Fractures of the Coracoid Process: Evaluation, Management, and Outcomes 2020;00:1-10 Copyright © the American Academy of Orthopaedic Surgeons

Total Page:16

File Type:pdf, Size:1020Kb

Fractures of the Coracoid Process: Evaluation, Management, and Outcomes 2020;00:1-10 Copyright © the American Academy of Orthopaedic Surgeons Review Article Fractures of the Coracoid Process: Evaluation, Management, and Outcomes 05/09/2020 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3FlQBFFqx6X+UIgM2hyMEHeYUpK737LP7vR/A3eYg0e8= by https://journals.lww.com/jaaos from Downloaded Abstract Joseph W. Galvin, DO Fractures of the coracoid process are relatively rare, and current Downloaded Jeansol Kang, MD management guidelines remain unclear. Most coracoid fractures occur from in conjunction with other shoulder injuries, including dislocations and Richard Ma, MD https://journals.lww.com/jaaos fractures. Identifying coracoid fractures can be difficult because most Xinning Li, MD fractures are nondisplaced and can be missed on radiographs or may be masked by other injuries. Management is largely guided by fracture location and displacement. Conservative treatment is preferred for by fractures that are minimally displaced, whereas indications for surgical BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3FlQBFFqx6X+UIgM2hyMEHeYUpK737LP7vR/A3eYg0e8= fixation include fractures that are displaced (.1 cm), have progressed to a painful nonunion, or are associated with the disruption of the superior shoulder suspensory complex. Although conservative treatment has been historically favored, satisfactory outcomes have been reported for both surgical and nonsurgical treatment. We provide a comprehensive review of diagnosis and management strategies for coracoid fractures. oracoid fractures are relatively primarily based on level IV and V evi- Crare injuries that typically occur dence. The surgical indications for because of high-energy trauma, such coracoid fractures are evolving as a as a motor vehicle accident. However, better understanding of associated in- From the Department of Orthopaedic Surgery, Madigan Army Medical blunt trauma related to sporting juries and surgical instrumentation or Center (Dr. Galvin), Tacoma, WA, the activities have also been described as a techniques improve. Department of Orthopaedic Surgery, mechanism of injury along with The purpose of this study is to Boston University School of Medicine repetitive stress-related injuries. Most (1) review the incidence, rele- (Dr. Kang and Dr. Li), Boston, MA, and the Department of Orthopaedic coracoid fractures do not occur in iso- vant anatomy, and mechanism Surgery, University of Missouri School lation because of the high-energy of injury related to coracoid on 05/09/2020 of Medicine (Dr. Ma), Columbia, MO. mechanism of injury and is typically fractures, Dr. Li or an immediate family member associated with additional injuries to (2) describe relevant workup for holds equity in JoMI. None of the the affected shoulder, particularly to diagnosis of coracoid fractures following authors or any immediate the other structures of the superior with a focus on injury classifica- family member has received anything shoulder suspensory complex (SSSC). tion and the types of associated of value from or has stock or stock options held in a commercial company Careful clinical evaluation including injuries found in conjunction or institution related directly or imaging of the affected shoulder is with coracoid fractures, indirectly to the subject of this article: essential because the presence of con- (3) discuss relative surgical in- Dr. Galvin, Dr. Kang, and Dr. Ma. comitant injuries may affect treatment dications for coracoid fractures J Am Acad Orthop Surg 2020;00:1-10 decision-making. Owing to the relative including a succinct review of the DOI: 10.5435/JAAOS-D-19-00148 rarity of these injuries, the literature outcomes after surgical manage- surrounding the management of cora- ment, and Copyright 2020 by the American Academy of Orthopaedic Surgeons. coid fractures is limited. The available (4) discuss the areas of future evidence to guide treatment decisions is work for coracoid fractures. Month 2020, Vol 00, No 00 1 Copyright © the American Academy of Orthopaedic Surgeons. Unauthorized reproduction of this article is prohibited. Fractures of the Coracoid Process the attachment of the conjoint tendon joint injuries should more commonly Regional Anatomy of the at the coracoid process, resulting in involve a tear of the CC ligaments Coracoid avulsion of the coracoid tip.5-10 Fatigue rather than a coracoid fracture.23 To fractures of the coracoid process have explain the combined coracoid