New Insights Into the Functions of Enamel Matrices in Calcified Tissues

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into the Functions of Enamel Matrices in Calcified Tissues Japanese Dental Science Review (2014) 50, 47—54 Available online at www.sciencedirect.com ScienceDirect jo urnal homepage: www.elsevier.com/locate/jdsr Review Article New insights into the functions of enamel matrices in calcified tissues a, a a Satoshi Fukumoto *, Takashi Nakamura , Aya Yamada , a a b a Makiko Arakaki , Kan Saito , Juan Xu , Emiko Fukumoto , b Yoshihiko Yamada a Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan b Laboratory of Cell and Developmental Biology, NIDCR, National Institutes of Health, Bethesda, MD 20892, USA Received 5 July 2013; received in revised form 27 December 2013; accepted 8 January 2014 KEYWORDS Summary Ameloblasts secrete enamel matrix proteins, including amelogenin, ameloblastin, enamelin, amelotin, and Apin/odontogenic ameloblast-associated protein (Apin/ODAM). Ame- Enamel matrix; Amelogenin; logenin is the major protein component of the enamel matrix. Amelogenin, ameloblastin, and Ameloblastin; enamelin are expressed during the secretory stage of ameloblast, while amelotin and Apin/ODAM Enamelin; are expressed during the maturation. Amelogenin and ameloblastin are also expressed in Amelotin; osteoblasts, and they regulate bone formation. In addition, recent studies show the importance Odontogenic of protein—protein interactions between enamel matrix components for enamel formation. In a ameloblast-associated mouse model mimicking a mutation of the amelogenin gene in amelogenesis imperfect (AI) in protein; humans, the mutated amelogenin forms a complex with ameloblastin, which accumulates in the Apin endoplasmic reticulum/Golgi apparatus and causes ameloblast dysfunction resulting in AI phenotypes. Ameloblastin is a cell adhesion molecule that regulates cell proliferation. It inhibits odontogenic tumor formation and regulates osteoblast differentiation through binding to CD63. Amelotin interacts with Apin/ODAM, but not ameloblastin, while Apin/ODAM binds to amelo- blastin. These interactions may be important for enamel mineralization during amelogenesis. The enamel matrix genes are clustered on human chromosome 4 except for the amelogenin genes located on the sex chromosomes. Genes for these enamel matrix proteins evolved from a common ancestral gene encoding secretory calcium-binding phosphoprotein. # 2014 Japanese Association for Dental Science. Published by Elsevier Ltd. All rights reserved. Contents 1. Introduction . 48 2. Amelogenin (AMEL) . 49 3. Ameloblastin (AMBN) . 50 * Corresponding author. Tel.: +81 22 717 8380; fax: +81 22 717 8386. E-mail address: [email protected] (S. Fukumoto). 1882-7616/$ — see front matter # 2014 Japanese Association for Dental Science. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jdsr.2014.01.001 48 S. Fukumoto et al. 4. Enamelin (ENAM) . 51 5. Amelotin (AMTN) and Apin/ODAM . 52 6. Evolution of enamel matrix genes . 52 7. Conclusion . 53 Acknowledgements. 53 References . 53 completely degraded by specific proteases such as MMP- 1. Introduction 20, mainly produced during the secretory/transition stage, Dental enamel, known as the hardest tissue in vertebrates, is and KLK4, mainly produced during the transition/maturation formed by ameloblasts derived from the oral epithelium. In stage, resulting in a highly ordered and purposefully designed the initial stage of the enamel organ’s development, the oral meshwork of carbonated hydroxyapatite crystals with aston- epithelium invades the dental mesenchyme, followed by ishing mechanical properties [1]. differentiation into four types of epithelial cells, including Cell adhesion to the extracellular matrix is of fundamental the inner enamel epithelium, the stratum intermedium, the importance for a wide range of cellular functions, including stellate reticulum, and the outer enamel epithelium. Among cell differentiation, proliferation, and survival [2]. Inner and these cell types, the inner enamel epithelium differentiates outer enamel epithelial cells interact with the basement into enamel matrix-secreting ameloblasts. The formation of membrane, of which major constituents are type IV collagen, dental enamel is a prototype of functional organ develop- laminin, and heparan-sulfate proteoglycan perlecan. For ment through a matrix mineralization process (Fig. 