Invasive Alien Species – Framework for the Identification of Invasive Alien Species of EU Concern

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Alien Species – Framework for the Identification of Invasive Alien Species of EU Concern Invasive alien species – framework for the identification of invasive alien species of EU concern ENV.B.2/ETU/2013/0026 Lithobates (Rana) catesbeianus (Riccardo Scalera) Contractor: Natural Environment Research Council Project leader: Helen Roy - Centre for Ecology & Hydrology, Benson Lane, Wallingford, OX10 8BB, UK; Tel: +44 1491 692252; Fax: + 44 1491 692424; Email: [email protected] Invasive alien species – framework for the identification of invasive alien species of EU concern (ENV.B.2/ETU/2013/0026) Report authors Helen Roy CEH Karsten Schonrogge CEH Hannah Dean CEH Jodey Peyton CEH Etienne Branquart Belgian Biodiversity Platform Sonia Vanderhoeven Belgian Biodiversity Platform Gordon Copp CEFAS Paul Stebbing CEFAS Marc Kenis CABI Wolfgang Rabitsch EAA Franz Essl EAA Stefan Schindler EAA Sarah Brunel EPPO Marianne Kettunen IEEP Leonardo Mazza IEEP Ana Nieto IUCN James Kemp IUCN Piero Genovesi ISSG Riccardo Scalera ISSG Alan Stewart University of Sussex Page 2 of 298 Invasive alien species – framework for the identification of invasive alien species of EU concern (ENV.B.2/ETU/2013/0026) Acknowledgements The project team is grateful to the European Commission for funding this study. Particular thanks to Valentina Bastino and Myriam Dumortier for their invaluable support and guidance throughout. Thanks also to Niall Moore and Olaf Booy (GB Non-Native Species Secretariat) for contributions in relation to the GB NNRA. The Project team would also like to gratefully acknowledge the many other experts who contributed to the study particularly through the workshop and contribution of case studies (Tim Blackburn, Dan Minchin, Wolfgang Nentwig, Sergej Olenin, Hanno Sandvik). Additionally, thanks to Sandro Bertolino, Adriano Martinoli, Lucas Wauters, John Gurnell and Peter Lurz, for testing on the Grey squirrel (Sciurus carolinensis) the GB NNRA protocol for risk assessment updated further to the results of this study. Page 3 of 298 Invasive alien species – framework for the identification of invasive alien species of EU concern (ENV.B.2/ETU/2013/0026) Contents Report authors ........................................................................................................................................ 2 Acknowledgements ................................................................................................................................. 3 Contents .................................................................................................................................................. 4 Executive summary ................................................................................................................................. 8 Task 1: Literature review and critical assessment of existing risk assessment methodologies on IAS ................................................................................................................................................. 8 Task 2: Develop minimum standards for risk assessment methodologies .................................. 9 Task 3: Risk assessment workshop ............................................................................................. 10 Task 4: Screening of existing risk assessment methodologies ................................................... 12 Task 5: Screening of potential “IAS of EU Concern” and proposal of a list ................................ 13 Concluding remarks and key recommendations ........................................................................ 14 Acronyms .............................................................................................................................................. 16 Glossary ................................................................................................................................................. 19 Introduction .......................................................................................................................................... 20 General approach ................................................................................................................................. 23 Task 1: Literature review and assessment of existing risk assessment methodologies on IAS ............ 25 Task overview ............................................................................................................................. 25 Task 1.1: Review scope of current risk assessments for developing minimum standards ........ 25 International standards: informing the development of minimum standards ................ 30 Identification of relevant risk assessment protocols .................................................................. 33 Case studies of selected protocols ............................................................................................. 44 1. European and Mediterranean Plant Protection Organisation (EPPO) Decision- support scheme (DSS) for quarantine pests (Text provided by S. Brunel) ............. 44 2. European and Mediterranean Plant Protection Organisation (EPPO) Prioritization Process for invasive alien plants (Text provided by S. Brunel)............................... 46 3. Invasive Species Environmental Risk Assessment (ISEIA) (Text provided by E. Branquart) .............................................................................................................. 47 4. Harmonia+ (Text provided by B. D’hondt and E. Branquart) .................................. 48 5. Pandora+ – a risk screening procedure for IAS-hosted pathogens and parasites (Text provided by B. D’hondt) ................................................................................ 