Developing Species-Habitat Relationships: 2016 Project Report

Total Page:16

File Type:pdf, Size:1020Kb

Developing Species-Habitat Relationships: 2016 Project Report Field Keys to Groups and Alliances in the National Vegetation Classification: Northern Basin & Range / Columbia Plateau Ecoregions NatureServe Conservation Science Division P r i n c i p a l Investigator Patrick J. C o m e r , Chief Ecologist [email protected] 703.797.4802 November 2017 Photos (clockwise from top left; all used under Creative Commons license CC BY 2.0.): Big sage shrubland, Humboldt-Toiyabe National Forest, Nevada. USDA Photo by Susan Elliot. http://flic.kr/p/ax64DY Jeffrey pine woodland, photo by David Prasad. https://www.flickr.com/photos/33671002@N00 Northwest Great Plains Mixedgrass Prairie, Dakota Prairie National Grasslands, North Dakota. Western juniper woodland, BLM Black Hills Recreation Area, Oregon. Acknowledgements This work was completed with funding provided by the Bureau of Land Management through the BLM’s Fish, Wildlife and Plant Conservation Resource Management Program under Cooperative Agreement L13AC00286 between NatureServe and the BLM. Suggested citation: Schulz, K., G. Kittel, M. Reid and P. Comer. 2017. Field Keys to Divisions, Macrogroups, Groups and Alliances in the National Vegetation Classification: Northern Basin & Range / Columbia Plateau Ecoregions. Report prepared for the Bureau of Land Management by NatureServe, Arlington VA. 14p + 58p of Keys + Appendices. See appendix document: Descriptions_NVC_Groups_Alliances_ NorthernBasinRange_Nov_2017.pdf 2 | P a g e Contents Introduction and Background ....................................................................................................................... 4 Purpose and Objectives ................................................................................................................................ 4 Project Overview ........................................................................................................................................... 4 List of Products.......................................................................................................................................... 5 Field Key Design and Instructions for Use .................................................................................................... 6 NVC Hierarchy ........................................................................................................................................... 6 Use in Field ................................................................................................................................................ 9 Use in the office ........................................................................................................................................ 9 Key Instructions......................................................................................................................................... 9 Other tips for using field keys. ................................................................................................................ 11 References Cited ......................................................................................................................................... 13 Keys to USNVC Divisions, Macrogroups, Groups and Alliances in the Northern Basins and Range and Columbia Plateau Ecoregions ..................................................................................................................... 15 Figures Figure 1. EPA Ecoregions used to organize field keys to the Groups and Alliances of the National Vegetation Classification (NVC) .................................................................................................................... 5 Figure 2. Summary of the primary criteria used to define the various levels of the USNVC. ....................... 6 Tables Table 1. Levels, definition and example of the hierarchy for natural vegetation......................................... 7 Field keys to NVC Groups and Alliances in Four EPA Ecoregions for BLM NatureServe November 2017 3 | P a g e Introduction and Background BLM manages extensive lands that support a variety of vegetation types that have been classified and mapped and multiple scales to facilitate resource planning, decision making, and natural resource management. On the ground land managers and biologists need to be able to independently classify these habitats to US National Vegetation Classification (NVC) vegetation types to assess the accuracy of these maps and directly label new AIM vegetation transects while in the field. These new labeled transects can be used to improve the map accuracy, assess ecological condition (ruderal vs natural or semi-natural vegetation), assess fuel loads/fire