;' A TABLE OF CONTENTS : ;- r 1 ; INSTITUTE .DATA 0 . 9 .STAFF 0 # 0 ii .. PICTURE OF PARTICIPANTS AND. STAFF iii .LISTING OF INSTITUTE PARTICIPANTS SECTION I WOOD IDENTIFICATION AND CHEMISTRY SECTION II a. SEASONING SECTION III ari;RESEARCH ON tatmAr.s SECTION IV PkliTICL3BOARD:A Teaching Unit . SECTION' V. - LUKER IERCFAIWIS MG SECTION VI - A TEACHING UNIT IN PHISICAL ISSTING ION aiGe-4,41. *: - V 1,c 1,34 WOOD IDENTIFICATIONAND CHEMISTRY =1101MMIIMINIMMIlli Presented to Dr. G. K. Hammer Mr. H. Marsters Mr. F. Evans San Diego StateCollege In PartialFulfillment of the Requirementsfor the Course298 Wood TechnologyInstitute =11=11M.. by Robert Acker Robert Diener Percy Murdock Richard Smith Summer 1968 TABLE OP CONTENTS PREFACE Page 1 PFYSICAL PROPERTIES OF WOOD Page 2 STRUCTURAL FEATURES OF WOOD Page 6 SOFTWOODS Page 12 HARDWOMS Page 21 THE CHEYISTRY OF WOOD Page 31 WOOD PRESERVATIVES Page 34 BIBLIOGRAFFY Page 38 GLOSSARY (see Teaching Aids) Page 40 TEACHING AIDS Page 40 STUDENT LAB EXPERIENCES Page 48 HANDOUT SHEETS Page 51 , 1. PREFACE Wood identification, amentioned in this paper, should give the reader a better understanding of the identification of many species. In this paper we believe that it is neces- sary for students to have a better understanding of how to identify different species, which will lead to better selec- tion of woods for jobs in everyday life. Identification of wood is comparatively more difficult than identification of the tree that produced it.There are two main procedures for wood identification--by keys and by cards. .The most pronounced the reliable specific difference in the appearances of woods are found in their cellular struc- ture. Color, odor, weight and hardness help in identifying woods, but as a rule such qualities are too variable to be used singly in distinguishing a large number of woods. Hardwood of ring-porous and diffused-porous will be defined with information about general characteristics, such as growth rings, rays, vessels, sapwood, and heartwood. Softwoods can be divided into two groups; the resinous, those species having resin ducts and the nonresinous, those without resin ducts. There are no perfect tools for wood iden- tification. While we have attempted to give an approach to this problem that seems to be good; we feel there is still room for research and study. ' 2. COLOR A KEY TO WOOD IDENTIFICATION Woad comes in a variety of naturalcolors which may range from almost white,as in the sapwood of many species, to the jet black of the heartwoodof black ebony. Color differences may exist, however, in a single sample of wood;as between sapwood and heartwood, earlywood andlatewood, or between ray tissue and the surroundingwood. Heartwood present a wide variation of colors, predominantly brownsof various shades. Sapwood is always lighter. Color characterizes various species,but is a feature difficult to describe with words. Also, it may vary within a species and is subject to change dueto exposure or treatment. Usually, color is estimated visually,but it may also be meas- ured by technicalmeans. The color of wood exposed to the atmosphere frequently darkens; sapwood usuallydarkens mor ; than heartwood. Such changes are generally chemical in nature; they result from oxidation oforganic compounds contained in wood. Change of colormay take place soon after felling trees in the forests or after sawinggreen logs to lumber. The wood of alder quickly changes from whitishor reddish, then fades to a pale brown. The heartwood of black locust turns from light green to dark brown. Douglas-fir becomes reddish. Lorgexpo- sure of light-colored woods to the