50 6. Great Britain Non-native Species Risk Assessment (GB NNRA) (Text provided by O. Booy) ...................................................................................................................... 51 7. German-Austrian Black List Information System (GABLIS) (Text provided by W. Rabitsch) ................................................................................................................. 52 8. Norwegian alien species impact assessment (Text provided by H. Sandvik) ......... 53 Page 4 of 298 Invasive alien species – framework for the identification of invasive alien species of EU concern (ENV.B.2/ETU/2013/0026) 9. Generic Impact Scoring System GISS (Text provided by W. Nentwig) ................... 54 10. The Unified Classification of Alien Species Based on the Magnitude of their Environmental Impacts (“IUCN Black List”) (Text provided by T. Blackburn) ........ 55 11. Environmental risk assessment for plant pests (Text provided by M. Kenis) ........ 56 12. The BINPAS impact assessment system of the AquaNIS database (Text provided by D. Minchin and S. Olenin) .................................................................................. 57 13. Fish Invasiveness Screening Kit (FISK) (Text provided by G. Copp) ........................ 59 14. European Non-native Species in Aquaculture Risk Analysis Scheme (ENSARS) [text provided by G. Copp] ............................................................................................. 60 Brief notes on other European assessment protocols ............................................................... 62 Freshwater Invertebrate Invasiveness Scoring Kit (FI-ISK) ............................................... 62 Managing non-native fish in the environment ................................................................. 62 Brief notes on non-European risk assessment protocols ........................................................... 63 Australian Weed Risk Assessment (WRA) ........................................................................ 63 Risk assessment models for vertebrate introductions to Australia ................................. 63 Trinational Risk Assessment for Aquatic Alien Invasive Species ...................................... 64 Task 1.2 Identify gaps and scope in risk assessment .................................................................. 64 Task overview ............................................................................................................................. 64 Summary: Task 1 ......................................................................................................................... 66 Task 2: Develop minimum standards for risk assessment methodologies ........................................... 68 Task overview ............................................................................................................................. 68 Task 2.1: Produce a database of criteria from the risk assessment review in Task 1 to inform recommendation of minimum standards ................................................................................... 68 Task 2.2: Proposed and agreed minimum standards ................................................................. 71 Summary: Task 2 ......................................................................................................................... 72 Task 3: Risk assessment workshop ....................................................................................................... 74 Task overview ............................................................................................................................. 74 Task 3.1: Identify and approve experts to attend the workshop ............................................... 74 Selection of experts .......................................................................................................... 74
Recommended publications
  • Dissertação Final.Pdf
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE ÁGUA DOCE E PESCA INTERIOR - BADPI CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS JANICE MACHADO DE QUADROS MANAUS-AM 2019 JANICE MACHADO DE QUADROS CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS ORIENTADORA: Eliana Feldberg, Dra. COORIENTADOR: Efrem Jorge Gondim Ferreira, Dr. Dissertação apresentada ao Programa de Pós- Graduação do Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em CIÊNCIAS BIOLÓGICAS, área de concentração Biologia de Água Doce e Pesca Interior. MANAUS-AM 2019 Ficha Catalográfica Q1c Quadros, Janice Machado de CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS / Janice Machado de Quadros; orientadora Eliana Feldberg; coorientadora Efrem Ferreira. -- Manaus:[s.l], 2019. 56 f. Dissertação (Mestrado - Programa de Pós Graduação em Biologia de Água Doce e Pesca Interior) -- Coordenação do Programa de Pós- Graduação, INPA, 2019. 1. Hibridação. 2. Tucunaré. 3. Heterocromatina. 4. FISH. 5. DNAr. I. Feldberg, Eliana, orient. II. Ferreira, Efrem, coorient. III. Título. CDD: 639.2 Sinopse: A fim de investigar a existência de híbridos entre espécies de Cichla, nós analisamos, por meio de técnicas de citogenética clássica e molecular indivíduos de C. monoculus, C. temensis, C. pinima, C. kelberi, C. piquiti, C. vazzoleri de diferentes locais da bacia amazônica e entre eles, três indivíduos foram considerados, morfologicamente, híbridos. Todos os indivíduos apresentaram 2n=48 cromossomos acrocêntricos. A heterocromatina foi encontrada preferencialmente em regiões centroméricas e terminais, com variações entre indivíduos de C.
    [Show full text]
  • Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
    Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens.