frac- Most coracoid fractures are associated also been described in trap shoot- ture and AC separation in adults, Li with additional injuries to the affected ers,11,12 cricket players,6,13,14 and ten- et al24 proposed a two-step mech- shoulder, particularly to the SSSC. nis players,7 where it is likely that anism in which the sudden contrac- Therefore, surgeons should understand repetitive direct microtrauma ulti- tion of the conjoint tendon and the complex anatomy of the coracoid mately leads to bony failure of the pectoralis minor muscle produces a process and have knowledge of the coracoid. In addition, isolated frac- fracture of the coracoid and the com- attachment sites of the conjoint tendon, tures can occur secondary to iatrogenic ponent residual force along the CC coracoclavicular (CC) (trapezoid and surgical etiologies such as trans- ligaments determines whether the CC conoid) ligaments, coracoacromial coracoid drilling for suture button ligament is disrupted. (anterior and posterior bundles) liga- fixation of unstable acromioclavicular ment (CAL), coracohumeral ligament, (AC) joint separations and after and pectoralis minor. The minimum reverse shoulder arthroplasty.15-17 Physical Examination distance between the tip of the coracoid Most coracoid fractures occur in Findings and the most anterior CC ligament conjunction with other ipsilateral (trapezoid) is 25.1 mm, and sex differ- Identifying coracoid fractures via shoulder injuries. This pattern is typi- ences are present with a mean of physical presentation can be difficult as cally because of high-energy trauma, 28.1 mm and 22.0 mm in men and physical examination findings may be most often a direct blow from a motor women, respectively.1 nonspecific and are often masked by vehicle accident or fall.18-21 Associated other concomitant shoulder injuries. injuries include glenohumeral joint Isolated fractures typically present Epidemiology and injuries, AC joint injuries, rotator cuff with pain and tenderness to palpation tears, and fractures of the acro- Mechanism of Coracoid over the coracoid. Patients may also mion, scapula, distal clavicle, and Fractures exhibit limited, painful active shoulder humerus.18,19 The most common abduction, flexion, and/or external McGinnis and Denton2 described the associated injury is AC joint separa- rotation, but the neurovascular exam- prevalence of coracoid fractures tion.9,18-20 In the largest series of ination is usually normal.6,13,25 between3%to13%ofallscapula coracoid fractures involving nonsport- Examination findings in nonisolated fractures after a review of the litera- related trauma, Ogawa et al18 found cases vary depending on the associated ture in 1989. More recent data from that 58% (39/67) of patients with injuries. The most common combi- two systematic reviews of scapula coracoid fractures had associated AC nation of coracoid fracture with AC fractures in 2006 and 2008 reported joint injuries. Similarly, in a review of joint injury may present with addi- the prevalence of apophyseal (acro- sport-related coracoid fractures, Kna- tional findings of pain and tenderness mion, coracoid, and scapular spine) pik et al20 reported concurrent AC joint to palpation over the AC joint, visible fractures at 6% and 8.2%, respec- injury in 60% of patients. deformity, and painful cross-body tively.3,4 Isolated coracoid fractures The mechanism resulting in this adduction.21,24,26-28 Owing to the are rare, with 43 case reports in the combination of injury proposed by presence and severity of associated English literature and few retrospec- Wilson et al involves a direct force to injuries, coracoid fractures may be tive case series. the AC joint, causing caudad dis- overlooked—therefore, the physical Coracoid fractures are generally placement of the acromion and scap- examination should be performed due to high-energy direct impact ula, whereas the CC ligaments pull the with a focus on the reported mech- injuries or eccentric pull through soft- coracoid cephalad.10 This may result anism of injury. tissue attachments (ie, conjoint ten- in a coracoid fracture in skeletally don or CC ligaments) resulting in immature patients in whom the CC failure of the bone. Isolated fractures, ligaments are relatively stronger than Imaging as described in case reports, are often the unfused epiphyseal plate of the because of acute trauma, wherein a coracoid.9,22 However, this may not True anterior-posterior, scapular-Y, sudden and violent contraction of the explain all coracoid fractures in and axillary lateral views will help coracobrachialis and the short head adults, where the relative strength of visualize the fracture. An MRI or CT of the biceps brachii muscles during the coracoid and clavicle in relation to scan with three-dimensional recon- resisted elbow flexion places stress at the CC ligaments suggest that AC struction assists in understanding the 2 Journal of the American Academy of Orthopaedic Surgeons Copyright © the American Academy of Orthopaedic Surgeons. Unauthorized reproduction of this article is prohibited. Joseph W. Galvin, DO, et al Figure 1 Photographs showing relevant anatomy for classification of coracoid