sun, especially in high eleva- tions, changes their color to brown, whilelong exposure to rain or high humidity changes them to dark gray. pok Dark natural color usually indicates high durability. In F general, color is imparter to wood by extraneousmaterials de- posited mainly in the heartwood. Many of these materials, known also as extractives, are toxic to wood decayingfungi. Their presence is the cause of high durability of woods like redwood, cypress, cedar, oak, black locust, and osage-orange.For the same reason, heartwood of these and other species ismore durable than sapwood, and woods like basswood, willow, andpoplar pos- sess low durability, Light color, however, does not always denote lack of durability. Bald cypress, certain cedars and sassafras are examples. Color-imparting materials may beso abundant in some woods that they can be utilized as dyes. Before the development of synthetic coloring materials. Some dyes were obtained from woods. It is also noteworthy that some woods, suchas black locust, honey locust2 and a number of tropical speciesare fluorescent. Natural coloration in many woods is very attractiveand may be preserved with transparent finishes,or it may be artifi- cally changed by dyeing or bleaching. Color changesmay also be produced by action of water or steam. Oak becomes almost black after prolonged storage under water. European beech is often steamed to darken its color and make it more desirable for the furniture market. Walnut and sweetgum are also treated with steam to darken their sapwood so that it is bet- ter matched with heartwood. (1: 525-527) In inexpensive furniture the nature color of various woods is often imitated by drying less expensive species. Irregular deposition
Recommended publications
  • FAOSTAT-Forestry Definitions
    FOREST PRODUCTS DEFINITIONS General terms FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Item Item Code Definition code coniferous C Coniferous All woods derived from trees classified botanically as Gymnospermae, e.g. Abies spp., Araucaria spp., Cedrus spp., Chamaecyparis spp., Cupressus spp., Larix spp., Picea spp., Pinus spp., Thuja spp., Tsuga spp., etc. These are generally referred to as softwoods. non-coniferous NC Non-Coniferous All woods derived from trees classified botanically as Angiospermae, e.g. Acer spp., Dipterocarpus spp., Entandrophragma spp., Eucalyptus spp., Fagus spp., Populus spp., Quercus spp., Shorea spp., Swietonia spp., Tectona spp., etc. These are generally referred to as broadleaves or hardwoods. tropical NC.T Tropical Tropical timber is defined in the International Tropical Timber Agreement (1994) as follows: “Non-coniferous tropical wood for industrial uses, which grows or is produced in the countries situated between the Tropic of Cancer and the Tropic of Capricorn. The term covers logs, sawnwood, veneer sheets and plywood. Plywood which includes in some measure conifers of tropical origin shall also be covered by the definition.” For the purposes of this questionnaire, tropical sawnwood, veneer sheets and plywood shall also include products produced in non-tropical countries from imported tropical roundwood. Please indicate if statistics provided under "tropical" in this questionnaire may include species or products beyond the scope of this definition. Year Data are requested for the calendar year (January-December) indicated. 2 Transactions FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Element Element Code Definition code 5516 Production Quantity Removals The volume of all trees, living or dead, that are felled and removed from the forest, other wooded land or other felling sites.
