Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Industrial Ecology: a New Perspective on the Future of the Industrial System
Industrial Ecology: a new perspective on the future of the industrial system (President's lecture, Assemblée annuelle de la Société Suisse de Pneumologie, Genève, 30 mars 2001.) Suren Erkman Institute for Communication and Analysis of Science and Technology (ICAST), P. O. Box 474, CH-1211 Geneva 12, Switzerland Introduction Industrial ecology? A surprising, intriguing expression that immediately draws our attention. The spontaneous reaction is that «industrial ecology» is a contradiction in terms, something of an oxymoron, like «obscure clarity» or «burning ice». Why this reflex? Probably because we are used to considering the industrial system as isolated from the Biosphere, with factories and cities on one side and nature on the other, the problem consisting in trying to minimize the impact of the industrial system on what is «outside» of it: its surroundings, the «environment». As early as the 1950’s, this end-of-pipe angle was the one adopted by ecologists, whose first serious studies focused on the consequences of the various forms of pollution on nature. In this perspective on the industrial system, human industrial activity as such remained outside of the field of research. Industrial ecology explores the opposite assumption: the industrial system can be seen as a certain kind of ecosystem. After all, the industrial system, just as natural ecosystems, can be described as a particular distribution of materials, energy, and information flows. Furthermore, the entire industrial system relies on resources and services provided by the Biosphere, from which it cannot be dissociated. (It should be specified that .«industrial», in the context of industrial ecology, refers to all human activities occurring within the modern technological society. -
Nanomedicine and Medical Nanorobotics - Robert A
BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging. -
Nanorobot Construction Crews
Nanorobot Construction Crews Jaeseung Jeong, Ph.D Department of Bio and Brain engineering, KAIST Nanorobotics • Nanorobotics is the technology of creating machines or robots atltthit or close to the microscopi c scal lfe of a nanomet res (10-9 metres). More specifically, nanorobotics refers to the still largely ‘hypothetical’ nanotechnology engineering discipline of designing and building nanorobots. • Nanorobots ((,,nanobots, nanoids, nanites or nanonites ) would be typically devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components. As no artificial non-biological nanorobots have yet been created, they remain a ‘hypothetical’ concept. • Another definition sometimes used is a robot which allows precision interactions with nanoscale objects , or can manipulate with nanoscale resolution. • Followingggpp this definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. • Also, macroscalble robots or mi crorob ots which can move wi th nanoscale precision can also be considered nanorobots. The T-1000 in Terminator 2: Judggyment Day • Since nanorobots would be microscopic in size , it would probably be necessary for very large numbers of them to work together to perform microscopic and macroscopic tasks. • These nanorobot swarms are fdifound in many sci ence fi fitiction stories, such as The T-1000 in Terminator 2: Judgment Day, nanomachine i n Meta l G ear So lid. • The word "nanobot" (also "nanite",,g, "nanogene", or "nanoant") is often used to indicate this fictional context and is a n info rma l o r eve n pejo rat ive term to refer to the engineering concept of nanorobots. -
Mechanosynthesis of Amides in the Total Absence of Organic Solvent from Reaction to Product Recovery
Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recovery Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, Frédéric Lamaty To cite this version: Thomas-Xavier Metro, Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez, et al.. Mechanosynthesis of amides in the total absence of organic solvent from reaction to product re- covery. Chemical Communications, Royal Society of Chemistry, 2012, 48 (96), pp.11781-11783. 10.1039/c2cc36352f. hal-00784652 HAL Id: hal-00784652 https://hal.archives-ouvertes.fr/hal-00784652 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ChemComm Dynamic Article Links Cite this: Chem. Commun., 2012, 48, 11781–11783 www.rsc.org/chemcomm COMMUNICATION Mechanosynthesis of amides in the total absence of organic solvent from reaction to product recoverywz Thomas-Xavier Me´tro,* Julien Bonnamour, Thomas Reidon, Jordi Sarpoulet, Jean Martinez and Fre´de´ric Lamaty* Received 31st August 2012, Accepted 8th October 2012 DOI: 10.1039/c2cc36352f The synthesis of various amides has been realised avoiding the use added-value molecules production. Pursuing our interest in of any organic solvent from activation of carboxylic acids with CDI the development of solvent-free amide bond formation,6 we to isolation of the amides. -
Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today. -
Scanning Tunneling Microscope Control System for Atomically