1). Unlike example, laminin a5 (Lama5)-deficient mice show small tooth dentin and bone matrices, in which collagen I is the major germs without a cusp [3]. In addition, proliferation and polar- matrix protein, enamel matrices consist of a distinct set of ization of the dental epithelium are inhibited in these mice, matrix molecules with amelogenin being the major compo- indicating that interactions between the dental epithelium nent. The different matrix components in enamel contribute and the basement membrane are important to determine to its larger and more rigid hydroxyapatite crystal structures tooth sizes and dental epithelial cell differentiation. than dentin and bone. Enamel matrix proteins are produced Ameloblasts are polarized in the secretory stage and at their highest levels by ameloblasts during the secretory secrete enamel matrix components, including amelogenin and transition stages of amelogenesis and collectively (AMEL), ameloblastin (AMBN), and enamelin (ENAM). orchestrate the proper assembly and growth of crystals Furthermore, amelotin (AMTN) and Apin/odontogenic ame- within mineralized enamel. These proteins are nearly loblast-associated (ODAM) are secreted from those in the Figure 1 Oral epithelium differentiates into four types of dental epithelium: inner and outer enamel epithelium, stratum intermedium, and stellate reticulum. Inner enamel epithelium differentiates into pre-ameloblast and ameloblast. Inner enamel epithelium and pre-ameloblast secrete and bind to basement membrane. Secretory-stage ameloblasts secrete enamel matrices AMEL, AMBN, and ENAM. Maturation-stage ameloblasts secrete AMTN and Apin/ODAM. New insights into the functions of enamel matrices 49 Table 1 Summary of enamel matrix. Matrix name Expression Human cytogenetic Mouse KO phenotype Reference (abbreviation) localization Amelogenin (AMEL) Ameloblast (secretory), Xp22.2 (AMELX), Amelogenesis imperfecta [9] odontoblast, osteoblast, Yp11.2 (AMELY) tooth root resorption cementoblast, epithelial reduced bone formation rests of Malassez Ameloblastin (AMBN) Ameloblast (secretory), 4q13.3 Amelogenesis imperfecta [18] odontoblast, osteoblast, reduced bone formation cementoblast, epithelial tumor formation rests of Malassez Enamelin (ENAM) Ameloblast (secretory) 4q13.3 Amelogenesis imperfecta [33] (ENU induced) Amelotin (AMTN) Ameloblast (maturation) 4q13.3 Apin/odontogenic, Ameloblast (maturation) 4q13 ameloblast-associated (ODAM) maturation stage. These enamel matrix components are ancestor of extant mammals, whereas the 3-prime portion considered important for enamel crystal formation. In fact, evolved independently within different mammal species. AMEL and ENAM mutations are identified in patients with The boundary is marked by a transposon insertion in intron amelogenesis imperfecta (AI), a common group of inherited 2, which is shared by all of the examined species [9]. defects of dental enamel formation that exhibit marked Mutations in the AMEL gene in humans and AMEL deficiency genetic and clinical heterogeneity, with at least 14 different in mice cause defective enamel [10] and result in the diverse sub-types recognized on the basis of their clinical appearance group of genetically altered conditions collectively known as AI and mode of inheritance [4—6]. However, a recent study that in humans. AMEL null mice showed remarkable resorption of used a gene-targeting method and in vitro analysis showed cementum and root dentin via the receptor activator of that these matrices also have a large number of biological nuclear factor-kappa B ligand-mediated osteoclastogenesis functions in addition to enamel formation, including bone [11], suggesting that AMEL is negative regulator of osteoclast formation, tumorigenesis, and the regulation of stem cell genesis [12]. In fact, in vivo application of AMEL suppresses function. Mineralized tissue formation and maintenance are root resorption [13]. The enamel layer in AMEL null mice is controlled by matrix proteins such as several secretory cal- hypoplastic and missing a characteristic prism pattern, while it cium-binding phospho-proteins (SCPPs), which are encoded has an elemental composition consistent with a hydroxyapa- by SCPP genes clustered on human chromosome 4 [7]. Half of tite-like mineral [10], suggesting that AMEL is necessary for these proteins, including bone sialoprotein, osteopontin, enamel organization, but not mineral crystal