    [Show full text]
  • Crepidula Fornicata
    NOBANIS - Marine invasive species in Nordic waters - Fact Sheet Crepidula fornicata Author of this species fact sheet: Kathe R. Jensen, Zoological Museum, Natural History Museum of Denmark, Universiteteparken 15, 2100 København Ø, Denmark. Phone: +45 353-21083, E-mail: [email protected] Bibliographical reference – how to cite this fact sheet: Jensen, Kathe R. (2010): NOBANIS – Invasive Alien Species Fact Sheet – Crepidula fornicata – From: Identification key to marine invasive species in Nordic waters – NOBANIS www.nobanis.org, Date of access x/x/201x. Species description Species name Crepidula fornicata, Linnaeus, 1758 – Slipper limpet Synonyms Patella fornicata Linnaeus, 1758; Crepidula densata Conrad, 1871; Crepidula virginica Conrad, 1871; Crepidula maculata Rigacci, 1866; Crepidula mexicana Rigacci, 1866; Crepidula violacea Rigacci, 1866; Crepidula roseae Petuch, 1991; Crypta nautarum Mörch, 1877; Crepidula nautiloides auct. NON Lesson, 1834 (ISSG Database; Minchin, 2008). Common names Tøffelsnegl (DK, NO), Slipper limpet, American slipper limpet, Common slipper snail (UK, USA), Østerspest (NO), Ostronpest (SE), Amerikanische Pantoffelschnecke (DE), La crépidule (FR), Muiltje (NL), Seba (E). Identification Crepidula fornicata usually sit in stacks on a hard substrate, e.g., a shell of other molluscs, boulders or rocky outcroppings. Up to 13 animals have been reported in one stack, but usually 4-6 animals are seen in a stack. Individual shells are up to about 60 mm in length, cap-shaped, distinctly longer than wide. The “spire” is almost invisible, slightly skewed to the right posterior end of the shell. Shell height is highly variable. Inside the body whorl is a characteristic calcareous shell-plate (septum) behind which the visceral mass is protected.
    [Show full text]
  • Junker's Nursery
    1 JUNKER’S NURSERY LTD 2011-2012 Higher Cobhay (01823) 400075 Milverton Somerset E-mail: [email protected] TA4 1NJ Website: www.junker.co.uk See website for more detail: www.junker.co.uk elcome to a new look catalogue. Mind you, the catalogue is season, but if that means planting at a time of year when the plants have2 the least of the changes this year! We have finally completed best chance of success, then that can only be a good thing. I would en- W our relocation to our new site. Although we have owned it courage you therefore to make your plans and reserve your plants for for nearly 4 years now, personal circumstances intervened and it has when we can lift them. Typically we start this in mid-October. The taken longer to complete the move than we anticipated. It was definitely plants don’t need to have completely lost their leaves, but they do need worth the wait though (even if the rain is streaming down the windows to have finished active growth for the season. We will then continue lift- yet again, even as I write this in late July!) So much is different that it’s ing right through until March or so, but late planting can be risky in the difficult to know where to start...what remains unchanged however is our event of a dry spring such as we’ve had the last couple of years. Lifting commitment to growing the most exciting plants to the best of our abil- is weather dependant though, as we can’t continue if everything is water- ity, and to giving you, the customer, the kind of personal service that logged or frozen solid.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Non-Native Trees and Large Shrubs for the Washington, D.C. Area
    Green Spring Gardens 4603 Green Spring Rd ● Alexandria ● VA 22312 Phone: 703-642-5173 ● TTY: 703-803-3354 www.fairfaxcounty.gov/parks/greenspring NON - NATIVE TREES AND LARGE SHRUBS ­ FOR THE WASHINGTON, D.C. AREA ­ Non-native trees are some of the most beloved plants in the landscape due to their beauty. In addition, these trees are grown for the shade, screening, structure, and landscape benefits they provide. Deciduous trees, whose leaves die and fall off in the autumn, are valuable additions to landscapes because of their changing interest throughout the year. Evergreen trees are valued for their year-round beauty and shelter for wildlife. Evergreens are often grouped into two categories, broadleaf evergreens and conifers. Broadleaf evergreens have broad, flat leaves. They also may have showy flowers, such as Camellia oleifera (a large shrub), or colorful fruits, such as Nellie R. Stevens holly. Coniferous evergreens either have needle-like foliage, such as the lacebark pine, or scale-like foliage, such as the green giant arborvitae. Conifers do not have true flowers or fruits but bear cones. Though most conifers are evergreen, exceptions exist. Dawn redwood, for example, loses its needles each fall. The following are useful definitions: Cultivar (cv.) - a cultivated variety designated by single quotes, such as ‘Autumn Gold’. A variety (var.) or subspecies (subsp.), in contrast, is found in nature and is a subdivision of a species (a variety of Cedar of Lebanon is listed). Full Shade - the amount of light under a dense deciduous tree canopy or beneath evergreens. Full Sun - at least 6 hours of sun daily.