    [Show full text]
  • Flier: Deck Connection and Fastening Guide (F-DECKCODE13)
    Deck Connection and Fastening Guide RECOMMENDATIONS FOR THE CONSTRUCTION OF CODE-COMPLIANT DECKS 800-999-5099 | www.strongtie.com Contents Introduction — Improperly Built Decks Can Be Dangerous .............3 Code Concerns ..............................................4 Critical Deck Connections ......................................5 Existing Decks: Retrofit or Replace .............................6–7 Ledger Attachment ...........................................8 Lateral Load Connection .......................................9 Footings ...................................................10 Visit the Deck Center at Post Bases ..............................................11–12 Beam-to-Post Connections ....................................13 www.strongtie.com/deckcenter Joists Terminating into Beam/Ledger. 14 Everything You Need in One Place Joists Bearing on a Beam .....................................15 Railing Post-to-Deck Framing .................................16 We have brought together all of our Stair Stringers & Treads ......................................17 information and training on building Selecting Connectors and Fasteners ............................18 stronger, safer decks in one location Stainless-Steel Connectors ...................................19 Correct Fasteners for Use with Simpson Strong-Tie Connectors .......20 to make learning easier than ever. Structural Wood Fastening ....................................21 Corrosion-Resistant Fasteners for Decking ....................22–23 Quik Drive Auto-Feed Screw Driving
    [Show full text]
  • Migracijske Teme 4/1988
    Migracijske teme 15 (1999), 1-2: 63-153 UDK: 809.45-0 Izvorni znanstveni rad Primljeno: 17. 11. 1998. Paolo Agostini University of Padova [email protected] LANGUAGE RECONSTRUCTION – APPLIED TO THE URALIC LANGUAGES* SUMMARY After pointing out the shortcomings and methodological weakness of the general theory of linguistic reconstruction, the author disputes the alleged antiquity of Uralic. Proto-Uralic as recon- structed by the scholars seems to be the sum of a set of features belonging to several distinct language families. The paper examines a number of lexical concordances with historically attested languages and comes to the conclusion that the Proto-Uralic word-stock is the result of a sum of borrowings that took place from the most disparate languages: Balto-Slavic, Old Swedish, several Turkic dialects, Mongolic, Tunguz, Aramaic, Hebrew, Arabic, late Middle Persian dialects, Byzantine Greek and Latin. Yet, other languages may also come into account: Chinese, Caucasian languages as well as lan- guages unknown in present day are possible candidates. A large number of bases of the Uralic word- stock can be easily identified by following a few phonological constraints. The linguistic features of the Uralic daughter-languages seem to show that they originated from a pidgin language spoken along the merchant routes that connected the Silk Road to North- and East-European trade. It is a well-known phenomenon that sometimes, when groups of people speaking different languages come into contact for the first time, a new restricted language system (lingua franca or pidgin) comes into being in order to cater to essential common needs.
    [Show full text]
  • 15 – Construction Vocabulary
    CONSTRUCTION VOCABULARY ABC (Aggregate Base Course): used in mixing with concrete and placed below concrete prior to the pouring of sidewalks, driveways, etc. It serves as a compacted solid base. Air return: A series of ducts in air conditioning system to return used air to air handler to be reconditioned. Ameri-mix: Maker of the pre-blended bag mixes we use in masonry work. Anchor Bolts: (also called J-bolts) Bolts embedded in concrete foundation used to hold sills in place. Anchor Straps: Straps embedded in concrete foundation used to hold sills in place, most commonly MASAs in our houses. Apron: A piece of driveway between sidewalk and curb. Back Fill: The replacement of dirt in holes, trenches and around foundations. Backing (aka blocking): a non-structural (usually 2x) framed support (i.e. for drywall). Balloon Framing: A special situationally required type of construction with studs that are longer than the standard length. Bay: The space between two parallel framing members (i.e. trusses). Beam: A horizontal structural member running between posts, columns or walls. Bearing wall (aka partition): A wall which carries a vertical structural load in addition to its own weight. Bevel: To cut an angle other than a right angle, such as on the edge of a board. Bird block (aka frieze board): An attic vent located between truss tails. Bird’s Mouth: A notch cut in the underside of a rafter to fit the top plate. Blocking (aka backing): A non-structural 2x framing support (i.e. for drywall) Board: Lumber less than 2” thick. Board Foot: The equivalent of a board 1’ square and 1” thick.
    [Show full text]
  • 8-Inch Jointer-Planer Model JJP-8BT
    Operating Instructions and Parts Manual 8-inch Jointer-Planer Model JJP-8BT JET 427 New Sanford Road LaVergne, Tennessee 37086 Part No. M-707400 Ph.: 800-274-6848 Revision B 08/2014 www.jettools.com Copyright © 2014 JET 1.0 Warranty and Service JET warrants every product it sells against manufacturers’ defects. If one of our tools needs service or repair, please contact Technical Service by calling 1-800-274-6846, 8AM to 5PM CST, Monday through Friday. Warranty Period The general warranty lasts for the time period specified in the literature included with your product or on the official JET branded website. • JET products carry a limited warranty which varies in duration based upon the product. (See chart below) • Accessories carry a limited warranty of one year from the date of receipt. • Consumable items are defined as expendable parts or accessories expected to become inoperable within a reasonable amount of use and are covered by a 90 day limited warranty against manufacturer’s defects. Who is Covered This warranty covers only the initial purchaser of the product from the date of delivery. What is Covered This warranty covers any defects in workmanship or materials subject to the limitations stated below. This warranty does not cover failures due directly or indirectly to misuse, abuse, negligence or accidents, normal wear-and-tear, improper repair, alterations or lack of maintenance. JET woodworking machinery is designed to be used with Wood. Use of these machines in the processing of metal, plastics, or other materials may void the warranty. The exceptions are acrylics and other natural items that are made specifically for wood turning.