initiation. A dentin sialophosphoprotein, and dentin matrix protein, are tyr64-to-his missense mutation in the tri-tyrosyl domain of associated with bone and dentin formation, while the other the enamel extracellular matrix protein in mice (AMELX) half of consists of enamel-associated proteins, including results in severe defects of enamel biomineralization asso- AMBN, ENAM, AMTN, and Apin/ODAM (Table 1). They promote ciated with an absence of the full-length AMEL protein in the mineral nucleation through calcium ion sequestration and enamel matrix; this mutation also increases ameloblast apop- control crystal growth by adsorption onto growing crystal tosis [14]. In that study, affected ameloblasts express, but fail surfaces [8]. Here, we present the
Recommended publications
  • Ono -- PTH-Pthrp Receptor Signaling in Osterix-Expressing Progenitors.Pdf
    3/27/14 Root forma)on Cementum Dentin Cementoblast Odontoblast Role of PTH/PTHrP Receptor Signaling on Root Epithelial rests Formaon of Malassez (ERM) Dental Wanida Ono papilla cells AGE Orthodon;cs, Department of Developmental Biology, Harvard School of Dental Medicine Endocrine Unit, MassachuseLs General Hospital and Harvard Medical School Dental follicle cells Hertwig’s epithelial root sheath (HERS) Osterix PTHrP-PPR system • Transcripon factor essen;al to osteoblast differen;aon PTHrP (Nakashima K et al. 2002) PTH/PTHrP receptor (PPR) • Expressed in odontoblasts and alveolar osteoblasts during Gαs Gq tooth development (Chen S et al. 2009) • Controls cellular cementum formaon (Cao Z et al. 2012) • Mediates epithelial-mesenchymal interacons • Osterix-expressing precursors in the perichondrium move • PTHrP is expressed in enamel epithelia/HERS? to bone marrow and become osteoblasts during fetal • PPR is expressed in dental mesenchymes development (Maes C, Kronenberg HM et al. 2010) (Beck et al 1995; Lee Deeds and Segre 1995; Liu et al 1998) • PTHrP is required for tooth erup;on in mice (Philbrick WM, Karaplis AC et al. PNAS 1998) Osterix+ Root-forming • PPR haploinsufficiency is associated with primary cells progenitors failure of tooth erup;on (PFE) in humans ? (Decker E, Weber BH et al. Am J Hum Gen 2008) PTHrP expression paern during root morphogenesis Aims of this study PTHrPLacZ/+ x40 P7 P14 P49 • Iden;fy how osterix-expressing progenitors contribute to murine root morphogenesis • Understand how PTH/PTHrP receptor signal regulates root-forming progenitors PTHrP-LacZ x200 P7 x400 P14 ? PTHrP Epithelial root sheath PPR PTHrP-LacZ Osx+ progenitors Odontoblast PTHrP par;cipates in …….
    [Show full text]
  • Benign Cementoblastoma Associated with an Unerupted Third Molar - a Case Report
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Directory of Open Access Journals BENIGN CEMENTOBLASTOMA ASSOCIATED WITH AN UNERUPTED THIRD MOLAR - A CASE REPORT J.Dinakar* M.S.Senthil Kumar** Shiju Mathew Jacob*** *Professor & HOD, Department of Oral Pathology, ** Reader, *** Lecturer, Department of Oral Surgery, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamilnadu, India. ABSTRACT: Cementoblastoma is a rare odontogenic tumor derived from odontogenic ectomesenchyme of cementoblast origin that forms cementum layer on the roots of a tooth. A case report is presented of a patient treated with surgical excision of Cementoblastoma associated with an unerupted infected right lower third molar tooth. Key words: Cementoblastoma, Odontogenic tumour, unerupted third molar. The cell of origin is cementoblast. INTRODUCTION: Clinically it causes bony expansion. The commonest site is the posterior region of Cementoblastoma is an odontogenic the mandible. In the radiograph it is seen tumor of ectomesenchymal origin. It is as large radiopaque mass associated with also called cementoma. They are large the root of the tooth. We report a case of bulbous mass of cementum or cementum- Benign Cementoblastoma from Sri like tissue on roots of teeth. Ramakrishna Dental College & Hospital, Coimbatore. restriction in opening the mouth and intra oral examination reveals a partially CASE REPORT: erupted third molar tooth with pus discharge. A panoramic radiograph A 41 year old man presented to our showed a radio-opaque, dense, department with a complaint of pain and amorphous, irregularly shaped mass swelling in the right lower half of the face. measuring 2.2 x 1.5cm attached with the Patient gave history of intermittent pain third molar (Fig 1,1a).