Recommended publications
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Coracoid Process Anatomy: a Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B
    Quantitative Assessment of the Coracoacromial and the Coracoclavicular Ligaments With 3-Dimensional Mapping of the Coracoid Process Anatomy: A Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B. Ferrari, M.D., George Sanchez, B.S., Alex W. Brady, M.Sc., Jonas Pogorzelski, M.D., M.H.B.A., George F. Lebus, M.D., Peter J. Millett, M.D., M.Sc., Robert F. LaPrade, M.D., Ph.D., and CAPT Matthew T. Provencher, M.D., M.C., U.S.N.R. Purpose: To perform a quantitative anatomic evaluation of the (1) coracoid process, specifically the attachment sites of the conjoint tendon, the pectoralis minor, the coracoacromial ligament (CAL), and the coracoclavicular (CC) ligaments in relation to pertinent osseous and soft tissue landmarks; (2) CC ligaments’ attachments on the clavicle; and (3) CAL attachment on the acromion in relation to surgically relevant anatomic landmarks to assist in planning of the Latarjet procedure, acromioclavicular (AC) joint reconstructions, and CAL resection distances avoiding iatrogenic injury to sur- rounding structures. Methods: Ten nonpaired fresh-frozen human cadaveric shoulders (mean age 52 years, range 33- 64 years) were included in this study. A 3-dimensional coordinate measuring device was used to quantify the location of pertinent bony landmarks and soft tissue attachment areas. The ligament and tendon attachment perimeters and center points on the coracoid, clavicle, and acromion were identified and subsequently dissected off the bone. Coordinates of points along the perimeters of attachment sites were used to calculate areas, whereas coordinates of center points were used to determine distances between surgically relevant attachment sites and pertinent bony landmarks.
    [Show full text]
  • Reconstructing Pectoral Appendicular Muscle Anatomy in Fossil Fish and Tetrapods Over the Fins-To-Limbs Transition
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12386 Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition Julia L. Molnar1,∗ , Rui Diogo2, John R. Hutchinson3 and Stephanie E. Pierce4 1Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, U.S.A. 2Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Numa Adams Building, Washington, DC 20059, U.S.A. 3Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK 4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. ABSTRACT The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods.
    [Show full text]
  • Breathing and Locomotion in Birds
    Breathing and locomotion in birds. A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences. 2010 Peter George Tickle Contents Abstract 4 Declaration 5 Copyright Statement 6 Author Information 7 Acknowledgements 9 Organisation of this PhD thesis 10 Chapter 1 General Introduction 13 1. Introduction 14 1.1 The Avian Respiratory System 14 1.1.1 Structure of the lung and air sacs 16 1.1.2 Airflow in the avian respiratory system 21 1.1.3 The avian aspiration pump 25 1.2 The uncinate processes in birds 29 1.2.1 Uncinate process morphology and biomechanics 32 1.3 Constraints on breathing in birds 33 1.3.1 Development 33 1.3.2 Locomotion 35 1.3.2.1 The appendicular skeleton 35 1.3.2.2 Overcoming the trade-off between breathing 36 and locomotion 1.3.2.3 Energetics of locomotion in birds 38 1.4 Evolution of the ventilatory pump in birds 41 1.5 Overview and Thesis Aims 42 2 Chapter 2 Functional significance of the uncinate processes in birds. 44 Chapter 3 Ontogenetic development of the uncinate processes in the 45 domestic turkey (Meleagris gallopavo). Chapter 4 Uncinate process length in birds scales with resting metabolic rate. 46 Chapter 5 Load carrying during locomotion in the barnacle goose (Branta 47 leucopsis): The effect of load placement and size. Chapter 6 A continuum in ventilatory mechanics from early theropods to 48 extant birds. Chapter 7 General Discussion 49 References 64 3 Abstract of a thesis by Peter George Tickle submitted to the University of Manchester for the degree of PhD in the Faculty of Life Sciences and entitled ‘Breathing and Locomotion in Birds’.