    [Show full text]
  • Exercises in Wood-Working, with a Short Treatise on Wood;
    '^^ %."^o* ^r c. .^^~:, "<^^ '^' V ..^"^ .o"^ cO.".-* V^o " A.'^'' ..^'r- v^^ v^' y ,t'», < '-^0^ /. CV « o,. *r;.' aO ^. 'bV" X-O-T- i'^'V. .<•*' • 'VJ"""^^ ' o „ » <vf^ > V »*•»' ^ aO s' EXERCISES IN WOOD-WORKII^G WITH A SHORT TREATISE ON WOOD WRITTEN FOR MANUAL TRAINING GLASSES IN SCHOOLS AND COLLEGES BY IVIN SICKELS, M. S., M. D. ^ NEW YOKE D. APPLETON AND COMPANY 1890 K Copyright, 1889, By D. APPLETON AND COMPAlSfY. i-'3}P') PREFACE. The exercises in wood-working in this book were pre- pared by me during the summer of 1883, for the students of the College of the City of New York. Subsequent teaching suggested many changes and additions, until the manuscript was scarcely presentable. This manuscript has been copied for other schools ; and now, in order that those who have recently asked for it may receive it in better shape, this little volume is printed. I am indebted to Mr. Bashford Dean for the part relat- ing to injurious insects, which was written expressly for this book. I. S. New York, September, 1889. CONTENTS PAGE Introduction = , 7 Part First.—Wood. Structure of wood 13 Composition of wood 18 Branching of stems 19 Age of trees .20 Decay of trees 20 Season for cutting 21 Milling 31 Drying of wood 22 Warping 23 Properties of wood 24 Defects in wood 28 Measure and value of wood 29 Kinds of wood 30 Table of chief qualities of wood 38 Wood and iron 38 Wood-working trades 39 Parasitic plants . .41 Timber-borers 45 Preservation of wood 52 Part Second.—Exercises.
    [Show full text]
  • CULTURAL HERITAGE in MIGRATION Published Within the Project Cultural Heritage in Migration
    CULTURAL HERITAGE IN MIGRATION Published within the project Cultural Heritage in Migration. Models of Consolidation and Institutionalization of the Bulgarian Communities Abroad funded by the Bulgarian National Science Fund © Nikolai Vukov, Lina Gergova, Tanya Matanova, Yana Gergova, editors, 2017 © Institute of Ethnology and Folklore Studies with Ethnographic Museum – BAS, 2017 © Paradigma Publishing House, 2017 ISBN 978-954-326-332-5 BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF ETHNOLOGY AND FOLKLORE STUDIES WITH ETHNOGRAPHIC MUSEUM CULTURAL HERITAGE IN MIGRATION Edited by Nikolai Vukov, Lina Gergova Tanya Matanova, Yana Gergova Paradigma Sofia • 2017 CONTENTS EDITORIAL............................................................................................................................9 PART I: CULTURAL HERITAGE AS A PROCESS DISPLACEMENT – REPLACEMENT. REAL AND INTERNALIZED GEOGRAPHY IN THE PSYCHOLOGY OF MIGRATION............................................21 Slobodan Dan Paich THE RUSSIAN-LIPOVANS IN ITALY: PRESERVING CULTURAL AND RELIGIOUS HERITAGE IN MIGRATION.............................................................41 Nina Vlaskina CLASS AND RELIGION IN THE SHAPING OF TRADITION AMONG THE ISTANBUL-BASED ORTHODOX BULGARIANS...............................55 Magdalena Elchinova REPRESENTATIONS OF ‘COMPATRIOTISM’. THE SLOVAK DIASPORA POLITICS AS A TOOL FOR BUILDING AND CULTIVATING DIASPORA.............72 Natália Blahová FOLKLORE AS HERITAGE: THE EXPERIENCE OF BULGARIANS IN HUNGARY.......................................................................................................................88
    [Show full text]
  • Conservation Assessment for Butternut Or White Walnut (Juglans Cinerea) L. USDA Forest Service, Eastern Region
    Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. USDA Forest Service, Eastern Region 2003 Jan Schultz Hiawatha National Forest Forest Plant Ecologist (906) 228-8491 This Conservation Assessment was prepared to compile the published and unpublished information on Juglans cinerea L. (butternut). This is an administrative review of existing information only and does not represent a management decision or direction by the U. S. Forest Service. Though the best scientific information available was gathered and reported in preparation of this document, then subsequently reviewed by subject experts, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. 2 Table Of Contents EXECUTIVE SUMMARY .....................................................................................5 INTRODUCTION / OBJECTIVES.......................................................................7 BIOLOGICAL AND GEOGRAPHICAL INFORMATION..............................8 Species Description and Life History..........................................................................................8 SPECIES CHARACTERISTICS...........................................................................9