    [Show full text]
  • Tooth Enamel and Its Dynamic Protein Matrix
    International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
    [Show full text]
  • Lecture 2 – Bone
    Oral Histology Summary Notes Enoch Ng Lecture 2 – Bone - Protection of brain, lungs, other internal organs - Structural support for heart, lungs, and marrow - Attachment sites for muscles - Mineral reservoir for calcium (99% of body’s) and phosphorous (85% of body’s) - Trap for dangerous minerals (ex:// lead) - Transduction of sound - Endocrine organ (osteocalcin regulates insulin signaling, glucose metabolism, and fat mass) Structure - Compact/Cortical o Diaphysis of long bone, “envelope” of cuboid bones (vertebrae) o 10% porosity, 70-80% calcified (4x mass of trabecular bone) o Protective, subject to bending/torsion/compressive forces o Has Haversian system structure - Trabecular/Cancellous o Metaphysis and epiphysis of long bone, cuboid bone o 3D branching lattice formed along areas of mechanical stress o 50-90% porosity, 15-25% calcified (1/4 mass of compact bone) o High surface area high cellular activity (has marrow) o Metabolic turnover 8x greater than cortical bone o Subject to compressive forces o Trabeculae lined with endosteum (contains osteoprogenitors, osteoblasts, osteoclasts) - Woven Bone o Immature/primitive, rapidly growing . Normally – embryos, newborns, fracture calluses, metaphyseal region of bone . Abnormally – tumors, osteogenesis imperfecta, Pagetic bone o Disorganized, no uniform orientation of collagen fibers, coarse fibers, cells randomly arranged, varying mineral content, isotropic mechanical behavior (behavior the same no matter direction of applied force) - Lamellar Bone o Mature bone, remodeling of woven
    [Show full text]
  • Dental Cementum Reviewed: Development, Structure, Composition, Regeneration and Potential Functions
    Braz J Oral Sci. January/March 2005 - Vol.4 - Number 12 Dental cementum reviewed: development, structure, composition, regeneration and potential functions Patricia Furtado Gonçalves 1 Enilson Antonio Sallum 1 Abstract Antonio Wilson Sallum 1 This article reviews developmental and structural characteristics of Márcio Zaffalon Casati 1 cementum, a unique avascular mineralized tissue covering the root Sérgio de Toledo 1 surface that forms the interface between root dentin and periodontal Francisco Humberto Nociti Junior 1 ligament. Besides describing the types of cementum and 1 Dept. of Prosthodontics and Periodontics, cementogenesis, attention is given to recent advances in scientific Division of Periodontics, School of Dentistry understanding of the molecular and cellular aspects of the formation at Piracicaba - UNICAMP, Piracicaba, São and regeneration of cementum. The understanding of the mechanisms Paulo, Brazil. involved in the dynamic of this tissue should allow for the development of new treatment strategies concerning the approach of the root surface affected by periodontal disease and periodontal regeneration techniques. Received for publication: October 01, 2004 Key Words: Accepted: December 17, 2004 dental cementum, review Correspondence to: Francisco H. Nociti Jr. Av. Limeira 901 - Caixa Postal: 052 - CEP: 13414-903 - Piracicaba - S.P. - Brazil Tel: ++ 55 19 34125298 Fax: ++ 55 19 3412 5218 E-mail: [email protected] 651 Braz J Oral Sci. 4(12): 651-658 Dental cementum reviewed: development, structure, composition, regeneration and potential functions Introduction junction (Figure 1). The areas and location of acellular Cementum is an avascular mineralized tissue covering the afibrillar cementum vary from tooth to tooth and along the entire root surface. Due to its intermediary position, forming cementoenamel junction of the same tooth6-9.