    [Show full text]
  • Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
    ! ∀#∀#∃ %& ∋(∀∀!∃ ∀)∗+∋ ,+−, ./ ∃ ∋∃ 0∋∀ /∋0 0 ∃0 . ∃0 1##23%−34 ∃−5 6 Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1,2,3, Roberto Salguero-Gómez1,2,3,4, Anna M. Csergő3, Yvonne M. Buckley1,3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance.
    [Show full text]
  • The American Slipper Limpet Crepidula Fornicata (L.) in the Northern Wadden Sea 70 Years After Its Introduction
    Helgol Mar Res (2003) 57:27–33 DOI 10.1007/s10152-002-0119-x ORIGINAL ARTICLE D. W. Thieltges · M. Strasser · K. Reise The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction Received: 14 December 2001 / Accepted: 15 August 2001 / Published online: 25 September 2002 © Springer-Verlag and AWI 2002 Abstract In 1934 the American slipper limpet 1997). In the centre of its European distributional range Crepidula fornicata (L.) was first recorded in the north- a population explosion has been observed on the Atlantic ern Wadden Sea in the Sylt-Rømø basin, presumably im- coast of France, southern England and the southern ported with Dutch oysters in the preceding years. The Netherlands. This is well documented (reviewed by present account is the first investigation of the Crepidula Blanchard 1997) and sparked a variety of studies on the population since its early spread on the former oyster ecological and economic impacts of Crepidula. The eco- beds was studied in 1948. A field survey in 2000 re- logical impacts of Crepidula are manifold, and include vealed the greatest abundance of Crepidula in the inter- the following: tidal/subtidal transition zone on mussel (Mytilus edulis) (1) Accumulation of pseudofaeces and of fine sediment beds. Here, average abundance and biomass was 141 m–2 through the filtration activity of Crepidula and indi- and 30 g organic dry weight per square metre, respec- viduals protruding in stacks into the water column. tively. On tidal flats with regular and extended periods of This was reported to cause changes in sediments and emersion as well as in the subtidal with swift currents in near-bottom currents (Ehrhold et al.
    [Show full text]
  • Coexistence of Two Closely Related Cyprinid Fishes (Hemiculter Bleekeri and Hemiculter Leucisculus) in the Upper Yangtze River, China
    diversity Article Coexistence of Two Closely Related Cyprinid Fishes (Hemiculter bleekeri and Hemiculter leucisculus) in the Upper Yangtze River, China Wen Jing Li 1,2, Xin Gao 1,*, Huan Zhang Liu 1 and Wen Xuan Cao 1 1 The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (W.J.L.); [email protected] (H.Z.L.); [email protected] (W.X.C.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-27-6878-0723 Received: 17 June 2020; Accepted: 16 July 2020; Published: 19 July 2020 Abstract: Species coexistence is one of the most important concepts in ecology for understanding how biodiversity is shaped and changed. In this study, we investigated the mechanism by which two small cyprinid fishes (H. leucisculus and H. bleekeri) coexist by analyzing their niche segregation and morphological differences in the upper Yangtze River. Morphological analysis indicated that H. leucisculus has posteriorly located dorsal fins, whereas H. bleekeri has a more slender body, bigger eyes, longer anal fin base, and a higher head. Niche segregation analysis showed spatial and trophic niche segregation between these two species: on the spatial scale, H. leucisculus was more widely distributed than H. bleekeri, indicating that H. leucisculus is more of a generalist in the spatial dimension; on the trophic scale, H. bleekeri had a wider niche than H. leucisculus. Therefore, these two species adopt different adaptation mechanisms to coexist Keywords: biodiversity; species coexistence; spatial niche segregation; trophic niche segregation; morphology 1.