risk, and target habitats for species of concern for species management. Field key to vegetation types are an important tool for managers to label vegetation. Dichotomous keys allow field personnel to systematically step through options and arrive at a label for a given geographic area. Field key results are linked to descriptions of each type, which can help confirm result and provide information on range of type, species composition, environmental factors, and ecological processes such as fire, and other information that will assist in resource management and vegetation restoration. Purpose and Objectives Across the West, BLM managers are implementing Secretarial Order 3336, to apply new strategies appropriate to conservation and management of sagebrush ecosystems and sage-grouse habitat. The sage-grouse habitat assessment framework (Stiver et al. 2015) and the BLMs Assessment, Inventory and Monitoring strategy (MacKinnon et al. 2011, Toevs et al. 2011, Herrick et al. 2015) have field data collection as components during which a land cover type “label” can be applied to the area being sampled. Having keys to units in the National Vegetation Classification (NVC; FGDC 2008) for use in the field would provide tools for achieving consistent application of NVC type names to these field samples. Accurately labeled on-the-ground vegetation samples are extremely valuable for a number of applications, e.g. monitoring of rangeland condition by vegetation type, training sites for mapping, inventory of vegetation types found in a management area and identifying particular habitats for species of concern (Reid et al. 2016). NatureServe ecologists have developed keys for use in the field to the NVC Macrogroups, Groups, and Alliances found in 4 clusters of EPA ecoregions (Figure 1): a) Central Basin and Range, b) Northern Great Basin and Range / Columbia Basin, c) Wyoming Basin, and c) Northwestern and Western Great Plains / High Plains (northern portion) (EPA 2013, Omernik 1987). The keys include the vegetation types most relevant to the BLM, such as sagebrush, pinyon-juniper, semi-desert scrub (e.g. blackbrush, salt desert scrub), lower elevation grasslands, and riparian and wet meadow types. Generally, higher elevation forests and alpine vegetation types were not included, unless of particular interest in one ecoregion (e.g. aspen in the Central Basin and Range) or to clarify contrasting vegetation units. Project Overview NatureServe ecologists are well prepared to write field keys such as these. For the original LANDFIRE effort, we developed field keys to ecological systems, organized into clusters of map zones (roughly corresponding to ecoregions). NatureServe is a [artner with the National Park Service’s Vegetation Inventory Program, and has written keys over recent decades for many national park vegetation inventory efforts in the western U.S. (e.g. Cogan et al. 2012, Kearsley et al. 2015), many of them organized by NVC alliances. NatureServe ecologists developed the procedures for assigning of expert labels to plots, in coordination with the LANDFIRE, FIA, USGS and TNC partners. In partnership with LANDFIRE NatureServe staff recently developed keys to automate the labeling of some 400,000 plots in CONUS to NVC Groups (Reid et al. 2014). The writing of field keys includes the following major tasks: 1) Determine list of NVC Groups and Alliances found in the geography selected for the field key. 2) Compile and review previously written keys for related vegetation (e.g. keys to ecological systems, NPS park units). 3) Review concepts (e.g. descriptions) and criteria used in the LANDFIRE auto-keys to NVC Groups 4) Write the keys to selected NVC Macrogroups, Groups, and Alliances 5) Have someone who did not write the keys conduct a thorough review of the keys 6) Revise keys as necessary Field keys to NVC Groups and Alliances in Four EPA Ecoregions for BLM NatureServe November 2017 4 | P a g e Figure 1. EPA Ecoregions used to organize field keys to the Groups and Alliances of the National Vegetation Classification (NVC) that are found in these ecoregions. NVC types found in the Northern Basin and Range and Columbia Plateau ecoregions were combined into one key. Types found in the northern portion of the High Plains ecoregion were included in the Northwestern Great Plains key. List of Products 1) Project summary report (this document) 2) Field keys NVC Groups and Alliances found in 4 clusters of EPA ecoregions including: a. Central Basin and Range b. Northern Basin and Range / Columbia Plateau c. Wyoming Basin d. Northwestern Great Plains / High Plains (northern portion) 3) Descriptions of NVC Divisions, Macrogroups, Groups and Alliances reported to occur in each EPA ecoregion (Appendices to each ecoregional key; see appendix document Descriptions_NVC_Groups_Alliances_NorthernBasinRange_Nov_2017.pdf). Each ecoregion-based key is a separate
