Foresight Institute Appoints Scott Mize President Foresight Institute Poised for Growth

Total Page:16

File Type:pdf, Size:1020Kb

Foresight Institute Appoints Scott Mize President Foresight Institute Poised for Growth Foresight ® No. 54 A publication of the Foresight Institute® Foresight Institute Appoints Scott Mize President Foresight Institute poised for growth Breaking News — August 3, 2004 — Foresight Institute has appointed Scott Mize to the position of President. Prior to joining Foresight Institute, Mize was co-founder of AngstroVision, Inc., a developer of nano-imaging instruments, Chairman of the Advisory Board of the Nanotechnology Opportunity Report™, business consultant for Technanogy, a nanomaterials company, and advisor to Accelrys, the leading nanotechnology software company. He has 20 years of experience in the information technology, new media, and Internet industries, and has been tracking the development of the nanotechnology field for over 15 years. Foresight Institute was founded in 1986 to educate the public about nanotechnology when it was a little-known science. The Institute’s 1st Conference on Molecular Nanotechnology preceded the signing of the National Nanotechnology Initiative by 10 years. The prestigious Foresight Institute Feynman Prize in Nanotechnology has honored top nanotechnology research scientists since 1993. “This is an important step in our evolution,” said Christine Peterson, Founder and former President of Foresight Institute. “With his leadership experience and knowledge of nanotechnology, we are now prepared to take the organization to the next level. This expansion was made possible by the generous support of our benefactors, which have given Foresight a substantial financial foundation. With these resources, Foresight will expand its efforts to ensure the beneficial development and deployment of nanotechnology, and educate the public about the potential and risks of molecular machine systems.” Peterson will remain with Foresight Institute as Vice President focusing on public policy, legislative issues and education. Scott Mize, newly appointed For more information on Scott Mize: http://www.foresight.org/FI/Mize.html President of Foresight Institute Experts to Explore Advanced Nanotechnology October 22 to 24, 2004 INSIDE THIS ISSUE Foresight Institute Event Highlights Research, Applications and Policy Inside Foresight ............................ 2 Vision Weekend 2004 ................... 3 Foresight Institute is sponsoring the 1st Conference on Advanced Nanotechnology: Senior Associates Program ......... 5 Research, Applications, and Policy, October 22-24, 2004 at the Crystal City Marriott Hotel, Washington DC area. Vision Weekend Sponsors .......... 6 “This is the first conference to focus on molecular machine systems and advanced Vision Weekend Photos ............... 7 nanotechnology,” said Christine Peterson, Vice President and founder of Foresight Institute. Self-Replicating Machines ........... 8 “The Conference targets the bottom-up goal of molecular machine systems and what this IMM Freitas Research Fund ......... 9 Next Industrial Revolution will mean for the environment, medicine, national competitiveness, and defense.” NASA-Funded Study ..................... 9 Why care about MNT .................. 10 The 1st Conference on Advanced Nanotechnology: Research, Applications, and Policy is important for those interested in the Feynman goal for nanotechnology, including researchers, Recent Progress ......................... 12 Media Watch.54 ........................... 14 continued on page 11 No Runaway Replicators ............ 18 Thanks & Kudos .......................... 19 “This is the first conference to focus on molecular machine Foresight Purpose ...................... 19 systems and advanced nanotechnology.” Upcoming Events ........................ 20 —Christine Peterson Foresight Update No. 54 1 Molecular manufacturing: I time for a targeted conference It’s time for Foresight to innovate in nanotechnology again, as we did with the first conference and the first prizes. We need a forum Targeting where researchers with a serious interest in molecular machine systems can gather and systematically explore that goal in earnest. Molecular We also need a forum for discussion of potential applications, social implications, funding, and public policy issues. Manufacturing by Christine L. Peterson Much excellent work is being funded, but we won’t reach real molecular In 1989, Foresight held the first comprehensive research conference on manufacturing without a systems molecular nanotechnology. Initially held development program specifically focused every other year, this meeting series has over the years attracted top researchers in all of molecular nanotech’s enabling sciences, on this very challenging goal. from scanning probes to protein and DNA engineering to molecular systems modeling. Enter the 1st Conference on Advanced Nanotechnology: Starting in 1993, we launched the Foresight Institute Feynman Research, Applications, and Policy, to be held October 21-24 in Prizes to recognize important work leading toward molecular Washington, DC (http://foresight.org/Conferences/ nanotech. In 1996, we announced the Feynman Grand Prize in AdvNano2004). We’ll have one day each on research (Friday), Nanotechnology, a $250,000 prize to be awarded to the first team to applications (Saturday), and policy and funding issues (Sunday). build a nanoscale robotic arm and a computing device that We’re working on the second two days, but Friday has come demonstrates the feasibility of building a nanotechnology together very well, with Caltech Prof. William Goddard and computer. In 1997, in response to growing interest in the field, both Georgia Tech Prof. Ralph