Metadata of the Chapter That Will Be Visualized Online

Total Page:16

File Type:pdf, Size:1020Kb

Metadata of the Chapter That Will Be Visualized Online Metadata of the chapter that will be visualized online Chapter Title Diamondoid Mechanosynthesis for Tip-Based Nanofabrication Chapter Sub-Title Chapter CopyRight - Year Springer Science+Business Media, LLC 2011 (This will be the copyright line in the final PDF) Book Name Tip-Based Nanofabrication Corresponding Author Family Name Freitas Particle Given Name Robert A. Suffix Jr Division Organization Institute for Molecular Manufacturing Address Palo Alto, CA, 94301, USA Email [email protected] Abstract Diamond mechanosynthesis (DMS), or molecular positional fabrication, is the formation of covalent chemical bonds using precisely applied mechanical forces to build nanoscale diamondoid structures via manipulation of positionally controlled tooltips, most likely in a UHV working environment. DMS may be automated via computer control, enabling programmable molecular positional fabrication. The Nanofactory Collaboration is coordinating a combined experimental and theoretical effort involving direct collaborations among dozens of researchers at institutions in multiple countries to explore the feasibility of positionally controlled mechanosynthesis of diamondoid structures using simple molecular feedstocks, the first step along a direct pathway to developing working nanofactories. Keywords (separated by '-') Carbon placement - Diamond - Diamondoid - DMS - Hydrogen abstraction - Hydrogen donation - Mechanosynthesis - Minimal toolset - Molecular manufacturing - Nanofactory - Nanofactory Collaboration - Nanopart - Positional assembly - Positional fabrication - tooltips SPB-217859 Chapter ID 11 April 11, 2011 Time: 04:18pm Proof 1 01 Chapter 11 02 Diamondoid Mechanosynthesis for Tip-Based 03 04 Nanofabrication 05 06 07 Robert A. Freitas Jr. 08 09 10 Abstract Diamond mechanosynthesis (DMS), or molecular positional fabrication, 11 is the formation of covalent chemical bonds using precisely applied mechanical 12 forces to build nanoscale diamondoid structures via manipulation of positionally 13 controlled tooltips, most likely in a UHV working environment. DMS may be 14 automated via computer control, enabling programmable molecular positional fab- 15 rication. The Nanofactory Collaboration is coordinating a combined experimental 16 and theoretical effort involving direct collaborations among dozens of researchers at 17 institutions in multiple countries to explore the feasibility of positionally controlled 18 mechanosynthesis of diamondoid structures using simple molecular feedstocks, the 19 first step along a direct pathway to developing working nanofactories. 20 21 Keywords Carbon placement · Diamond · Diamondoid · DMS · Hydrogen 22 abstraction · Hydrogen donation · Mechanosynthesis · Minimal toolset · Molecular 23 manufacturing · Nanofactory · Nanofactory Collaboration · Nanopart · Positional 24 assembly · Positional fabrication · tooltips 25 26 27 Abbreviations 28 AFM Atomic force microscope 29 CPU Central processing unit 30 CVD Chemical vapor deposition 31 DFT Density functional theory 32 DMS Diamond mechanosynthesis 33 DNA Deoxyribonucleic acid 34 MEMS Microelectromechanical systems 35 NIST National Institute of Standards and Technology (U.S.) 36 NMAB National Materials Advisory Board (U.S.) 37 NNI National Nanotechnology Initiative (U.S.) 38 NRC National Research Council of the National Academies (U.S.) 39 ONR Office of Naval Research (U.S.) 40 SEM Scanning electron microscopy 41 42 43 R.A. Freitas (B) 44 Institute for Molecular Manufacturing, Palo Alto, CA 94301, USA 45 e-mail: [email protected] PROOF A.A. Tseng (ed.), Tip-Based Nanofabrication, DOI 10.1007/978-1-4419-9899-6_11, C Springer Science+Business Media, LLC 2011 SPB-217859 Chapter ID 11 April 11, 2011 Time: 04:18pm Proof 1 R.A. Freitas 46 SPM Scanning probe microscope 47 UHV Ultra-high vacuum 48 49 50 51 11.1 Positional Diamondoid Molecular Manufacturing 52 53 Complex molecular machine systems [1–6], including microscale robotic mecha- 54 nisms comprised of thousands or millions of nanoscale mechanical components 55 such as gears, motors, and computer elements, probably cannot be manufactured 56 using the conventional techniques of self-assembly. As noted in the final report [7] 57 of the 2006 Congressionally-mandated review of the U.S. National Nanotechnology 58 Initiative by the National Research Council (NRC) of the National Academies and 59 the National Materials Advisory Board (NMAB): “For the manufacture of more 60 sophisticated materials and devices, including complex objects produced in large 61 quantities, it is unlikely that simple self-assembly processes will yield the desired 62 results. The reason is that the probability of an error occurring at some point in the 63 process will increase with the complexity of the system and the number of parts that 64 must interoperate.” Error detection and correction requires a minimum level of com- 65 plexity that cannot easily be achieved via thermodynamically-driven self-assembly 66 processes. 