Recommended publications
  • Tree Species Distribution Maps for Central Oregon
    APPENDIX 7: TREE SPECIES DISTRIBUTION MAPS FOR CENTRAL OREGON A7-150 Appendix 7: Tree Species Distribution Maps Table A7-5. List of distribution maps for tree species of central Oregon. The species distribution maps are prefaced by four maps (pages A7-151 through A7-154) showing all locations surveyed in each of the four major data sources Map Page Forest Inventory and Analysis plot locations A7-151 Ecology core Dataset plot locations A7-152 Current Vegetation Survey plot locations A7-153 Burke Museum Herbarium and Oregon Flora Project sample locations A7-154 Scientific name Common name Symbol Abies amabilis Pacific silver fir ABAM A7-155 Abies grandis - Abies concolor Grand fir - white fir complex ABGR-ABCO A7-156 Abies lasiocarpa Subalpine fir ABLA A7-157 Abies procera - A. x shastensis Noble fir - Shasta red fir complex ABPR-ABSH A7-158 [magnifica x procera] Acer glabrum var. douglasii Douglas maple ACGLD4 A7-159 Alnus rubra Red alder ALRU2 A7-160 Calocedrus decurrens Incense-cedar CADE27 A7-161 Chrysolepis chrysophylla Golden chinquapin CHCH7 A7-162 Frangula purshiana Cascara FRPU7 A7-163 Juniperus occidentalis Western juniper JUOC A7-164 Larix occidentalis Western larch LAOC A7-165 Picea engelmannii Engelmann spruce PIEN A7-166 Pinus albicaulis Whitebark pine PIAL A7-167 Pinus contorta var. murrayana Sierra lodgepole pine PICOM A7-168 Pinus lambertiana Sugar pine PILA A7-169 Pinus monticola Western white pine PIMO3 A7-170 Pinus ponderosa Ponderosa pine PIPO A7-171 Populus balsamifera ssp. trichocarpa Black cottonwood POBAT A7-172
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • State of Colorado 2016 Wetland Plant List
    5/12/16 State of Colorado 2016 Wetland Plant List Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X http://wetland-plants.usace.army.mil/ Aquilegia caerulea James (Colorado Blue Columbine) Photo: William Gray List Counts: Wetland AW GP WMVC Total UPL 83 120 101 304 FACU 440 393 430 1263 FAC 333 292 355 980 FACW 342 329 333 1004 OBL 279 285 285 849 Rating 1477 1419 1504 1511 User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps Region. 3) Some state boundaries lie within two or more Corps Regions. If a species occurs in one region but not the other, its rating will be shown in one column and the other column will be BLANK. Approved for public release; distribution is unlimited. 1/22 5/12/16 Scientific Name Authorship AW GP WMVC Common Name Abies bifolia A. Murr. FACU FACU Rocky Mountain Alpine Fir Abutilon theophrasti Medik. UPL UPL FACU Velvetleaf Acalypha rhomboidea Raf. FACU FACU Common Three-Seed-Mercury Acer glabrum Torr. FAC FAC FACU Rocky Mountain Maple Acer grandidentatum Nutt. FACU FAC FACU Canyon Maple Acer negundo L. FACW FAC FAC Ash-Leaf Maple Acer platanoides L. UPL UPL FACU Norw ay Maple Acer saccharinum L. FAC FAC FAC Silver Maple Achillea millefolium L. FACU FACU FACU Common Yarrow Achillea ptarmica L.
    [Show full text]
  • Plant List As of 3/19/2008 Tanya Harvey T23S.R2E.S25, 36 *Non-Native
    compiled by Bearbones Mountain Plant List as of 3/19/2008 Tanya Harvey T23S.R2E.S25, 36 *Non-native FERNS & ALLIES Taxaceae Quercus garryana Oregon white oak Dennstaediaceae Taxus brevifolia Pacific yew Pteridium aquilinum Garryaceae bracken fern TREES & SHRUBS: DICOTS Garrya fremontii Fremont’s silk tassel Dryopteridaceae Aceraceae Cystopteris fragilis Acer circinatum Grossulariaceae fragile fern vine maple Ribes roezlii var. cruentum shiny-leaved gooseberry, Sierra Polystichum imbricans Acer glabrum var. douglasii imbricate sword fern Douglas maple Ribes sanguineum red-flowering currant Polystichum munitum Acer macrophyllum sword fern big-leaf maple Hydrangeaceae Polypodiaceae Berberidaceae Philadelphus lewisii western mock orange Polypodium hesperium Berberis aquifolium western polypody shining Oregon grape Rhamnaceae Pteridiaceae Berberis nervosa Ceanothus prostratus Mahala mat Aspidotis densa Cascade Oregon grape indians’ dream Betulaceae Ceanothus velutinus snowbrush Cheilanthes gracillima Corylus cornuta var. californica lace fern hazelnut or filbert Rhamnus purshiana cascara Cryptogramma acrostichoides Caprifoliaceae parsley fern Lonicera ciliosa Rosaceae Pellaea brachyptera orange honeysuckle Amelanchier alnifolia western serviceberry Sierra cliffbrake Sambucus mexicana Selaginellaceae blue elderberry Holodiscus discolor oceanspray Selaginella scopulorum Symphoricarpos mollis Rocky Mountain selaginella creeping snowberry Oemleria cerasiformis indian plum Selaginella wallacei Celastraceae Prunus emarginata Wallace’s selaginella
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
    Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers.