Innovations in Scanning Tunneling Microscope Control Systems for This project will develop a microelectromechanical system (MEMS) platform technology for scanning probe microscope-based, high-speed atomic scale High-throughput fabrication. Initially, it will be used to speed up, by more than 1000 times, today’s Atomically Precise single tip hydrogen depassivation lithography (HDL), enabling commercial fabrication of 2D atomically precise nanoscale devices. Ultimately, it could be used to fabricate Manufacturing 3D atomically precise materials, features, and devices. Graphic image courtesy of University of Texas at Dallas and Zyvex Labs Atomically precise manufacturing (APM) is an emerging disruptive technology precision movement in three dimensions mechanosynthesis (i.e., moving single that could dramatically reduce energy are also needed for the required accuracy atoms mechanically to control chemical and coordination between the multiple reactions) of three dimensional (3D) use and increase performance of STM tips. By dramatically improving the devices and for subsequent positional materials, structures, devices, and geometry and control of STMs, they can assembly of nanoscale building blocks. finished goods. Using APM, every atom become a platform technology for APM and deliver atomic-level control. First, is at its specified location relative Benefits for Our Industry and an array of micro-machined STMs that Our Nation to the other atoms—there are no can work in parallel for high-speed and defects, missing atoms, extra atoms, high-throughput imaging and positional This APM platform technology will accelerate the development of tools and or incorrect (impurity) atoms. Like other assembly will be designed and built. The system will utilize feedback-controlled processes for manufacturing materials disruptive technologies, APM will first microelectromechanical system (MEMS) and products that offer new functional be commercialized in early premium functioning as independent STMs that can qualities and ultra-high performance. -
The Molecular Epair of the Rain, Part II by Ralph Merkle, Ph.D
THIS ISSUE'S FEATURE: The Molecular epair of the rain, Part II By Ralph Merkle, Ph.D. Michael Perry, Ph.D. introduces us to "The Realities of Patient Storage" in this issue's For the Record lUS: Book Reviews, Relocation Reports, and Cryonics Fiction by Linda Dunn and Richard Shock ISSN 1054-4305 $4.50 "What is Cryonics?" Cryonics is the ultra-low-temperature preservation (biostasis) of terminal patients. The goal of biostasis and the technology of cryonics is the transport of today's terminal patients to a time in the future when cell and tissue repair technology will be available, and restoration to full function and health will be possible, a time when cures will exist for virtually all of today's diseases, including aging. As human knowledge and medical technology continue to expand in scope, people considered beyond hope of restoration (by today's medical standards) will be restored to health. (This historical trend is very clear.) The coming control over living systems should allow fabrication of new organisms and sub-cell-sized devices for repair and revival of patients waiting in cryonic suspension. The challenge for cryonicists today is to devise techniques that will ensure the patients' survival. Subscribe to CRY 0 ICS Magazine! CRYONICS magazine explores the practical, research, nanotechnology and molecular scientific, and social aspects of ultra engineering, book reviews, the physical low temperature pre format of memory and personality, the servation of humans. nature of identity, cryonics history, and As the quarterly much more. ·s FEAfURE' • .r h< • • f h THISISSUE oena\f'JI pu bl 1cat1on o t e •Ao\ecu\ar"' ~"h~>~'"''·~··o· C r If you're a first- The IV\ Bg Ra~1 RYfl'J\ Alcor Foundation-the THIS issuE's • ~L vJcs time subscriber, you p\1.\l. -
Soft Machines: Copying Nature's Nanotechnology with Synthetic
From Fantastic Voyage to Soft Machines: two decades of nanotechnology visions (and some real achievements) Richard Jones University of Sheffield Three visions of nanotechnology… 1. Drexler’s mechanical vision 3. Quantum nanodevices 2. Biological/ soft machines … and two narratives about technological progress Accelerating change… …or innovation stagnation? Who invented nanotechnology? Richard Feynman (1918-1988) Theoretical Physicist, Nobel Laureate “There’s Plenty of Room at the Bottom” - 1959 Robert Heinlein? Norio Taniguchi? Coined the term “nanotechnology” in 1974 Don Eigler? 1994 – used the STM (invented by Binnig & Rohrer) to rearrange atoms “Engines of Creation” K. Eric Drexler 1986 The history of technology : increasing precision and miniaturisation Medieval macro- 19th century precision Modern micro-engineering engineering engineering MEMS device, Sandia Late medieval mine Babbage difference engine, pump, Agricola 1832 Where next? Nanotechnology as “the principles of mechanical engineering applied to chemistry” Ideas developed by K.Eric Drexler Computer graphics and simulation Technical objections to Drexler’s vision Drexler’s Nanosystems: More research required Josh Hall: “Noone has ever found a significant error in the technical argument. Drexler’s detractors in the political argument don’t even talk about it.” • Friction • Uncontrolled mechanosynthesis • Thermodynamic and kinetic stability of nanostructures • Tolerance • Implementation path • Low level mechanosynthesis steps “If x doesn’t work, we’ll just try y”, versus an ever- tightening design space. “Any material you like, as long as it’s diamond” • Nanosystems and subsequent MNT work concentrate on diamond – Strong and stiff (though not quite as stiff as graphite) – H-terminated C (111) is stable wrt surface reconstruction • Potential disadvantages – Not actually the thermodynamic ground state (depends on size and shape - clusters can reconstruct to diamond-filled fullerene onions) – Non-ideal electronic properties. -
Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal -
Practical Forward Secure Signatures Using Minimal Security Assumptions
Practical Forward Secure Signatures using Minimal Security Assumptions Vom Fachbereich Informatik der Technischen Universit¨atDarmstadt genehmigte Dissertation zur Erlangung des Grades Doktor rerum naturalium (Dr. rer. nat.) von Dipl.-Inform. Andreas H¨ulsing geboren in Karlsruhe. Referenten: Prof. Dr. Johannes Buchmann Prof. Dr. Tanja Lange Tag der Einreichung: 07. August 2013 Tag der m¨undlichen Pr¨ufung: 23. September 2013 Hochschulkennziffer: D 17 Darmstadt 2013 List of Publications [1] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas H¨ulsing,and Markus R¨uckert. On the security of the Winternitz one-time signature scheme. In A. Ni- taj and D. Pointcheval, editors, Africacrypt 2011, volume 6737 of Lecture Notes in Computer Science, pages 363{378. Springer Berlin / Heidelberg, 2011. Cited on page 17. [2] Johannes Buchmann, Erik Dahmen, and Andreas H¨ulsing.XMSS - a practical forward secure signature scheme based on minimal security assumptions. In Bo- Yin Yang, editor, Post-Quantum Cryptography, volume 7071 of Lecture Notes in Computer Science, pages 117{129. Springer Berlin / Heidelberg, 2011. Cited on pages 41, 73, and 81. [3] Andreas H¨ulsing,Albrecht Petzoldt, Michael Schneider, and Sidi Mohamed El Yousfi Alaoui. Postquantum Signaturverfahren Heute. In Ulrich Waldmann, editor, 22. SIT-Smartcard Workshop 2012, IHK Darmstadt, Feb 2012. Fraun- hofer Verlag Stuttgart. [4] Andreas H¨ulsing,Christoph Busold, and Johannes Buchmann. Forward secure signatures on smart cards. In Lars R. Knudsen and Huapeng Wu, editors, Se- lected Areas in Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 66{80. Springer Berlin Heidelberg, 2013. Cited on pages 63, 73, and 81. [5] Johannes Braun, Andreas H¨ulsing,Alex Wiesmaier, Martin A.G. -
Mechanosynthesis of Nanophase Powders M F
Mechanosynthesis of Nanophase Powders M F. Miani F. Maurigh DIEGM University of Udine, Udine, Italy INTRODUCTION THE MECHANOSYNTHESIS PROCESS Among the different processes able to produce nanocrys- The concept of the mechanosynthesis process is very talline powders in bulk quantities, mechanosynthesis, i.e., simple: to seal in a vial some—usually powdered—ma- the synthesis of nanograined powders by means of terials along with grinding media, which are usually balls, mechanical activation, is one of the most interesting from and to reduce the size of the materials by mechanical an industrial point of view. Mechanosynthesis of nano- action, providing at the same time an intimate mixing phase powders is one of the less sophisticated technolo- of the different materials introduced, so close that gies—and, in such a sense, also the most inexpensive—to diffusion and chemical reactivity are greatly enhanced. produce nanophase powders; in fact, it exploits devices For clarity, one could consider a mixture of elemental and processes that have many aspects in common with powders—for simplicity, we could limit to powders of mixing, fine grinding, and comminution of materials. element A and element B—introduced in a cylindrical However, it does have interest for applications, as, in container, the jar of a vibrating mill, with repeated and principle, this is a very low cost process and its potential prolonged impacts imposed by mechanical energy im- for industrial applications is very significant. This article parted to grinding media (Fig. 1). describes -
Nanotechnology, Nanomedicine and Nanosurgery
International Journal of Surgery (2005) 3, 243e246 www.int-journal-surgery.com EDITORIAL Nanotechnology, nanomedicine and nanosurgery An exciting revolution in health care and med- Feynman was clearly aware of the potential ical technology looms large on the horizon. Yet the medical applications of this new technology. He agents of change will be microscopically small, offered the first known proposal for a nanorobotic future products of a new discipline known as surgical procedure to cure heart disease: ‘‘A friend nanotechnology. Nanotechnology is the engineer- of mine (Albert R. Hibbs) suggests a very interest- ing of molecularly precise structures e typically ing possibility for relatively small machines. He 0.1 mm or smaller e and, ultimately, molecular says that, although it is a very wild idea, it would machines. be interesting in surgery if you could swallow the Nanomedicine1e4 is the application of nano- surgeon. You put the mechanical surgeon inside technology to medicine. It is the preservation the blood vessel and it goes into the heart and and improvement of human health, using molecu- looks around. (Of course the information has to be lar tools and molecular knowledge of the human fed out.) It finds out which valve is the faulty one body. Present-day nanomedicine exploits carefully and takes a little knife and slices it out. .[Imag- structured nanoparticles such as dendrimers,5 car- ine] that we can manufacture an object that bon fullerenes (buckyballs)6 and nanoshells7 to maneuvers at that level!. Other small machines target specific tissues and organs. These nanopar- might be permanently incorporated in the body to ticles may serve as diagnostic and therapeutic an- assist some inadequately functioning organ.’’9 tiviral, antitumor or anticancer agents.