Merkle serving as co-chairs. Ray the Feynman Prizes and the Foresight Conferences started being Kurzweil has agreed to give a keynote presentation. held annually. This is our opportunity to present state-of-the-art work on all With the announcement of the U.S. National Nanotechnology aspects of molecular manufacturing–from theoretical and physical Initiative in 2000, interest took a sharp upturn, with many new experiments, to plans for using the technology in medicine and nano conferences being held by both for-profit conference firms restoring the environment, to recommendations for improved and the various professional societies. The earliest of these were funding mechanisms and public policy. We hope you’ll join us in explicitly modeled on the Foresight Conferences, with topics and Washington for this unique, first-ever meeting on the Third speakers drawn from our past meetings. We encouraged this Industrial Revolution: molecular manufacturing. development, since the goal of our work is to spread these ideas, not to sponsor large meetings. Getting other organizations to help Foresight President and DC Representative is a key part of our strategy. I’ve been running Foresight more or less continuously since it was An explosion of “nano” events: founded in 1986. Meanwhile, the Foresight viewpoint has not been presented in a general-reader book since Unbounding the Future many unfocused over a decade ago. We need a new book, and I’m excited about Based on the number of “nano” conferences now being held, this writing it—but I can’t do that and direct Foresight as well. It’s strategy is definitely working. Hundreds of such meetings are now time for a new President to lead our effort as Foresight enters held each year around the world, the most relevant of which are Phase 2. listed on our Events webpage. Many of them have significant content focusing on the molecular aspect of nanotechnology, rather Accordingly, we retained an executive search firm to find the very than top-down approaches such as nanolithography. It seems as best candidate for this position. The firm found multiple excellent though every major science and engineering professional society in candidates, but you won't be surprised to hear that our choice the U.S. has nano events now, with similar events in Asia, Europe turned out to be someone who has been a Foresight member since and Israel as well. The “nano” meme has successfully spread 1987 and Senior Associate since 1997: Scott Mize. He is highly worldwide, just as we’ve hoped and worked for. qualified in multiple dimensions and is looking forward to meeting as many of you as possible at our October conference in DC. You In the process, the focus on the goal set by Richard Feynman in can read all about him here: http://foresight.org/FI/Mize.html his famous 1959 talk, “There’s Plenty of Room at the Bottom,” and systematically explored by Eric Drexler in Nanosystems and Engines Also, as you may recall, in 2003 for the first time Foresight had a of Creation, has become blurred. Anything under 100 nanometers is full-time representative in Washington, DC. Sadly for us, Tim called nanotechnology, with some “nano” meetings including Kyger was lured away to the Pentagon in December. Since then mesoscale and even MEMS (microelectromechanical systems). we've been searching for a new person for this key post, and now Some older technologies are being retroactively renamed nanotech. we've found her: Linda Strine. She has worked with a number of Foresight leaders before and I've rarely heard such rave reviews of Similarly, the U.S. National Nanotechnology Initiative funds a a colleague. Read about Linda here: http:// broad variety of basic nanoscience explorations, but these do not chooseinfinitelinks.com add up to a coherent project leading to nanoproductive systems—a general ability to build with atomic precision. Much excellent Thanks for all your support, and I look forward to your help as I work is being funded, but we won’t reach real molecular
Recommended publications
  • Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems
    IMM White Paper Scanning Probe Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems 1 August 2007 D.R. Forrest, R. A. Freitas, N. Jacobstein One proposed pathway to atomically precise manufacturing is scanning probe diamondoid mechanosynthesis (DMS): employing scanning probe technology for positional control in combination with novel reactive tips to fabricate atomically-precise diamondoid components under positional control. This pathway has its roots in the 1986 book Engines of Creation, in which the manufacture of diamondoid parts was proposed as a long-term objective by Drexler [1], and in the 1989 demonstration by Donald Eigler at IBM that individual atoms could be manipulated by a scanning tunelling microscope [2]. The proposed DMS-based pathway would skip the intermediate enabling technologies proposed by Drexler [1a, 1b, 1c] (these begin with polymeric structures and solution-phase synthesis) and would instead move toward advanced DMS in a more direct way. Although DMS has not yet been realized experimentally, there is a strong base of experimental results and theory that indicate it can be achieved in the near term. • Scanning probe positional assembly with single atoms has been successfully demonstrated in by different research groups for Fe and CO on Ag, Si on Si, and H on Si and CNHCH3. • Theoretical treatments of tip reactions show that carbon dimers1 can be transferred to diamond surfaces with high fidelity. • A study on tip design showed that many variations on a design turn out to be suitable for accurate carbon dimer placement. Therefore, efforts can be focused on the variations of tooltips of many kinds that are easier to synthesize.