    [Show full text]
  • RED ALDER Northwest Extracted a Red Dye from the Inner Bark, Which Was Used to Dye Fishnets
    Plant Guide and hair. The native Americans of the Pacific RED ALDER Northwest extracted a red dye from the inner bark, which was used to dye fishnets. Oregon tribes used Alnus rubra Bong. the innerbark to make a reddish-brown dye for basket Plant Symbol = ALRU2 decorations (Murphey 1959). Yellow dye made from red alder catkins was used to color quills. Contributed by: USDA NRCS National Plant Data Center A mixture of red alder sap and charcoal was used by the Cree and Woodland tribes for sealing seams in canoes and as a softener for bending boards for toboggans (Moerman 1998). Wood and fiber: Red alder wood is used in the production of wooden products such as food dishes, furniture, sashes, doors, millwork, cabinets, paneling and brush handles. It is also used in fiber-based products such as tissue and writing paper. In Washington and Oregon, it was largely used for smoking salmon. The Indians of Alaska used the hallowed trunks for canoes (Sargent 1933). Medicinal: The North American Indians used the bark to treat many complaints such a headaches, rheumatic pains, internal injuries, and diarrhea (Moerman 1998). The Salinan used an extract of the bark of alder trees to treat cholera, stomach cramps, and stomachaches (Heinsen 1972). The extract was made with 20 parts water to 1 part fresh or aged bark. The bark contains salicin, a chemical similar to aspirin (Uchytil 1989). Infusions made from the bark of red alders were taken to treat anemia, colds, congestion, and to © Tony Morosco relieve pain. Bark infusions were taken as a laxative @ CalFlora and to regulate menstruation.
    [Show full text]
  • GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant Species Not Listed Are Considered UPL for Wetland Delineation Purposes
    GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region.
    [Show full text]
  • Vegetation Mapping of the Mckenzie Preserve at Table Mountain and Environs, Southern Sierra Nevada Foothills, California
    Vegetation Mapping of the McKenzie Preserve at Table Mountain and Environs, Southern Sierra Nevada Foothills, California By Danielle Roach, Suzanne Harmon, and Julie Evens Of the 2707 K Street, Suite 1 Sacramento CA, 95816 2011 ACKNOWLEDGEMENTS To Those Who Generously Provided Support and Guidance: Many groups and individuals assisted us in completing this report and the supporting vegetation map/data. First, we expressly thank an anonymous donor who provided financial support in 2010 for this project’s fieldwork and mapping in the southern foothills of the Sierra Nevada. We also are thankful of the generous support from California Department of Fish and Game (DFG) in funding 2008 field survey work in the region. We are indebted to the following additional staff and volunteers of the California Native Plant Society who provided us with field surveying, mission planning, technical GIS, and other input to accomplish this project: Jennifer Buck, Andra Forney, Andrew Georgeades, Brett Hall, Betsy Harbert, Kate Huxster, Theresa Johnson, Claire Muerdter, Eric Peterson, Stu Richardson, Lisa Stelzner, Aaron Wentzel, and in particular, Kendra Sikes. To Those Who Provided Land Access: Joanna Clines, Forest Botanist, USDA Forest Service, Sierra National Forest Ellen Cypher, Botanist, Department of Fish and Game, Region 4 Mark Deleon, Supervising Ranger, Millerton Lake State Recreation Area Bridget Fithian, Mariposa Program Manager, Sierra Foothill Conservancy Coke Hallowell, Private landowner, San Joaquin River Parkway & Conservation Trust Wayne Harrison, California State Parks, Central Valley District Chris Kapheim, General Manager, Alta Irrigation District Denis Kearns, Botanist, Bureau of Land Management Melinda Marks, Executive Officer, San Joaquin River Conservancy Nathan McLachlin, Scientific Aid, Department of Fish and Game, Region 4 Eddie and Gail McMurtry, private landowners Chuck Peck, Founder, Sierra Foothill Conservancy Kathyrn Purcell, Research Wildlife Ecologist, San Joaquin Experimental Range, USDA Forest Service Carrie Richardson, Senior Ranger, U.S.