67 The opposite of self-assembly processes is positionally controlled processes, in 68 which the positions and trajectories of all components of intermediate and final 69 product objects are controlled at every moment during fabrication and assembly. 70 Positional processes should allow more complex products to be built with high 71 quality and should enable rapid prototyping during product development. Pure posi- 72 tional assembly is the norm in conventional macroscale manufacturing (e.g., cars, 73 appliances, houses) but is only relatively recently [8, 9] starting to be seriously 74 investigated experimentally for nanoscale manufacturing. Of course, we already 75 know that positional fabrication can work in the nanoscale realm. This is demon- 76 strated in the biological world by ribosomes, which positionally assemble proteins in 77 living cells by following a sequence of digitally encoded instructions (even though 78 ribosomes themselves are self-assembled). Lacking this positional fabrication of 79 proteins controlled by DNA-based software, large, complex, digitally-specified 80 organisms would probably not be possible and biology as we know it would not 81 exist. Guided self-assembly – another hybrid approach combining self-assembly 82 and positional assembly – is also being investigated experimentally [10, 11]. 83 The most important materials for positional assembly may be the rigid cova- 84 lent or “diamondoid” solids, since these could potentially be used to build the 85 most reliable and complex nanoscale machinery. Preliminary theoretical studies 86 have suggested great promise for these materials in molecular manufacturing. The 87 NMAB/NRC Review Committee recommended [7] that experimental work aimed at 88 establishing the technical feasibility of positional molecular manufacturing should 89 be pursued and supported: “Experimentation leading to demonstrations supplying 90 ground truth for abstractUNCORRECTED models is appropriate to better characterize PROOF the potential for SPB-217859 Chapter ID 11 April 11, 2011 Time: 04:18pm Proof 1 11 Diamondoid Mechanosynthesis for Tip-Based Nanofabrication 91 use of bottom-up or molecular manufacturing systems that utilize processes more 92 complex than self-assembly.” Making complex nanorobotic systems requires man- 93 ufacturing techniques that can build a molecular structure by positional assembly 94 [9, 12]. This will involve picking and placing molecular parts one by one, mov- 95 ing them along controlled trajectories much like the robot arms that manufacture 96 cars on automobile assembly lines. The procedure is then repeated over and over 97 with all the different parts until the final product is fully assembled inside a desktop 98 nanofactory. 99 Technologies required for the atomically precise fabrication of diamondoid 100 nanorobots in macroscale quantities at low cost requires the development of a new 101 nanoscale manufacturing technology called positional diamondoid molecular manu- 102 facturing, enabling diamondoid nanofactories. Achieving this new technology over 103 the next 1–3 decades will require the significant further development of multiple 104 closely related technical capabilities: diamondoid mechanosynthesis, programmable 105 positional assembly, massively parallel positional fabrication and assembly, and 106 nanomechanical design. 107 108 109 11.2 Diamondoid Mechanosynthesis (DMS) 110 111 Mechanosynthesis, or molecular positional fabrication, is the formation of cova- 112 lent chemical bonds using precisely applied mechanical forces to build atomi- 113 cally precise structures. Mechanosynthesis will be most efficient when automated 114 via computer control, enabling programmable molecular positional fabrication of 115 nanostructures of significant size. Atomically precise fabrication involves holding 116 feedstock atoms or molecules, and separately a growing nanoscale workpiece, in 117 the proper relative positions and orientations so that when they touch they will 118 chemically bond in the desired manner. In this process, a mechanosynthetic tool 119 is brought up to the surface of a workpiece. One or more transfer atoms are added 120 to (Fig. 11.1), or removed from, the workpiece by the tool. Then the tool is with- 121 drawn and recharged. This process is repeated until the workpiece (e.g., a growing 122 nanopart) is completely fabricated to atomic precision with each atom in exactly 123 the right place. The transfer atoms are under positional control at all times to pre- 124 vent unwanted side reactions from occurring. Side reactions
Recommended publications
  • Randal Koene Page 3
