Ready Market One-Year Warranty on the Airframe, Avionics “Combi” Interior–An Executive Compart- by Kirby J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Business & Commercial Aviation
BUSINESS & COMMERCIAL AVIATION LEONARDO AW609 PERFORMANCE PLATEAUS OCEANIC APRIL 2020 $10.00 AviationWeek.com/BCA Business & Commercial Aviation AIRCRAFT UPDATE Leonardo AW609 Bringing tiltrotor technology to civil aviation FUEL PLANNING ALSO IN THIS ISSUE Part 91 Department Inspections Is It Airworthy? Oceanic Fuel Planning Who Says It’s Ready? APRIL 2020 VOL. 116 NO. 4 Performance Plateaus Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
Business Opportunities in Aircraft Cabin Conversion and Refurbishing
Business Opportunities in Aircraft Cabin Conversion and Refurbishing Mihaela F. Niţă1 and Dieter Scholz2 Hamburg University of Applied Sciences, Berliner Tor 9, 20099 Hamburg, Germany This paper identifies several meaningful business opportunity cases in the area of aircraft cabin conversion and refurbishing and predicts the market volume and the world distribution for each of them: 1.) international cabins, 2.) domestic cabins, 3.) aircraft on operating lease, 4.) freighter conversions and 5.) VIP completions. This implies the determination of cabin modification/conversion scenarios, along with their duration and frequency. Factors driving the cabin conversion and refurbishing are identified. Several aircraft databases, containing the current world feet as well as the forecasted fleet for the next years, are analyzed. The results are obtained by creating a program able to read and analyze the gathered data. It is shown that about 38000 cabin redesigns will be undertaken within the next 20 years. About 2500 conversions from jetliners into freighters and 25000 cabin modifications at VIP standards will emerge on the market. The North American and European markets will keep providing good business opportunities in this area. The Asian market, however, is growing fast, and its very strong influence on demand puts it in the front rank for the next 20 years. Nomenclature agescenario_limit = aircraft age for which the refurbishing is no longer planned by the operator. dateaircraft_delivery = date of the aircraft first delivery datemodification -
Design of a Light Business Jet Family David C
Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends. -
Disrupting the Business Jet: but How? by Ryan S
Disrupting the Business Jet: But How? By Ryan S. Wood Founder and CEO Frontline Aerospace, Inc Blu from Movie: RIO Just Keep It Simple Overall Aircraft Efficiency 휂 Thermal X 휂 Propulsive Disrupting Engine Performance • Problem is cooling! • Solution go full compressor flow cooling Overall Efficiency = Propulsive x Thermal Ducted Business Fan Jets Drag: Boundary Layer Ingestion (BLI) • drag reduction of 8.6% Source: AIAA Paper: Boundary Layer Ingestion Benefit of the D8 Transport Aircraft. August 24, 2017 SkyFan: Here Is One Way to Disrupt Joined Wing: Weight-Drag Reduction • 5X less bending moment at root • Less drag • Lighter wing Landing Zone Flexibility—Paved Runways •Save Time Business Jets •Get Closer to SkyFan business • Others SkyFan Reaches 2X the airports •Why? Fan thrust to weight ratio Source: CIA Factbook 2010, Top 30 Countries, Paved Runways, 11,441 Fuel Cost per Seat Mile SkyFan is as fuel efficient as Boeing 737-MAX, some 5X competitors SkyFan Circle Range Map (4 pax 5200 nmi) Challenger 350 Gulfstream G280 SkyFan SkyFan Noise Reduction •Engines inside fuselage •Intake/exhaust cowlings •Noise absorbing ducts Electronic Aircraft Window - PanDow Cameras driving internal 8K monitors GE CT7/T700 Engine • 22,000 built • 100 million flight hours • Global MRO • Upgrades Pending Intellectual Property (IP) •SkyFan Utility Patent •Engine drive ducted fan propulsion •Engine Isothermal compression (2) SkyFan Performance Metric Comparison SkyFan • Pick any set of metrics • Thrill index= (thrust/weight) • Aircraft Total Value= Bus Jets S*R*P*Airports/DOC* TOGW*Purchase Price Determining Market Demand—Mee Inc How to Price SkyFan? SkyFan Market Demand Curve – Mee Inc. -
Conceptual Design of a Business Jet Aircraft