    [Show full text]
  • FROM LONGITUDE to ALTITUDE: INDUCEMENT PRIZE CONTESTS AS INSTRUMENTS of PUBLIC POLICY in SCIENCE and TECHNOLOGY Clayton Stallbau
    FROM LONGITUDE TO ALTITUDE: INDUCEMENT PRIZE CONTESTS AS INSTRUMENTS OF PUBLIC POLICY IN SCIENCE AND TECHNOLOGY Clayton Stallbaumer* I. INTRODUCTION On a foggy October night in 1707, a fleet of Royal Navy warships ran aground on the Isles of Scilly, some twenty miles southwest of England.1 Believing themselves to be safely west of any navigational hazards, two thousand sailors discovered too late that they had fatally misjudged their position.2 Although the search for an accurate method to determine longitude had bedeviled Europe for several centuries, the “sudden loss of so many lives, so many ships, and so much honor all at once” elevated the discovery of a solution to a top national priority in England.3 In 1714, Parliament issued the Longitude Act,4 promising as much as £20,0005 for a “Practicable and Useful” method of determining longitude at sea; fifty-nine years later, clockmaker John Harrison claimed the prize.6 Nearly three centuries after the fleet’s tragic demise, another accident, also fatal but far removed from longitude’s terrestrial reach, struck a nation deeply. Just four days after its crew observed a moment’s silence in memory of the Challenger astronauts, the space shuttle Columbia disintegrated upon reentry, killing all on board.7 Although * J.D., University of Illinois College of Law, 2006; M.B.A., University of Illinois College of Business, 2006; B.A., Economics, B.A., History, Lake Forest College, 2001. 1. DAVA SOBEL, LONGITUDE: THE TRUE STORY OF A LONE GENIUS WHO SOLVED THE GREATEST SCIENTIFIC PROBLEM OF HIS TIME 12 (1995).
    [Show full text]
  • The Future Impact of Molecular Nanotechnology on Textile Technology and on the Textile Industry
    The Future Impact of Molecular Nanotechnology on Textile Technology and on the Textile Industry David R. Forrest1 Discover Expo ’95 Industrial Fabric & Equipment Exposition Charlotte, North Carolina 12 October 1995 1 Business address: Research Specialist, Allegheny Ludlum Steel, Technical Center, Alabama & Pacific Aves., Brackenridge, PA 15014-1597. Voice: 412-226-6434, FAX: 412-226-6452, Internet: [email protected] Table of Contents Introduction 1 Part 1: Technical Issues 1 Definition of Terms 1 Designing Molecular Machines and Devices 3 Calculating Geometries and Forces in Nanomechanical 4 Devices Nanomechanical Computational Systems 6 Molecular Sorting, Processing, and Assembly 7 Design for Reliability 8 Theoretical Properties of Materials 10 Applications of Nanotechnology to Industrial Fabrics 11 Smart Materials and Nanotechnology 12 Conclusions 13 Part 2: Economic and Social Policy Issues 14 The Origins of Molecular Nanotechnology 14 State-of-the-Art 17 Driving Forces for (and against) Development 18 Time Frame, Rate of Progress 19 Conclusions 20 Introduction Molecular nanotechnology is an emerging, interdisciplinary field combining princi- ples of molecular chemistry and physics with the engineering principles of mechani- cal design, structural analysis, computer science, electrical engineering, and systems engineering. Molecular manufacturing is a method conceived for the processing and rearrangement of atoms to fabricate custom products. It would rely on the use of a large number of molecular electro-mechanical subsystems working in parallel and using commonly available chemicals. Built to atomic specification, the products would exhibit order-of-magnitude improvements in strength, toughness, speed, and efficiency, and be of high quality and low cost. In Part 1: Technical Issues, I pro- vide an overview of molecular nanotechnology and explore ways in which molecu- lar manufacturing could be applied to improve textile products.