    CRYONICS 4th Quarter 2019 | Vol 40, Issue 4 www.alcor.org Scholar Profile: Randal Koene page 3 Cryonics in China and Australia Cryonics and Public Skepticism: page 19 Meeting The Challenges to Our Credibility page 24 CRYONICS Editorial Board Contents Saul Kent Ralph C. Merkle, Ph.D. R. Michael Perry, Ph.D. 3 Scholar Profile: Randal Koene Accomplished neuroscientist and founder of the only dedicated Editor whole brain emulation nonprofit in existence, Dr. Randal Koene Aschwin de Wolf is no stranger to standing out. Responsible for coining the term Contributing Writers that put this niche but growing field on the map, Koene is working Ben Best hard to make humans more adaptable than ever before. In his Randal Koene R. Michael Perry, Ph.D. vision of the future, minds will be substrate-independent, with Nicole Weinstock full or even enhanced functioning on a limitless and changing Aschwin de Wolf menu of platforms. Copyright 2019 by Alcor Life Extension Foundation 19 Cryonics in China and Australia All rights reserved. Ben Reports on the emerging cryonics industry in China and the plans to create a Reproduction, in whole or part, new cryonics organization in Australia. without permission is prohibited. 24 FOR THE RECORD Cryonics magazine is published Cryonics and Public Skepticism: Meeting the Challenges to Our quarterly. Credibility Cryonics has been viewed with skepticism or hostility by some, including some Please note: If you change your scientists, ever since it started in the 1960s, even though (we like to remind the address less than a month before the naysayers) its intended basis is strictly scientific.
    [Show full text]
  • Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems
    IMM White Paper Scanning Probe Diamondoid Mechanosynthesis Prepared for the International Technology Roadmap for Productive Nanosystems 1 August 2007 D.R. Forrest, R. A. Freitas, N. Jacobstein One proposed pathway to atomically precise manufacturing is scanning probe diamondoid mechanosynthesis (DMS): employing scanning probe technology for positional control in combination with novel reactive tips to fabricate atomically-precise diamondoid components under positional control. This pathway has its roots in the 1986 book Engines of Creation, in which the manufacture of diamondoid parts was proposed as a long-term objective by Drexler [1], and in the 1989 demonstration by Donald Eigler at IBM that individual atoms could be manipulated by a scanning tunelling microscope [2]. The proposed DMS-based pathway would skip the intermediate enabling technologies proposed by Drexler [1a, 1b, 1c] (these begin with polymeric structures and solution-phase synthesis) and would instead move toward advanced DMS in a more direct way. Although DMS has not yet been realized experimentally, there is a strong base of experimental results and theory that indicate it can be achieved in the near term. • Scanning probe positional assembly with single atoms has been successfully demonstrated in by different research groups for Fe and CO on Ag, Si on Si, and H on Si and CNHCH3. • Theoretical treatments of tip reactions show that carbon dimers1 can be transferred to diamond surfaces with high fidelity. • A study on tip design showed that many variations on a design turn out to be suitable for accurate carbon dimer placement. Therefore, efforts can be focused on the variations of tooltips of many kinds that are easier to synthesize.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Chapter 3 Green Grass, Red Blood, Blueprint
    Chapter 3 Green grass, red blood, blueprint: reflections on life, self-replication, and evolution M. Ciofalo Dipartimento di Ingegneria Nucleare, Università degli Studi di Palermo, Italy. Abstract Following pioneering work by von Neumann in the late 1940s, the goal of achieving self- replication in artefacts has been pursued by a variety of approaches, involving either virtual entities like cellular automata and computer programs or, to a lesser extent, real physical devices. An ample review of the major achievements in these diverse fields is given, and their practical and theoretical relevance is discussed. Possible future developments, notably regarding nanotech- nology and space exploration, are also outlined. The most relevant theoretical problems posed by self-replication are discussed in the light of current knowledge regarding life and its origins. Living entities are semiotic systems, in which physical structures have come to perform symbolic functions. The great complexity of biomolecules and of even the most primitive organisms is not a gratuitous complication, but a necessary condition for homeostasis, self-replication and open- ended evolution in a changing environment. Such requisites will have to be matched by artificial devices if their non-trivial self-replication and autonomous development are to be attained. 1 Of crystals and colloids Wordsworth’s God had his dwelling in the light of setting suns. But the God who dwells there seems to me most probably the God of the atom, the star, and the crystal. Mine, if I have one, reveals Himself in another class of phenomena. He makes the grass green and the blood red. (J.W. Krutch, 1950, [1]) The lines in the epigraph are excerpted from the famous essay ‘The colloid and the crystal’, written in 1950 by the American literary naturalist Joseph Wood Krutch.