International Conference on Mechanical, Industrial and Energy Engineering 2014 25-26 December, 2014, Khulna, BANGLADESH ICMIEE-PI-14035310 CONCEPTUAL DESIGN OF A BUSINESS JET AIRCRAFT Jannatun Nawar 1,*, Nafisa Nawal Probha 2 Adnan Shariar 3, Abdul Wahid4, Saifur Rahman Bakaul5 1,2,3,4 Student, Department of Aeronautical Engineering, Military Institute of Science & Technology, Dhaka-1216, 5 Associate Professor , Department of Aeronautical Engineering, Military Institute of Science & Technology, Dhaka-1216, ABSTRACT The modern jet transport is considered as one of the finest integration of technologies. Its economic success depends on performance, low maintenance costs and high passenger appeal and design plays a vital role in summing up all these factors. Conceptual design is the first step to design of an aircraft. In this paper a business jet aircraft is designed to carry 8 passengers and to cover a range of 2000 NM with maximum Mach No of 0.7 and with maximum ceiling of 29,000 ft. The conceptual design consisted of initial sizing, aerodynamics and performance analysis. Through trade studies and comparison with other business jet aircrafts a final model of the aircraft was built to achieve the requirements. Key Words: Business jet, Conceptual design, Initial Sizing, Aerodynamics, Aircraft performance, Trade study. 1. Introduction Airplane design is an art with scientifically approach. It requires both the intellectual engineering and ngiseD ygolDchceT cDogne sensible assumptions. Aircraft design is actually sgnesegigDei ytbshbashseT hcgeol done to meet certain specifications and requirements established by potential users or pioneer innovative, new ideas and technology. Now-a-days business jet aircraft is one of the most popular forms of transport aircraft. -
THE ART of FLIGHT INSPIRING AEROSPACE THROUGH the PAINTBRUSH TRANSITIONING Leased Engines Or Aircraft? Keep Your Asset Prepared, Protected, and Ready to Fly
June 2020 RUSSIA’S GREEN GOALS GREEN RUSSIA’S PRESERVING AVIATION HISTORY TRACKING PILOT INTERVENTIONS THE ART OF FLIGHT INSPIRING AEROSPACE THROUGH THE PAINTBRUSH www.aerosociety.com AEROSPACE June 2020 Volume 47 Number 6 Royal Aeronautical Society TRANSITIONING leased engines or aircraft? Keep your asset prepared, protected, and ready to fly. Willis Asset Management provides global engine and aircraft transition management solutions to meet your unique needs. Our award-winning, independent consultancy is focused on providing remote solutions to help mitigate against the risks of planned – and unplanned – asset transitions. OUR REMOTE CAPABILITIES INCLUDE: • Technical records management • Aircraft & engine lease return support • Periodic records inspections • Back-to-birth trace reviews on LLPs • Records systems maintenance • CAMO & shadow CAMO services • Part 145 maintenance services Willis Engine Repair Center (UK & US locations) Ask about our aircraft disassembly and aircraft maintenance & storage solutions at Teesside International Airport in the UK! [email protected] | +44 (0) 1656.754.777 | www.willisasset.com Volume 47 Number 6 June 2020 EDITORIAL Contents Aviation heritage hanging Regulars 4 Radome 12 Transmission by a thread The latest aviation and Your letters, emails, tweets aeronautical intelligence, and social media feedback. analysis and comment. At around this time of year, the summer air show season would be swinging 58 The Last Word into gear – with weekends of aerobatics, flypasts and the like. But today, 11 Pushing the Envelope Keith Hayward considers yet another part of aviation is currently grounded due to the worldwide Rob Coppinger analyses the the effects of the Covid-19 challenges of designing a air transport shutdown on Coronavirus pandemic, with air shows cancelled and museums shuttered. -
Designing a Very Light Jet
GadShannan DESIGN Akademin för Innovation, Design och Teknik Designing a Very Light Jet Master thesis work 30 credits, D-level Product and process development, concurrent engineering Master Thesis Programme Innovation and Product Design Per Nyblom Report code: IDPPOPEXD:08:11 Commissioned by: GadShaanan DESIGN Tutor (company): Mladen Barbaric Tutor (university): Ragnar Tengstrand Examiner: Rolf Lövgren Abstract Introduction Very light jet is a hot subject growing stronger and stronger. The new type of air craft is an air plane that weighs less than 10000 pounds and uses a jet engine. Problem The student was proposed to designing a conceptual very light jet that could be used for inspiration and accepted the challenge. Method In this thesis the reader can follow the project progress in detail, the proposed methods and the results. The student divided the project into four activities analysis, creation, development and documentation. Result The project ended with a concept very light jet with simple specifications. Illustrations for inspirational usage and a simulation testing for verification of the proposed concept specifications. Keywords: Nm 1 nautical miles = 1.852 kilometres lb 1 pound = 0.45359237 kilograms ft 1 foot = 0.3048 metres in 1 inch = 0.025 metres MTOW Maximum take-off weight Pax Available Seats in an airplane both crew and traveller VLJ (micro jet) Very Light Jet, coined expression. FAA Federal Aviation Administration, www.faa.gov EASA European Aviation Safety Agency, www.easa.eu.int CAA Civil Aviation Authority PDF File format standard Intelligence Information that is presented easy to act on. Thrust Power given by a jet engine measured in pounds. -