    [Show full text]
  • Management of Transboundary and Straddling Fish Stocks in the Northeast Atlantic in View of Climate-Induced Shifts in Spatial Distribution
    Received: 19 March 2020 | Revised: 28 May 2020 | Accepted: 1 June 2020 DOI: 10.1111/faf.12485 ORIGINAL ARTICLE Management of transboundary and straddling fish stocks in the Northeast Atlantic in view of climate-induced shifts in spatial distribution Peter Gullestad1 | Svein Sundby2 | Olav Sigurd Kjesbu2 1Directorate of Fisheries, Bergen, Norway Abstract 2Institute of Marine Research, Bergen, Norway The introduction of 200 n.m. exclusive economic zones (EEZs) in the late 1970s required increased collaboration among neighbouring coastal states to manage Correspondence Olav Sigurd Kjesbu, Institute of Marine transboundary and straddling fish stocks. The established agreements ranged from Research, P.O. Box 1870 Nordnes, Bergen bilateral to multilateral, including high-seas components, as appropriate. However, NO-5817, Norway. Email: [email protected] the 1982 United Nations Convention on the Law of the Sea does not specify how quotas of stocks crossing EEZs should be allocated, nor was it written for topical Funding information Directorate of Fisheries (Norway): Post- scenarios, such as climate change with poleward distribution shifts that differ across Retirement Contract of Employment (P.G.); species. The productive Northeast Atlantic is a hot spot for such shifts, implying Institute of Marine Research (Norway): Post-Retirement Contract of Employment that scientific knowledge about zonal distribution is crucial in quota negotiations. (S.S.); Norwegian Fisheries Research Sales This diverges from earlier, although still valid, agreements that were predominately Tax System (FFA): CLIMRATES (Climate and Vital Rates of Marine Stocks), Institute based on political decisions or historical distribution of catches. The bilateral allo- of Marine Research (Norway), Project no. cations for Barents Sea and North Sea cod remain robust after 40 years, but the 15205 (O.S.K.) management situation for widely distributed stocks, as Northeast Atlantic mackerel and Norwegian spring-spawning herring, appears challenging, with no recent overall agreements.
    [Show full text]
  • 1 Invasive Species in the Northeastern and Southwestern Atlantic
    This is the author's accepted manuscript. The final published version of this work (the version of record) is published by Elsevier in Marine Pollution Bulletin. Corrected proofs were made available online on the 24 January 2017 at: http://dx.doi.org/10.1016/j.marpolbul.2016.12.048. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher. Invasive species in the Northeastern and Southwestern Atlantic Ocean: a review Maria Cecilia T. de Castroa,b, Timothy W. Filemanc and Jason M Hall-Spencerd,e a School of Marine Science and Engineering, University of Plymouth & Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. [email protected]. +44(0)1752 633 100. b Directorate of Ports and Coasts, Navy of Brazil. Rua Te filo Otoni, 4 - Centro, 20090-070. Rio de Janeiro / RJ, Brazil. c PML Applications Ltd, Prospect Place, Plymouth, PL1 3DH, UK. d Marine Biology and Ecology Research Centre, Plymouth University, PL4 8AA, UK. e Shimoda Marine Research Centre, University of Tsukuba, Japan. Abstract The spread of non-native species has been a subject of increasing concern since the 1980s when human- as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions.
    [Show full text]
  • Risk Analysis of the Amur Sleeper Perccottus Glenii
    Risk analysis of the Amur sleeper Perccottus glenii Hugo Verreycken INBO Risk analysis report of non- native organisms in Belgium Updated version May 2015 Risk analysis report of non-native organisms in Belgium Risk analysis of the Amur sleeper Perccottus glenii Developed by: Hugo Verreycken (INBO) Reviewed by: Etienne Branquart (SPW) Adopted on date of : 26 May 2015 Citation: this report should be cited as “Verreycken, H. (2015) Risk analysis of the Amur sleeper Perccottus glenii, Risk analysis report of non-native organisms in Belgium, Rapporten van het Instituut voor Natuur- en Bosonderzoek 2015, INBO.R.2015.xx, updated version, Instituut voor Natuur- en Bosonderzoek, 27 p.”. Photograph on cover page: A. Reshetnikov Photo: A. Reshetnikov (2013) Page 1 Acknowledgements The authors wish to thank the reviewers who contributed to this risk analysis with valuable comments and additional references: Etienne Branquart (Celulle Espèces Invasives, Service Public de Wallonie) Etienne Branquart (Cellule Espèces Invasives, SPW) developed the risk analysis template that was used for this exercise. The general process of drafting, reviewing and approval of the risk analysis for selected invasive alien species in Belgium was attended by a steering committee, chaired by the Federal Public Service Health, Food chain safety and Environment. Steering committee members were: Tim Adriaens Research Institute for Nature and Forest (INBO) Olivier Beck Brussels Environment (BIM) Roseline Beudels-Jamar Royal Belgian Institute of Natural Sciences (RBINS/KBIN)
    [Show full text]