    [Show full text]
  • Industrial Ecology: a New Perspective on the Future of the Industrial System
    Industrial Ecology: a new perspective on the future of the industrial system (President's lecture, Assemblée annuelle de la Société Suisse de Pneumologie, Genève, 30 mars 2001.) Suren Erkman Institute for Communication and Analysis of Science and Technology (ICAST), P. O. Box 474, CH-1211 Geneva 12, Switzerland Introduction Industrial ecology? A surprising, intriguing expression that immediately draws our attention. The spontaneous reaction is that «industrial ecology» is a contradiction in terms, something of an oxymoron, like «obscure clarity» or «burning ice». Why this reflex? Probably because we are used to considering the industrial system as isolated from the Biosphere, with factories and cities on one side and nature on the other, the problem consisting in trying to minimize the impact of the industrial system on what is «outside» of it: its surroundings, the «environment». As early as the 1950’s, this end-of-pipe angle was the one adopted by ecologists, whose first serious studies focused on the consequences of the various forms of pollution on nature. In this perspective on the industrial system, human industrial activity as such remained outside of the field of research. Industrial ecology explores the opposite assumption: the industrial system can be seen as a certain kind of ecosystem. After all, the industrial system, just as natural ecosystems, can be described as a particular distribution of materials, energy, and information flows. Furthermore, the entire industrial system relies on resources and services provided by the Biosphere, from which it cannot be dissociated. (It should be specified that .«industrial», in the context of industrial ecology, refers to all human activities occurring within the modern technological society.
    [Show full text]
  • Nanorobot Construction Crews
    Nanorobot Construction Crews Jaeseung Jeong, Ph.D Department of Bio and Brain engineering, KAIST Nanorobotics • Nanorobotics is the technology of creating machines or robots atltthit or close to the microscopi c scal lfe of a nanomet res (10-9 metres). More specifically, nanorobotics refers to the still largely ‘hypothetical’ nanotechnology engineering discipline of designing and building nanorobots. • Nanorobots ((,,nanobots, nanoids, nanites or nanonites ) would be typically devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components. As no artificial non-biological nanorobots have yet been created, they remain a ‘hypothetical’ concept. • Another definition sometimes used is a robot which allows precision interactions with nanoscale objects , or can manipulate with nanoscale resolution. • Followingggpp this definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. • Also, macroscalble robots or mi crorob ots which can move wi th nanoscale precision can also be considered nanorobots. The T-1000 in Terminator 2: Judggyment Day • Since nanorobots would be microscopic in size , it would probably be necessary for very large numbers of them to work together to perform microscopic and macroscopic tasks. • These nanorobot swarms are fdifound in many sci ence fi fitiction stories, such as The T-1000 in Terminator 2: Judgment Day, nanomachine i n Meta l G ear So lid. • The word "nanobot" (also "nanite",,g, "nanogene", or "nanoant") is often used to indicate this fictional context and is a n info rma l o r eve n pejo rat ive term to refer to the engineering concept of nanorobots.
    [Show full text]
  • Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
    Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today.