    [Show full text]
  • Shoulder Shoulder
    SHOULDER SHOULDER ⦿ Connects arm to thorax ⦿ 3 joints ◼ Glenohumeral joint ◼ Acromioclavicular joint ◼ Sternoclavicular joint ⦿ https://www.youtube.com/watch?v=rRIz6oO A0Vs ⦿ Functional Areas ◼ scapulothoracic ◼ scapulohumeral SHOULDER MOVEMENTS ⦿ Global Shoulder ⦿ Arm (Shoulder Movement Joint) ◼ Elevation ◼ Flexion ◼ Depression ◼ Extension ◼ Abduction ◼ Abduction ◼ Adduction ◼ Adduction ◼ Medial Rotation ◼ Medial Rotation ◼ Lateral Rotation ◼ Lateral Rotation SHOULDER MOVEMENTS ⦿ Movement of shoulder can affect spine and rib cage ◼ Flexion of arm Extension of spine ◼ Extension of arm Flexion of spine ◼ Adduction of arm Ipsilateral sidebending of spine ◼ Abduction of arm Contralateral sidebending of spine ◼ Medial rotation of arm Rotation of spine ◼ Lateral rotation of arm Rotation of spine SHOULDER GIRDLE ⦿ Scapulae ⦿ Clavicles ⦿ Sternum ⦿ Provides mobile base for movement of arms CLAVICLE ⦿ Collarbone ⦿ Elongated S shaped bone ⦿ Articulates with Sternum through Manubrium ⦿ Articulates with Scapula through Acromion STERNOCLAVICULAR JOINT STERNOCLAVICULAR JOINT ⦿ Saddle Joint ◼ Between Manubrium and Clavicle ⦿ Movement ◼ Flexion - move forward ◼ Extension - move backward ◼ Elevation - move upward ◼ Depression - move downward ◼ Rotation ⦿ Usually movement happens with scapula Scapula Scapula ● Flat triangular bone ● 3 borders ○ Superior, Medial, Lateral ● 3 angles ○ Superior, Inferior, Lateral ● Processes and Spine ○ Acromion Process, Coracoid Process, Spine of Scapula ● Fossa ○ Supraspinous, Infraspinous, Subscapularis, Glenoid SCAPULA
    [Show full text]
  • Some Notes on the Diverse Brachiosaurid Sauropods of the Late Jurassic of North America, Europe and Africa
    Some Notes on the Diverse Brachiosaurid Sauropods of the Late Jurassic of North America, Europe and Africa GREGORY S. PAUL 3109 N. Calvert St. Baltimore, Maryland 21218 USA [email protected] June 2012 Abstract: The unusual placement of the parapophyses on elongotated peduncles further distinguishes Brachiosaurus from other brachiosaurid genera including Giraffatitan. Late Jurassic brachiosaurid taxonomy is probably more complex than has been realized, in part because of evolution over the considerable periods of times recorded in the Morrison and Tendaguru formations. The presence of reduced tails on late Jurassic brachiosaurids is confirmed. INTRODUCTION It was long assumed that the brachiosaurid material found in the Late Jurassic Morrison, Tendaguru, and Lourinha Formations from three continents belonged to the genus Brachiosaurus (as per Janensch 1950, 1961, Lapparent and Zbyszewski 1957, Jensen 1987) until Paul (1988) noted significant differences between the type species B. altithorax (Fig. 1A) from North America and the African B. brancai (Fig. 1B) indicated at least a subgeneric separation, and Taylor (2009) formally separated the sauropods, leaving much of the Tendaguru brachiosaurids material titled Giraffatitan brancai; the generic separation has been tentatively questioned (Chure et al. 2010). In addition European B. alatalaiensis has been retitled Lusotitan alatalaiensis (Antunes and Mateus 2003), and a dwarf brachiosaur from the European Mittlere Kimmeridge-Stufe deposits has been designated Europasaurus holgeri (Sander et al. 2006). Institutional Abbreviations: AMNH, American Museum of Natural History, New York; BYU, Brigham Young University, Provo; FMNH, Field Museum of Natural History, Chicago; HMN, Humboldt Museum fur Naturkunde, Berlin; NHMUK, Natural History Museum, London; USNM, United States Natural History Museum, Washington DC.