    [Show full text]
  • Conifer Communities of the Santa Cruz Mountains and Interpretive
    UNIVERSITY OF CALIFORNIA, SANTA CRUZ CALIFORNIA CONIFERS: CONIFER COMMUNITIES OF THE SANTA CRUZ MOUNTAINS AND INTERPRETIVE SIGNAGE FOR THE UCSC ARBORETUM AND BOTANIC GARDEN A senior internship project in partial satisfaction of the requirements for the degree of BACHELOR OF ARTS in ENVIRONMENTAL STUDIES by Erika Lougee December 2019 ADVISOR(S): Karen Holl, Environmental Studies; Brett Hall, UCSC Arboretum ABSTRACT: There are 52 species of conifers native to the state of California, 14 of which are endemic to the state, far more than any other state or region of its size. There are eight species of coniferous trees native to the Santa Cruz Mountains, but most people can only name a few. For my senior internship I made a set of ten interpretive signs to be installed in front of California native conifers at the UCSC Arboretum and wrote an associated paper describing the coniferous forests of the Santa Cruz Mountains. Signs were made using the Arboretum’s laser engraver and contain identification and collection information, habitat, associated species, where to see local stands, and a fun fact or two. While the physical signs remain a more accessible, kid-friendly format, the paper, which will be available on the Arboretum website, will be more scientific with more detailed information. The paper will summarize information on each of the eight conifers native to the Santa Cruz Mountains including localized range, ecology, associated species, and topics pertaining to the species in current literature. KEYWORDS: Santa Cruz, California native plants, plant communities, vegetation types, conifers, gymnosperms, environmental interpretation, UCSC Arboretum and Botanic Garden I claim the copyright to this document but give permission for the Environmental Studies department at UCSC to share it with the UCSC community.
    [Show full text]
  • Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences
    d i v e r s i t y , p h y l o g e n y , a n d e v o l u t i o n i n t h e monocotyledons e d i t e d b y s e b e r g , p e t e r s e n , b a r f o d & d a v i s a a r h u s u n i v e r s i t y p r e s s , d e n m a r k , 2 0 1 0 Phylogenetics of Stipeae (Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences Konstantin Romaschenko,1 Paul M. Peterson,2 Robert J. Soreng,2 Núria Garcia-Jacas,3 and Alfonso Susanna3 1M. G. Kholodny Institute of Botany, Tereshchenkovska 2, 01601 Kiev, Ukraine 2Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia 20013-7012 USA. 3Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia, s.n., E08038 Barcelona, Spain Author for correspondence ([email protected]) Abstract—The Stipeae tribe is a group of 400−600 grass species of worldwide distribution that are currently placed in 21 genera. The ‘needlegrasses’ are char- acterized by having single-flowered spikelets and stout, terminally-awned lem- mas. We conducted a molecular phylogenetic study of the Stipeae (including all genera except Anemanthele) using a total of 94 species (nine species were used as outgroups) based on five plastid DNA regions (trnK-5’matK, matK, trnHGUG-psbA, trnL5’-trnF, and ndhF) and a single nuclear DNA region (ITS).
    [Show full text]
  • Ray Imaging of a Dichasium Cupule of Castanopsis from Eocene Baltic Amber
    RESEARCH ARTICLE Synchrotron X- ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber Eva-Maria Sadowski1,4 , Jörg U. Hammel2 , and Thomas Denk3 Manuscript received 30 May 2018; revision accepted 6 September PREMISE OF THE STUDY: The Eocene Baltic amber deposit represents the largest 2018. accumulation of fossil resin worldwide, and hundreds of thousands of entrapped 1 Department of Geobiology, University of Göttingen, arthropods have been recovered. Although Baltic amber preserves delicate plant Goldschmidtstraße 3, 37077 Göttingen, Germany structures in high fidelity, angiosperms of the “Baltic amber forest” remain poorly studied. 2 Institute of Materials Research, Helmholtz-Zentrum Geesthacht, We describe a pistillate partial inflorescence of Castanopsis (Fagaceae), expanding the Max-Planck-Str. 1, 21502 Geesthacht, Germany knowledge of Fagaceae diversity from Baltic amber. 3 Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden METHODS: The amber specimen was investigated using light microscopy and 4 Author for correspondence (e-mail: eva-maria.sadowski@ synchrotron- radiation- based X- ray micro- computed tomography (SRμCT). geo.uni-goettingen.de) KEY RESULTS: The partial inflorescence is a cymule, consisting of an involucre of scales Citation: Sadowski, E.-M., J. U. Hammel, and T. Denk. 2018. Synchrotron X- ray imaging of a dichasium cupule of Castanopsis that surround all four pistillate flowers, indicating a dichasium cupule. Subtending bracts from Eocene Baltic amber. American Journal of Botany 105(12): are basally covered with peltate trichomes. Flowers possess an urecolate perianth of 2025–2036. six nearly free lobes, 12 staminodia hidden by the perianth, and a tri-locular ovary that doi:10.1002/ajb2.1202 is convex- triangular in cross section.
    [Show full text]