    [Show full text]
  • Itening Guide
    itening Guide There are three essential tasks involved in the making of any woodwork project. The first is to cut out and shape the components; the second is the joining of those components; and the third and final task is the finishing of the article. This appendix provides you with information about the best ways to fasten your workpieces together, to ensure your project's long life. The options are between adhesives, nails, screws and bolts. NAILS Nailing is a quick, efficient and economical way of joining timber. lf the correct nails are chosen, there is no reason why the joints should not be durable. Timber framed houses, with most of the framing just nailed together, have stood the test of time. The listing of nail types that follows provides an overview of commonly used nails. This listing is not complete - nails exist for specific purposes such as boat-building, but these are outside the requirements of the normal handyman. _ Nail Types: Gommon Bullet Head: Used for hardwood framing and general fixing. Flat Head: Used for softwood framing, fixing softwoods or anywhere bullet heads would tend to pull through. Wire Brads: Small bullet head nails, used for attaching decorative mouldings. Clouts: Small nails with a relatively large flat head, used for attaching thin sheet material. Nail Types: Special Purpose Tacks: Used principally for upholstery; commonly blue- black in colour. Panel Pins: Used for fixing plywood panelling to timber framing; "brown" plated. Hardboard Nails: Used to attach hardboard ("masonite"); generally zinc plated. Plaster Board Used for fixing plasterboard to timber framing; Nails: zinc plated.
    [Show full text]
  • Juglans Spp., Juglone and Allelopathy
    AllelopathyJournatT(l) l-55 (2000) O Inrernationa,^,,r,':'r::;:';::::,:rt;SS Juglansspp., juglone and allelopathy R.J.WILLIS Schoolof Botany.L.iniversity of Melbourre,Parkville, Victoria 3052, ALrstr.alia (Receivedin revisedform : February 26.1999) CONTENTS 1. Introduction 2. HistoricalBackground 3. The Effectsof walnutson otherplants 3.i. Juglansnigra 3.1.1.Effects on cropplants 3. I .2. Eft'ectson co-plantedtrees 3. 1 .3 . Effectson naturalvegetation 3.2. Juglansregia 3.2.1. Effectson otherplalrts 3.2.2.Effects on phytoplankton 1.3. Othel walnuts : Juglans'cinerea, J. ntttlor.J. mandshw-icu 4. Juglone 5. Variability in the effect of walnut 5.1. Intraspecificand Interspecific variation 5.2. Seasonalvariation 5.3 Variation in the effect of Juglansnigra on other.plants 5.4. Soil effects 6. Discussion Ke1'rvords: Allelopathy,crops, history, Juglan.s spp., juglone. phytoplankton,walnut, soil, TTCCS 1. INTRODUCTION The"rvalnuts" are referable to Juglans,a genusof 20-25species with a naturaldistribution acrossthe Northern Hemisphere and extending into SouthAmerica. Juglans is a memberof thefamily Juglandaceae which contains6 or 7 additionalgenera including Cruv,a, Cryptocctrva and a total of about 60 species. Walnuts are corrunerciallyimportant as the sourceof the ediblewalnut, the highly prizedtimber and as a specimentrees. Eating walnutsare usually obtarnedfrom -/. regia (the colrunonor Persianwalnut, erroneousll'known as the English walnut)- a nativeof SEEurope and Asia, which haslong been cultivated, but arealso sometin.res availablelocally from other speciessuch as J. nigra (back walnut) - a native of eastern North America andJ. ntajor, J. calfornica andJ. hindsii, native to the u,esternu.S. ILillis Grafting of supcrior fnrit-bearing scions of J. regia onlo rootstocksof hlrdier spccics.