    [Show full text]
  • Industrial Ecology: a New Perspective on the Future of the Industrial System
    Industrial Ecology: a new perspective on the future of the industrial system (President's lecture, Assemblée annuelle de la Société Suisse de Pneumologie, Genève, 30 mars 2001.) Suren Erkman Institute for Communication and Analysis of Science and Technology (ICAST), P. O. Box 474, CH-1211 Geneva 12, Switzerland Introduction Industrial ecology? A surprising, intriguing expression that immediately draws our attention. The spontaneous reaction is that «industrial ecology» is a contradiction in terms, something of an oxymoron, like «obscure clarity» or «burning ice». Why this reflex? Probably because we are used to considering the industrial system as isolated from the Biosphere, with factories and cities on one side and nature on the other, the problem consisting in trying to minimize the impact of the industrial system on what is «outside» of it: its surroundings, the «environment». As early as the 1950’s, this end-of-pipe angle was the one adopted by ecologists, whose first serious studies focused on the consequences of the various forms of pollution on nature. In this perspective on the industrial system, human industrial activity as such remained outside of the field of research. Industrial ecology explores the opposite assumption: the industrial system can be seen as a certain kind of ecosystem. After all, the industrial system, just as natural ecosystems, can be described as a particular distribution of materials, energy, and information flows. Furthermore, the entire industrial system relies on resources and services provided by the Biosphere, from which it cannot be dissociated. (It should be specified that .«industrial», in the context of industrial ecology, refers to all human activities occurring within the modern technological society.
    [Show full text]
  • Nanorobot Construction Crews
    Nanorobot Construction Crews Jaeseung Jeong, Ph.D Department of Bio and Brain engineering, KAIST Nanorobotics • Nanorobotics is the technology of creating machines or robots atltthit or close to the microscopi c scal lfe of a nanomet res (10-9 metres). More specifically, nanorobotics refers to the still largely ‘hypothetical’ nanotechnology engineering discipline of designing and building nanorobots. • Nanorobots ((,,nanobots, nanoids, nanites or nanonites ) would be typically devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components. As no artificial non-biological nanorobots have yet been created, they remain a ‘hypothetical’ concept. • Another definition sometimes used is a robot which allows precision interactions with nanoscale objects , or can manipulate with nanoscale resolution. • Followingggpp this definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. • Also, macroscalble robots or mi crorob ots which can move wi th nanoscale precision can also be considered nanorobots. The T-1000 in Terminator 2: Judggyment Day • Since nanorobots would be microscopic in size , it would probably be necessary for very large numbers of them to work together to perform microscopic and macroscopic tasks. • These nanorobot swarms are fdifound in many sci ence fi fitiction stories, such as The T-1000 in Terminator 2: Judgment Day, nanomachine i n Meta l G ear So lid. • The word "nanobot" (also "nanite",,g, "nanogene", or "nanoant") is often used to indicate this fictional context and is a n info rma l o r eve n pejo rat ive term to refer to the engineering concept of nanorobots.