    [Show full text]
  • Expression of Odontogenic Ameloblast-Associated Protein (ODAM) in Dental and Other Epithelial Neoplasms
    Expression of Odontogenic Ameloblast-Associated Protein (ODAM) in Dental and Other Epithelial Neoplasms Daniel P Kestler, James S Foster, Sallie D Macy, Charles L Murphy, Deborah T Weiss, and Alan Solomon Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America We previously have communicated our discovery that the amyloid associated with calcifying epithelial odontogenic tumors is composed of N-terminal fragments of the structurally novel odontogenic ameloblast-associated protein designated ODAM. Sub- sequently, it was shown by other investigators that ODAM is expressed in rodent enamel organ and is likely involved in dental de- velopment. We now report that this molecule also is found in certain human tissues, principally the salivary gland and trachea, as evidenced by RNA array analysis and immunohistochemistry-utilizing antibodies prepared against synthetic ODAM-related peptides and recombinant protein. Notably, these reagents immunostained normal and malignant ameloblasts and other types of human neoplastic cells, including those of gastric, lung, and breast origin where the presence in the latter was confirmed by in situ hybridization using gene-specific molecular probes. Moreover, significant titers of anti-ODAM IgG antibodies were detected in the sera of patients with these malignancies. Our studies have provided the first evidence in humans for the cellular expression of ODAM in normal and diseased states. Based on our findings, we posit that ODAM is a developmental antigen that has an es- sential role in tooth maturation and in the pathogenesis of certain odontogenic and other epithelial neoplasms; further, we sug- gest that ODAM may serve as a novel prognostic biomarker, as well as a potential diagnostic and therapeutic target for patients with breast and other epithelial forms of cancer.
    [Show full text]
  • Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Lineages
    Downloaded from http://cshperspectives.cshlp.org/ on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Lineages Maria Jussila and Irma Thesleff Developmental Biology Program Institute of Biotechnology, Biokeskus 1, P.O. Box 56, University of Helsinki, Helsinki FIN-00014, Finland Correspondence: maria.jussila@helsinki.fi SUMMARY Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell–cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered. Outline 1 Morphogenesis and cell 4 Regulation of tooth replacement, continuous differentiation during tooth development growth, and stem cells in teeth 2 Signal networks and signaling centers 5 Future challenges: stem cell-based bioengineering of teeth 3 Regulation of the identity and 6 Concluding remarks differentiation of odontogenic mesenchymal and epithelial cell lineages References Editors: Patrick P.L.
    [Show full text]
  • Bioinformatics Analysis Reveals Genes Involved in the Pathogenesis of Ameloblastoma and Keratocystic Odontogenic Tumor
    IJMCM Original Article Autumn 2016, Vol 5, No 4 Bioinformatics Analysis Reveals Genes Involved in the Pathogenesis of Ameloblastoma and Keratocystic Odontogenic Tumor Eliane Macedo Sobrinho Santos1,2, Hércules Otacílio Santos3, Ivoneth dos Santos Dias4, Sérgio Henrique Santos5, Alfredo Maurício Batista de Paula1, John David Feltenberger6, André Luiz Sena Guimarães1, Lucyana Conceição Farias¹ 1. Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil. 2. Instituto Federal do Norte de Minas Gerais-Campus Araçuaí, Minas Gerais, Brazil. 3. Instituto Federal do Norte de Minas Gerais-Campus Salinas, Minas Gerais, Brazil. 4. Department of Biology, Universidade Estadual de Montes Claros, Minas Gerais, Brazil. 5. Department of Pharmacology, Universidade Federal de Minas Gerais, Brazil. 6. Texas Tech University Health Science Center, Lubbock, TX, USA. Submmited 10 August 2016; Accepted 10 October 2016; Published 6 Decemmber 2016 Pathogenesis of odontogenic tumors is not well known. It is important to identify genetic deregulations and molecular alterations. This study aimed to investigate, through bioinformatic analysis, the possible genes involved in the pathogenesis of ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT). Genes involved in the pathogenesis of AM and KCOT were identified in GeneCards. Gene list was expanded, and the gene interactions network was mapped using the STRING software. “Weighted number of links” (WNL) was calculated to identify “leader genes” (highest WNL). Genes were ranked by K-means method and Kruskal- Wallis test was used (P<0.001). Total interactions score (TIS) was also calculated using all interaction data generated by the STRING database, in order to achieve global connectivity for each gene. The topological and ontological analyses were performed using Cytoscape software and BinGO plugin.