Part 2 — Aircraft Type Designators (Decode) Partie 2 — Indicatifs De Types D'aéronef (Décodage) Parte 2 — Designadores De Tipos De Aeronave (Descifrado) Часть 2
2-1 PART 2 — AIRCRAFT TYPE DESIGNATORS (DECODE) PARTIE 2 — INDICATIFS DE TYPES D'AÉRONEF (DÉCODAGE) PARTE 2 — DESIGNADORES DE TIPOS DE AERONAVE (DESCIFRADO) ЧАСТЬ 2. УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ТИПОВ ВОЗДУШНЫХ СУДОВ ( ДЕКОДИРОВАНИЕ ) DESIGNATOR MANUFACTURER, MODEL DESCRIPTION WTC DESIGNATOR MANUFACTURER, MODEL DESCRIPTION WTC INDICATIF CONSTRUCTEUR, MODÈLE DESCRIPTION WTC INDICATIF CONSTRUCTEUR, MODÈLE DESCRIPTION WTC DESIGNADOR FABRICANTE, MODELO DESCRIPCIÓN WTC DESIGNADOR FABRICANTE, MODELO DESCRIPCIÓN WTC УСЛ . ИЗГОТОВИТЕЛЬ , МОДЕЛЬ ВОЗДУШНОГО WTC УСЛ . ИЗГОТОВИТЕЛЬ , МОДЕЛЬ ВОЗДУШНОГО WTC ОБОЗНАЧЕНИЕ ОБОЗНАЧЕНИЕ A1 DOUGLAS, Skyraider L1P M NORTH AMERICAN ROCKWELL, Quail CommanderL1P L DOUGLAS, AD Skyraider L1P M NORTH AMERICAN ROCKWELL, A-9 Sparrow L1P L DOUGLAS, EA-1 Skyraider L1P M Commander NORTH AMERICAN ROCKWELL, A-9 Quail CommanderL1P L A2RT KAZAN, Ansat 2RT H2T L NORTH AMERICAN ROCKWELL, Sparrow CommanderL1P L A3 DOUGLAS, TA-3 Skywarrior L2J M DOUGLAS, NRA-3 SkywarriorL2J M A10 FAIRCHILD (1), OA-10 Thunderbolt 2 L2J M DOUGLAS, A-3 Skywarrior L2J M FAIRCHILD (1), A-10 Thunderbolt 2L2J M FAIRCHILD (1), Thunderbolt 2L2J M DOUGLAS, ERA-3 SkywarriorL2J M AVIADESIGN, A-16 Sport Falcon L1P L DOUGLAS, Skywarrior L2J M A16 AEROPRACT, A-19 L1P L A3ST AIRBUS, Super Transporter L2J H A19 AIRBUS, Beluga L2J H A20 DOUGLAS, Havoc L2P M DOUGLAS, A-20 Havoc L2P M AIRBUS, A-300ST Super TransporterL2J H AEROPRACT, Solo L1P L AIRBUS, A-300ST Beluga L2J H A21 SATIC, Beluga L2J H AEROPRACT, A-21 Solo L1P L SATIC, Super Transporter L2J H A22 SADLER, Piranha -
Aviation Activity Forecasts
2 Aviation Activity Forecasts INTRODUCTION The Charles M. Schulz–Sonoma County Airport (STS) is one of six public use airports in Sonoma County. It is the only commercial service airport1 between the San Francisco Bay Area to the south, Sacramento to the east and Arcata-Eureka to the north. The Airport’s primary service area has a population of over 1 million people2 and includes Sonoma, Lake, and Mendocino counties, and parts of Marin and Napa counties. Airport Role The Sonoma County Airport, as the region’s principal Airport, serves many roles, including providing facilities for scheduled commuter and air carrier airline services. The California Aviation System Plan (CASP) designates the Airport as a Primary Commercial Service Non-Hub Airport. There are no Primary Commercial Service Hub airports in the region. The closest Primary Commercial Service Hub airports are the San Francisco, Oakland, and San Jose International Airports. The Sacramento International Airport is slightly more distant, but at times it can be more convenient for highway travel. The Sonoma County Airport also serves a growing population of general aviation (GA) activities including corporate and business flying. For this reason, the Federal Aviation Administration’s (FAA) National Plan of Integrated Airport Systems (NPIAS) currently classifies the Airport as a General Aviation facility, but in the future the Airport is expected to be reclassified as a Commercial Service Non-Primary Airport. A strong potential exists for additional scheduled airline and commuter air carrier service, particularly in the form of new, quiet technology jet aircraft with up to 135 passenger seats.3 The Airport also serves as a base of operations for local pilots, a place to conduct business, and a point of emergency access for the region. -
Aircraft Technology Roadmap to 2050 | IATA