    [Show full text]
  • The Molecular Epair of the Rain, Part II by Ralph Merkle, Ph.D
    THIS ISSUE'S FEATURE: The Molecular epair of the rain, Part II By Ralph Merkle, Ph.D. Michael Perry, Ph.D. introduces us to "The Realities of Patient Storage" in this issue's For the Record lUS: Book Reviews, Relocation Reports, and Cryonics Fiction by Linda Dunn and Richard Shock ISSN 1054-4305 $4.50 "What is Cryonics?" Cryonics is the ultra-low-temperature preservation (biostasis) of terminal patients. The goal of biostasis and the technology of cryonics is the transport of today's terminal patients to a time in the future when cell and tissue repair technology will be available, and restoration to full function and health will be possible, a time when cures will exist for virtually all of today's diseases, including aging. As human knowledge and medical technology continue to expand in scope, people considered beyond hope of restoration (by today's medical standards) will be restored to health. (This historical trend is very clear.) The coming control over living systems should allow fabrication of new organisms and sub-cell-sized devices for repair and revival of patients waiting in cryonic suspension. The challenge for cryonicists today is to devise techniques that will ensure the patients' survival. Subscribe to CRY 0 ICS Magazine! CRYONICS magazine explores the practical, research, nanotechnology and molecular scientific, and social aspects of ultra­ engineering, book reviews, the physical low temperature pre­ format of memory and personality, the servation of humans. nature of identity, cryonics history, and As the quarterly much more. ·s FEAfURE' • .r h< • • f h THISISSUE oena\f'JI pu bl 1cat1on o t e •Ao\ecu\ar"' ~"h~>~'"''·~··o· C r If you're a first- The IV\ Bg Ra~1 RYfl'J\ Alcor Foundation-the THIS issuE's • ~L vJcs time subscriber, you p\1.\l.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • And Transhumanism Robert Ranisch & Stefan Lorenz Sorgner Scientific and Technological Advances Have Questioned Predominant Doctrines Concerning the Human Condition
    Introducing Post- and Transhumanism Robert Ranisch & Stefan Lorenz Sorgner Scientific and technological advances have questioned predominant doctrines concerning the human condition. Transhumanism and posthumanism are among the most recent and prominent manifestations of this phenomenon. Debates on trans- and posthumanism have not only gained a considerable amount of aca- demic and popular attention recently, but have also created a widespread con- ceptual confusion. This is no surprise, considering their recent dates of origin, their conceptual similarities, and their engagements with similar questions, top- ics, and motifs. Furthermore, trans- as well as posthumanism frequently question their relationship to humanism1 and reconsider what it means to be human. In this regard both movements are streaming beyond humanism. What this means, however, is far from clear and shall be subject of discussion in this volume. In order to make sense of these two approaches and to investigate their inter- relationship, a clarification of these concepts is necessary. As a first approxima- tion, transhumanism can be seen as a stance that affirms the radical transfor- mation of human’s biological capacities and social conditions by means of tech- 1 We will not be able to address the complex histories and varieties of humanism in this chapter. Yet, the following must be noted: The word “humanism” (Humanismus) was coined in 1808 by the German theologian and philosopher Friedrich I. Niethammer in the context of educational curricula, as it is derived from the Latin word humanitas. This word has a variety of meaning but has strongly been identified with the Greek word paideia (παιδεία), e.g., i.) in Cicero’s De Oratore (I, 71) the meaning of the concept hu- manitas corresponds to that of the concept paideia; ii.) in the text Noctes Acticae (XIII, 17) by the Latin author Aulus Gellius, who lived in the 2nd century, an explicit identifi- cation of paideia and humanitas can be found.
    [Show full text]
  • Y A-T-Il Encore De La Place En Bas ? Le Paysage Contemporain Des Nanosciences Et Des Nanotechnologies
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 23-1 | 2019 Y a-t-il encore de la place en bas ? Le paysage contemporain des nanosciences et des nanotechnologies Jonathan Simon et Bernadette Bensaude-Vincent (dir.) Édition électronique URL : http://journals.openedition.org/philosophiascientiae/1693 DOI : 10.4000/philosophiascientiae.1693 ISSN : 1775-4283 Éditeur Éditions Kimé Édition imprimée Date de publication : 18 février 2019 ISSN : 1281-2463 Référence électronique Jonathan Simon et Bernadette Bensaude-Vincent (dir.), Philosophia Scientiæ, 23-1 | 2019, « Y a-t-il encore de la place en bas ? » [En ligne], mis en ligne le 01 janvier 2021, consulté le 30 mars 2021. URL : http://journals.openedition.org/philosophiascientiae/1693 ; DOI : https://doi.org/10.4000/ philosophiascientiae.1693 Tous droits réservés Y a-t-il encore de la place en bas ? Le paysage contemporain des nanosciences et des nanotechnologies Introduction. Nanotechnoscience: The End of the Beginning Bernadette Bensaude-Vincent Université Paris 1 Panthéon-Sorbonne (France) Jonathan Simon Archives Henri-Poincaré – Philosophie et Recherches sur les Sciences et les Technologies (AHP-PReST), Université de Lorraine, Université de Strasbourg, CNRS, Nancy (France) Is there still room at the bottom? The question providing the theme for the present issue of Philosophia Scientiæ is, of course, adapted from Richard Feynman’s well-known speech at the 1959 meeting of the American Physical Society. On this occasion he attracted physicists’ attention to the vast potential of working at the scale of the nanometre if not the ångström, using the catchy title: “Plenty of Room at the Bottom” [Feynman 1959]. This hookline from a famous Nobel laureate physicist served as a motto for the emerging field of nanoscience and nanotechnology (which we will here abbreviate to nanoresearch) in the early 2000s.