    [Show full text]
  • Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University
    Diffie and Hellman Receive 2015 Turing Award Rod Searcey/Stanford University. Linda A. Cicero/Stanford News Service. Whitfield Diffie Martin E. Hellman ernment–private sector relations, and attracts billions of Whitfield Diffie, former chief security officer of Sun Mi- dollars in research and development,” said ACM President crosystems, and Martin E. Hellman, professor emeritus Alexander L. Wolf. “In 1976, Diffie and Hellman imagined of electrical engineering at Stanford University, have been a future where people would regularly communicate awarded the 2015 A. M. Turing Award of the Association through electronic networks and be vulnerable to having for Computing Machinery for their critical contributions their communications stolen or altered. Now, after nearly to modern cryptography. forty years, we see that their forecasts were remarkably Citation prescient.” The ability for two parties to use encryption to commu- “Public-key cryptography is fundamental for our indus- nicate privately over an otherwise insecure channel is try,” said Andrei Broder, Google Distinguished Scientist. fundamental for billions of people around the world. On “The ability to protect private data rests on protocols for a daily basis, individuals establish secure online connec- confirming an owner’s identity and for ensuring the integ- tions with banks, e-commerce sites, email servers, and the rity and confidentiality of communications. These widely cloud. Diffie and Hellman’s groundbreaking 1976 paper, used protocols were made possible through the ideas and “New Directions in Cryptography,” introduced the ideas of methods pioneered by Diffie and Hellman.” public-key cryptography and digital signatures, which are Cryptography is a practice that facilitates communi- the foundation for most regularly used security protocols cation between two parties so that the communication on the Internet today.
    [Show full text]
  • The Molecular Epair of the Rain, Part II by Ralph Merkle, Ph.D
    THIS ISSUE'S FEATURE: The Molecular epair of the rain, Part II By Ralph Merkle, Ph.D. Michael Perry, Ph.D. introduces us to "The Realities of Patient Storage" in this issue's For the Record lUS: Book Reviews, Relocation Reports, and Cryonics Fiction by Linda Dunn and Richard Shock ISSN 1054-4305 $4.50 "What is Cryonics?" Cryonics is the ultra-low-temperature preservation (biostasis) of terminal patients. The goal of biostasis and the technology of cryonics is the transport of today's terminal patients to a time in the future when cell and tissue repair technology will be available, and restoration to full function and health will be possible, a time when cures will exist for virtually all of today's diseases, including aging. As human knowledge and medical technology continue to expand in scope, people considered beyond hope of restoration (by today's medical standards) will be restored to health. (This historical trend is very clear.) The coming control over living systems should allow fabrication of new organisms and sub-cell-sized devices for repair and revival of patients waiting in cryonic suspension. The challenge for cryonicists today is to devise techniques that will ensure the patients' survival. Subscribe to CRY 0 ICS Magazine! CRYONICS magazine explores the practical, research, nanotechnology and molecular scientific, and social aspects of ultra­ engineering, book reviews, the physical low temperature pre­ format of memory and personality, the servation of humans. nature of identity, cryonics history, and As the quarterly much more. ·s FEAfURE' • .r h< • • f h THISISSUE oena\f'JI pu bl 1cat1on o t e •Ao\ecu\ar"' ~"h~>~'"''·~··o· C r If you're a first- The IV\ Bg Ra~1 RYfl'J\ Alcor Foundation-the THIS issuE's • ~L vJcs time subscriber, you p\1.\l.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • Practical Forward Secure Signatures Using Minimal Security Assumptions
    Practical Forward Secure Signatures using Minimal Security Assumptions Vom Fachbereich Informatik der Technischen Universit¨atDarmstadt genehmigte Dissertation zur Erlangung des Grades Doktor rerum naturalium (Dr. rer. nat.) von Dipl.-Inform. Andreas H¨ulsing geboren in Karlsruhe. Referenten: Prof. Dr. Johannes Buchmann Prof. Dr. Tanja Lange Tag der Einreichung: 07. August 2013 Tag der m¨undlichen Pr¨ufung: 23. September 2013 Hochschulkennziffer: D 17 Darmstadt 2013 List of Publications [1] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas H¨ulsing,and Markus R¨uckert. On the security of the Winternitz one-time signature scheme. In A. Ni- taj and D. Pointcheval, editors, Africacrypt 2011, volume 6737 of Lecture Notes in Computer Science, pages 363{378. Springer Berlin / Heidelberg, 2011. Cited on page 17. [2] Johannes Buchmann, Erik Dahmen, and Andreas H¨ulsing.XMSS - a practical forward secure signature scheme based on minimal security assumptions. In Bo- Yin Yang, editor, Post-Quantum Cryptography, volume 7071 of Lecture Notes in Computer Science, pages 117{129. Springer Berlin / Heidelberg, 2011. Cited on pages 41, 73, and 81. [3] Andreas H¨ulsing,Albrecht Petzoldt, Michael Schneider, and Sidi Mohamed El Yousfi Alaoui. Postquantum Signaturverfahren Heute. In Ulrich Waldmann, editor, 22. SIT-Smartcard Workshop 2012, IHK Darmstadt, Feb 2012. Fraun- hofer Verlag Stuttgart. [4] Andreas H¨ulsing,Christoph Busold, and Johannes Buchmann. Forward secure signatures on smart cards. In Lars R. Knudsen and Huapeng Wu, editors, Se- lected Areas in Cryptography, volume 7707 of Lecture Notes in Computer Science, pages 66{80. Springer Berlin Heidelberg, 2013. Cited on pages 63, 73, and 81. [5] Johannes Braun, Andreas H¨ulsing,Alex Wiesmaier, Martin A.G.