Aircraft Technology Roadmap to 2050 NOTICE DISCLAIMER. The information contained in this publication is subject to constant review in the light of changing government requirements and regulations. No subscriber or other reader should act on the basis of any such information without referring to applicable laws and regulations and/or without taking appropriate professional advice. Although every effort has been made to ensure accuracy, the International Air Transport Association shall not be held responsible for any loss or damage caused by errors, omissions, misprints or misinterpretation of the contents hereof. Furthermore, the International Air Transport Association expressly disclaims any and all liability to any person or entity, whether a purchaser of this publication or not, in respect of anything done or omitted, and the consequences of anything done or omitted, by any such person or entity in reliance on the contents of this publication. © International Air Transport Association. All Rights Reserved. No part of this publication may be reproduced, recast, reformatted or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without the prior written permission from: Senior Vice President Member & External Relations International Air Transport Association 33, Route de l’Aéroport 1215 Geneva 15 Airport Switzerland Table of Contents Table of Contents .............................................................................................................................................................................................................. -
Air Travel, Life-Style, Energy Use and Environmental Impact
Air travel, life-style, energy use and environmental impact Stefan Kruger Nielsen Ph.D. dissertation September 2001 Financed by the Danish Energy Agency’s Energy Research Programme Department of Civil Engineering Technical University of Denmark Building 118 DK-2800 Kgs. Lyngby Denmark http://www.bvg.dtu.dk 2001 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document Report BYG DTU R-021 2001 ISSN 1601-2917 ISBN 87-7877-076-9 Executive summary This summary describes the results of a Ph.D. study that was carried out in the Energy Planning Group, Department for Civil Engineering, Technical University of Denmark, in a three-year period starting in August 1998 and ending in September 2001. The project was funded by a research grant from the Danish Energy Research Programme. The overall aim of this project is to investigate the linkages between energy use, life style and environmental impact. As a case of study, this report investigates the future possibilities for reducing the growth in greenhouse gas emissions from commercial civil air transport, that is passenger air travel and airfreight. The reason for this choice of focus is that we found that commercial civil air transport may become a relatively large energy consumer and greenhouse gas emitter in the future. For example, according to different scenarios presented by Intergovernmental Panel on Climate Change (IPCC), commercial civil air transport's fuel burn may grow by between 0,8 percent a factor of 1,6 and 16 between 1990 and 2050. The actual growth in fuel consumption will depend on the future growth in airborne passenger travel and freight and the improvement rate for the specific fuel efficiency. -
Special Research Study
Special Research Study to Evaluate The Market for the Piaggio P.1XX-100 and a New Family of Business Jets 2005-2025 August 31, 2005 22 Commerce Road, Newtown, Connecticut 06470 USA Tel: 203-426-0800 Fax: 203-426-0223 E-mail: [email protected] Web site: www.forecastinternational.com The Market for the Piaggio P.1XX-100 TABLE OF CONTENTS Executive Summary ..................................................................................................................................................... 1 Section I ........................................................................................................................................................................ 3 Introduction ........................................................................................................................................................... 3 Section II....................................................................................................................................................................... 4 Analysis of Competitive Business Aircraft ............................................................................................................ 4 Introduction ........................................................................................................................................................... 4 TABLE 1 - PIAGGIO P.1XX-100 AND PRIME COMPETITION ................................................................ 4 TABLE 2 - PIAGGIO P.1XX-200 AND PRIME COMPETITION ...............................................................