    [Show full text]
  • Rehabilitation Guidelines for Latarjet/Coracoid Process Transfer Josef K
    Rehabilitation Guidelines for Latarjet/Coracoid Process Transfer Josef K. Eichinger, MD Shoulder instability may be caused from congenital deformity, recurrent overuse activity, and/or traumatic dislocation. Surgical stabilization of the glenohumeral joint is indicated after conservative treatment fails and recurrent instability/subluxation continues. A number of different surgical procedures may be indicated in this situation, often divided into soft tissue or bony procedures. Shoulder Instability – Soft Tissue: Surgical reconstruction targeting the glenohumeral joint’s soft tissues for shoulder instability, typically involves labral repairs, the most common being the Bankart repair. A Bankart lesion typically occurs from an anterior-inferior dislocation of the humerus, tearing the labrum from it’s attachment to the glenoid, thereby detaching the inferior gleno-humeral ligament (IGHL). Surgical management of this revolves around labral repair to reattach the IGHL under appropriate tension. This may be accomplished either arthroscopically or through an open approach.1 Most traumatic glenohumeral dislocations may not only cause a Bankart lesion, but may create impression fractures in the postero-superior humeral head termed Hill-Sachs lesions.2 An adverse effect from this procedure includes suturing the capsule too tightly, causing a shortening of the capsule, and thus decreasing the external rotation allowed at the glenohumeral joint. Other complications are extremely rare, but may include axillary nerve damage, subscapularis rupture (seen only in open repairs performed with subscapularis detachment and repair), and recurrent instability. If there is bony deficiency in the glenoid, which represents 20% or more of the antero-inferior glenoid, it is biomechanically impossible to restore the same stability and is therefore more prone to recurrent instability and failure.
    [Show full text]
  • Coracoid Fractures and Dislocations
    Coracoid Fractures and Dislocations Brett Gartrell Wildbase, Institute of Veterinary, Animal and Biomedical Sciences Massey University, Palmerston North, New Zealand ABSTRACT The treatment of coracoid dislocations and fractures in the New Zealand native wood pigeon (kereru; Hemiphaga novaeseelandiae), undertaken at the Wildbase Hospital at Massey University from 2002‐ 2012. After briefly reviewing the functional anatomy of the coracoid bones, the results of research on the nature of collisions that cause such injuries are reviewed. A comparative assessment of the relative force of collisions dependent on the body size of the bird is presented. The complications of coracoid fractures and dislocations including pulmonary haemorrhage, aspergillosis, cardiac contusions and rhythm disturbances is discussed. A new technique for the repair of coracoid dislocations from the keel and intramedullary pinning for repair of coracoid fractures are outlined. The merits of surgical versus conservative treatment of these injuries are discussed. ANATOMY The coracoid bones are essential to flight in birds and a reduced version of them is present in avian ancestors including Archaeopteryx, the earliest known flying bird from the Late Jurassic period (Figure 1) (Baier et al., 2007). Figure 1. Diagrammatic reconstruction of Archaeopteryx skeleton showing the modified coracoid bone (arrow) attached to the limited keel. Image modified from (Rowe, 2011). The function of the avian shoulder in flight is a complex interplay of forces from muscles, tendons and ligaments acting on the structural skeletal framework of coracoids, scapula, clavicles, humerus and keel. The coracoid bones are strut‐like support bones running from the shoulder to the keel, whose function is to resist the compressive forces of the pectoral muscle contraction (Figure 2).