    [Show full text]
  • Beginnings of Counting and Numbers Tallies and Tokens
    Beginnings of Counting and Numbers Tallies and Tokens Picture Link (http://www.flickr.com/photos/quadrofonic/834667550/) Bone Tallies • The Lebombo Bone is a portion of • The radius bone of a wolf, a baboon fibula, discovered in the discovered in Moravia, Border Cave in the Lebombo Czechoslovakia in 1937, and mountains of Swaziland. It dates dated to 30,000 years ago, has to about 35,000 years ago, and fifty‐five deep notches carved has 29 distinct notches. It is into it. Twenty‐five notches of assumed that it tallied the days of similar length, arranged in‐groups a lunar month. of five, followed by a single notch twice as long which appears to • terminate the series. Then Picture Link starting from the next notch, also (http://www.historyforkids.org/learn/africa/science/numbers.htm) twice as long, a new set of notches runs up to thirty. • Picture link (http://books.google.com/books?id=C0Wcb9c6c18C&pg=PA41&lpg=PA41 &dq=wolf+bone+moravia&source=bl&ots=1z5XhaJchP&sig=q_8WROQ1Gz l4‐6PYJ9uaaNHLhOM&hl=en&ei=J8D‐ TZSgIuPTiALxn4CEBQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0 CCsQ6AEwAw) Ishango Bone • Ishango Bone, discovered in 1961 in central Africa. About 20,000 years old. Ishango Bone Patterns • Prime 11 13 17 19 numbers? • Doubling? 11 21 19 9 • Multiplication? • Who knows? 3 6 4 8 10 5 5 7 Lartet Bone • Discovered in Dodogne, France. About 30,000 years old. It has various markings that are neither decorative nor random (different sets are made with different tools, techniques, and stroke directions).
    [Show full text]
  • Chippendale Mirror
    uring the late 18th century, elaborately framed mirrors, known as looking glasses, served as testimonials to the Dwealth of their owners. A looking glass similar to the one shown here would have cost the owner 10 to 12 shillings, a hefty price considering that the average wage for a skilled tradesman of the time was about 6 shillings a day. This is the first serious piece I give my students to make. Be- cause I’m blending a traditional piece into a modern curricu- lum, I don’t go nuts over historical precedence and technique, and I take full advantage of modern machinery. For a small project, this mirror introduces a wide range of skills from basic design and layout to veneering and scrollwork. Each year, my class ends up with a great collection of stunning mir- rors that they present as thank-you gifts to mom and dad for the thousands doled out for tuition. Begin by constructing a two-layer frame Despite its elaborate appearance, this project has only two main parts. The frame, which I make first, consists of a visible mitered molding in mahogany that sits on top of a poplar subframe; sur- rounding it are scrollsawn parts made from a shopmade core with figured veneer (in this case makore) as the face veneer and plain veneer on the back. The common way to build a frame is to use 3⁄4-in.-thick primary Build a wood and miter the corners. Even when the joints are splined or Chippendale Mirror nailed, this is a poor approach.
    [Show full text]