    [Show full text]
  • New Directions in Cariology Research 2011
    International Journal of Dentistry New Directions in Cariology Research 2011 Guest Editors: Alexandre R. Vieira, Marilia Buzalaf, and Figen Seymen New Directions in Cariology Research 2011 International Journal of Dentistry New Directions in Cariology Research 2011 Guest Editors: Alexandre R. Vieira, Marilia Buzalaf, and Figen Seymen Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Dentistry.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Ali I. Abdalla, Egypt Nicholas Martin Girdler, UK Getulio Nogueira-Filho, Canada Jasim M. Albandar, USA Rosa H. Grande, Brazil A. B. M. Rabie, Hong Kong Eiichiro . Ariji, Japan Heidrun Kjellberg, Sweden Michael E. Razzoog, USA Ashraf F. Ayoub, UK Kristin Klock, Norway Stephen Richmond, UK John D. Bartlett, USA Manuel Lagravere, Canada Kamran Safavi, USA Marilia A. R. Buzalaf, Brazil Philip J. Lamey, UK L. P. Samaranayake, Hong Kong Francesco Carinci, Italy Daniel M. Laskin, USA Robin Seymour, UK Lim K. Cheung, Hong Kong Louis M. Lin, USA Andreas Stavropoulos, Denmark BrianW.Darvell,Kuwait A. D. Loguercio, Brazil Dimitris N. Tatakis, USA J. D. Eick, USA Martin Lorenzoni, Austria Shigeru Uno, Japan Annika Ekestubbe, Sweden Jukka H. Meurman, Finland Ahmad Waseem, UK Vincent Everts, The Netherlands Carlos A. Munoz-Viveros, USA Izzet Yavuz,
    [Show full text]
  • The Pitx2:Mir-200C/141:Noggin Pathway Regulates Bmp Signaling
    3348 RESEARCH ARTICLE STEM CELLS AND REGENERATION Development 140, 3348-3359 (2013) doi:10.1242/dev.089193 © 2013. Published by The Company of Biologists Ltd The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation Huojun Cao1,*, Andrew Jheon2,*, Xiao Li1, Zhao Sun1, Jianbo Wang1, Sergio Florez1, Zichao Zhang1, Michael T. McManus3, Ophir D. Klein2,4 and Brad A. Amendt1,5,‡ SUMMARY The mouse incisor is a remarkable tooth that grows throughout the animal’s lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development.
    [Show full text]
  • Original Article BMP-2 Downregulation Is Involved in the Inhibition of Cementoblast Differentiation by Lithium
    Int J Clin Exp Med 2016;9(2):823-830 www.ijcem.com /ISSN:1940-5901/IJCEM0017314 Original Article BMP-2 downregulation is involved in the inhibition of cementoblast differentiation by lithium Shang Gao1*, Xing-Fu Bao1*, Yu-Zhuo Wang1, Jing-Zheng Yi2, Min Hu1 1Department of Orthodontics, Stomatological Hospital of Jilin University, China; 2University of California in San Diego, USA. *Equal contributors. Received October 5, 2015; Accepted December 8, 2015; Epub February 15, 2016; Published February 29, 2016 Abstract: Cementum, which is formed by cementoblast, plays an important role in periodontal regeneration. Wnt signalling and BMP-2 are involved in the regulation of cementoblast differentiation, but little is known about the effect of lithium, an agonist of Wnt signalling, on cementoblast behaviour. In this research, OCCM-30 cementoblast was employed to investigate the influence of various concentrations of lithium on proliferation and differentiation. Cell metabolic assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell staining, alizarin red staining and alkaline phosphatase assay were performed. BMP-2 expression was also compared among different groups. Results showed no significant difference in proliferation, whereas differentiation was inhibited in the pres- ence of lithium. Given these results, along with previous reports, BMP-2 downregulation is involved in the inhibition of cementoblast differentiation by lithium. Keywords: Lithium, cementoblast, BMP-2 Introduction Bone morphogenetic protein 2 (BMP-2) is an autocrine and paracrine growth factor that is Cementum is a type of special mineralized tis- essential for the growth of mineralized tissue. sue covering tooth root that protects dental In osteoblasts, BMP-2 promotes the differentia- pulp from external stimulation.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]