    [Show full text]
  • Muscles of the Upper Limb.Pdf
    11/8/2012 Muscles Stabilizing Pectoral Girdle Muscles of the Upper Limb Pectoralis minor ORIGIN: INNERVATION: anterior surface of pectoral nerves ribs 3 – 5 ACTION: INSERTION: protracts / depresses scapula coracoid process (scapula) (Anterior view) Muscles Stabilizing Pectoral Girdle Muscles Stabilizing Pectoral Girdle Serratus anterior Subclavius ORIGIN: INNERVATION: ORIGIN: INNERVATION: ribs 1 - 8 long thoracic nerve rib 1 ---------------- INSERTION: ACTION: INSERTION: ACTION: medial border of scapula rotates scapula laterally inferior surface of scapula stabilizes / depresses pectoral girdle (Lateral view) (anterior view) Muscles Stabilizing Pectoral Girdle Muscles Stabilizing Pectoral Girdle Trapezius Levator scapulae ORIGIN: INNERVATION: ORIGIN: INNERVATION: occipital bone / spinous accessory nerve transverse processes of C1 – C4 dorsal scapular nerve processes of C7 – T12 ACTION: INSERTION: ACTION: INSERTION: stabilizes / elevates / retracts / upper medial border of scapula elevates / adducts scapula acromion / spine of scapula; rotates scapula lateral third of clavicle (Posterior view) (Posterior view) 1 11/8/2012 Muscles Stabilizing Pectoral Girdle Muscles Moving Arm Rhomboids Pectoralis major (major / minor) ORIGIN: INNERVATION: ORIGIN: INNERVATION: spinous processes of C7 – T5 dorsal scapular nerve sternum / clavicle / ribs 1 – 6 dorsal scapular nerve INSERTION: ACTION: INSERTION: ACTION: medial border of scapula adducts / rotates scapula intertubucular sulcus / greater tubercle flexes / medially rotates / (humerus) adducts
    [Show full text]
  • Applied Anatomy of the Shoulder Girdle
    Applied anatomy of the shoulder girdle CHAPTER CONTENTS intra-articular disc, which is sometimes incomplete (menis- Osteoligamentous structures . e66 coid) and is subject to early degeneration. The joint line runs obliquely, from craniolateral to caudomedial (Fig. 2). Acromioclavicular joint . e66 Extra-articular ligaments are important for the stability of Sternoclavicular joint . e66 the joint and to keep the movements of the lateral end of the Scapulothoracic gliding mechanism . e67 clavicle within a certain range. Together they form the roof of Costovertebral joints . e68 the shoulder joint (see Standring, Fig. 46.14). They are the coracoacromial ligament – between the lateral border of the Muscles and their innervation . e69 coracoid process and the acromion – and the coracoclavicular Anterior aspect of the shoulder girdle . e69 ligament. The latter consists of: Posterior aspect of the shoulder girdle . e69 • The trapezoid ligament which runs from the medial Mobility of the shoulder girdle . e70 border of the coracoid process to the trapezoid line at the inferior part of the lateral end of the clavicle. The shoulder girdle forms the connection between the spine, • The conoid ligament which is spanned between the base the thorax and the upper limb. It contains three primary artic- of the coracoid process and the conoid tubercle just ulations, all directly related to the scapula: the acromioclavicu- medial to the trapezoid line. lar joint, the sternoclavicular joint and the scapulothoracic Movements in the acromioclavicular joint are directly related gliding surface (see Putz, Fig. 289). The shoulder girdle acts as to those in the sternoclavicular joint and those of the scapula. a unit: it cannot be functionally separated from the secondary This joint is also discussed inthe online chapter Applied articulations, i.e.
    [Show full text]
  • Basic Avian Anatomy
    Basic Avian Anatomy Peter S. Sakas DVM, MS Niles Animal Hospital and Bird Medical Center 7278 N. Milwaukee Ave. Niles, IL 60714 (847)-647-9325 FAX (847)-647-8498 Introduction Everyone is familiar with the anatomy of mammals and may also have some knowledge of a few avian anatomical characteristics. The purpose of this discussion is to provide a deeper insight into avian anatomy and provide some comparisons to mammalian features. An understanding of avian anatomy is essential for avian practitioners. Sources of information for this discussion include the fine work of Dr. Howard Evans and Dr. Robert Clipsham. Feathers Feathers are unique to birds. Birds grow feathers in and around eight well- defined feather tracts or pterylae; they are not haphazardly arranged. Feathers compromise from 10-20% of a bird’s body weight. Each feather can be raised by a separate skin muscle (‘raising their hackles’ or fanning tail).Feathers are outgrowths of the feather follicles of the skin and are the counterpart to hairs and hair follicles in mammals. Feathers provide many functions for birds, attracts mate or deceives predator, heat control, flight, aerodynamic streamlining and water buoyancy. Feathers are not really “bird hairs” but are probably modified scales passed down from their reptilian ancestors. Feathers can be grouped into three categories: 1) Contour feathers or penna – These feathers cover the body, wings and tail, and are the feathers most obviously visible on the bird. 2) Down feathers or plumules – These tiny, soft down feathers are found associated with contour feathers and/or the spaces between them. 3) Tufted bristle feathers or filoplumes- Feathers which are modified and appear as ‘eyelashes and nose hairs.’ Contour Feathers The contour feather consists of a shaft with a vane.
    [Show full text]