    [Show full text]
  • An Abstract Scripting Language for Assembly of Mechanical Nanocomputer Architectures
    MolML: An Abstract Scripting Language for Assembly of Mechanical Nanocomputer Architectures Bryan W. Wagner and Thomas P. Way Applied Computing Technology Laboratory Department of Computing Sciences Villanova University, Villanova, PA 19085 [email protected] [email protected] Abstract Sizes of computer components are reaching nanoscale dimensions, causing physical limitations to be met in traditional computer architectures. This study surveys the field of alternative nanocomputer architectures, including the nano-mechanical computational machines first proposed by Eric Drexler. A high-level XML programming language, MolML, is introduced as a scripting language for hydrocarbon assembly of mechanical nanocomputers. Keywords: Nanocomputer, hydrocarbon assembler, scripting, simulation 1. Introduction As Moore’s Law continues to predict the trend of continually increasing densities of transistors on ever diminishing surface dimensions, components for computer architectures are rapidly approaching sizes that can be measured in nanometers, one billionth of a meter. However, as silicon transistors become measurable on the nanoscale, certain physical properties hinder their ability to function properly as they do on the macroscale. Among these well-known physical limitations are leakage, threshold voltage control, tunneling, electro-migration, high interconnect resistance, and crosstalk. These issues can restrict electrical silicon transistor functionality to the extent that future computing designs will need to consider alternative materials and architectures [1]. Nanoscale computer architectures introduce other challenges as well. Processors are still manufactured using lithographic techniques. Lithography involves the use of a printing press to stamp, or otherwise etch or inscribe, a design into a smooth surface. Computer circuitry is constructed in this manner, and defective units are discarded. Thus, there is a probabilistic factor for error in the manufacturing process.
    [Show full text]
  • Superfluidity at Room Temperature Extreme Cosmic Rays Reveal Clues to Origin
    CERN Courier December 2017 CERN Courier December 2017 Sciencewatch Astrowatch C OMPILED BY J OHN S WAIN , N ORTHEASTERN U NIVERSITY C OMPILED BY M ERLIN K OLE , D EPARTMENT OF PARTICLE P HYSICS , U NIVERSITY OF G ENEVA Superfluidity at room temperature Extreme cosmic rays reveal clues to origin The energy spectrum of cosmic rays 90 A sky map in equatorial continuously bombarding the Earth spans 0.46 co-ordinates showing the Superfluidity, like superconductivity, is Interference fringes in a polariton many orders of magnitude, with the highest cosmic-ray flux above typically thought of as needing very low condensate as it transitions to a fluid with energy events topping 108 km 8 EeV, revealing a clear TeV. Where these –2 temperatures that alter the fundamental zero viscosity, from simulations. extreme particles come from, however, has sr dipole structure with a quantum-mechanical behaviour of materials. remained a mystery since their discovery 360 0 0.42 –1 significance of 5. 2σ. The yr Pierre Auger Collaboration Surprisingly, Giovanni Lerario of CNR thin amorphous layer of fluorescent organic more than 50 years ago. Now the Pierre Auger –1 galactic centre is marked NANOTEC Institute of Nanotechnology in material between them. A laser pulse collaboration has published results showing with an asterisk and the Italy and colleagues now report what appears creates a polariton flow with well-defined that the arrival direction of ultra-high-energy galactic plane is shown by to be superfluidity at room temperature. The energy, revealing itself as a superfluid by 0.38 cosmic rays (UHECRs) is far from uniform, –90 a dashed line.
    [Show full text]