    [Show full text]
  • Nanotechnology, Nanomedicine and Nanosurgery
    International Journal of Surgery (2005) 3, 243e246 www.int-journal-surgery.com EDITORIAL Nanotechnology, nanomedicine and nanosurgery An exciting revolution in health care and med- Feynman was clearly aware of the potential ical technology looms large on the horizon. Yet the medical applications of this new technology. He agents of change will be microscopically small, offered the first known proposal for a nanorobotic future products of a new discipline known as surgical procedure to cure heart disease: ‘‘A friend nanotechnology. Nanotechnology is the engineer- of mine (Albert R. Hibbs) suggests a very interest- ing of molecularly precise structures e typically ing possibility for relatively small machines. He 0.1 mm or smaller e and, ultimately, molecular says that, although it is a very wild idea, it would machines. be interesting in surgery if you could swallow the Nanomedicine1e4 is the application of nano- surgeon. You put the mechanical surgeon inside technology to medicine. It is the preservation the blood vessel and it goes into the heart and and improvement of human health, using molecu- looks around. (Of course the information has to be lar tools and molecular knowledge of the human fed out.) It finds out which valve is the faulty one body. Present-day nanomedicine exploits carefully and takes a little knife and slices it out. .[Imag- structured nanoparticles such as dendrimers,5 car- ine] that we can manufacture an object that bon fullerenes (buckyballs)6 and nanoshells7 to maneuvers at that level!. Other small machines target specific tissues and organs. These nanopar- might be permanently incorporated in the body to ticles may serve as diagnostic and therapeutic an- assist some inadequately functioning organ.’’9 tiviral, antitumor or anticancer agents.
    [Show full text]
  • Interface of Extramural Research in Nano Level Complies with Advanced Pharmaceutical Science and Basic Science in the Umbrella of Nanoscience
    wjpmr, 2021,7(4), 393-409. SJIF Impact Factor: 5.922 Sen et al. WORLD JOURNAL OF PHARMACEUTICAL World Journal of Pharmaceutical and Medical ResearchReview Article AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr .com Wjpmr INTERFACE OF EXTRAMURAL RESEARCH IN NANO LEVEL COMPLIES WITH ADVANCED PHARMACEUTICAL SCIENCE AND BASIC SCIENCE IN THE UMBRELLA OF NANOSCIENCE *1Dr. Dhrubo Jyoti Sen, 2Dr. Dhananjoy Saha, 1Arpita Biswas, 1Supradip Mandal, 1Kushal Nandi, 1Arunava Chandra Chandra, 1Amrita Chakraborty and 3Dr. Sampa Dhabal 1Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Salt Lake City, Sector‒V, EM‒4, Kolkata‒700091, West Bengal, India. 2Deputy Director, Directorate of Technical Education, Bikash Bhavan, Salt Lake City, Kolkata‒700091, West Bengal, India. 3Assistant Director, Forensic Science Laboratory, Govt. of West Bengal, Kolkata, West Bengal, India. *Corresponding Author: Dr. Dhrubo Jyoti Sen Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Salt Lake City, Sector‒V, EM‒4, Kolkata‒700091, West Bengal, India. Article Received on 02/03/2021 Article Revised on 22/03/2021 Article Accepted on 12/04/2021 ABSTRACT Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.
    [Show full text]