Wing Injuries

Total Page:16

File Type:pdf, Size:1020Kb

Wing Injuries Wing Injuries Kimberly A McMunn MS MPH DVM – Anatomy Review – Radiological Positioning – Patient Evaluation – Approaches to Fracture Management – Physical Therapy – Monitoring Healing – Complications – Treatments for Specific Injuries Anatomy of the Wing Proctor and Lynch 1993 Wing Musculature- Ventral Proctor and Lynch 1993 Wing Musculature- Dorsal Proctor and Lynch 1993 Wing Musculature- Flight Proctor and Lynch 1993 Flight bones Scott 2016 Wing Vasculature Proctor and Lynch 1993 Bird bones vs mammal bones – Bone cortices thin and brittle but very strong, with high calcium content – Any defect in wall greatly reduces their strength – Less holding power (compared to mammals) for fixation hardware – Limited soft tissue over many long bones, very thin skin, bone fragments exteriorize easily Bird bones vs mammal bones – Pneumatic bones- humerus, and ulna in some species (Pelicans and CA condors) – Majority of callus tissue in healing is derived from the periosteal surface, and blood supply to the periosteum from surrounding soft tissues is very important. The IM circulation appears to be of less significance in avian bone healing than in mammals Radiographic Positioning 2 Orthogonal Views!! Scott 2016 Evaluation of the Patient – Evaluate signalment, history, and physical and orthopedic exams – Hands-off observation for mentation, posture, respiration and general appearance – Consider anesthesia or sedation for exam – Consider co-morbidities, including eye, head or intracoelomic trauma in wild birds, or malnutrition and associated poor bone condition in companion birds Differential Dx for Wing Droop/Fractures – Infectious: Bacterial, Fungal (Aspergillosis) – Metabolic: Gout – Nutritional: Ca deficiency, Ca/P imbalance, Vit D deficiency, excess protein – Toxicosis: Lead, Zinc – Physical: TRAUMA, brachial plexus avulsion – Neoplastic Clinical signs of fractures – Wing droop – Local swelling – Apparent loss of limb function – Localized pain – Altered limb positioning – Inability to elevate wing above the horizontal plane (key clinical finding in coracoid fractures) Factors contributing to Fractures – Poor bone integrity, especially in captive birds- malnutrition (inadequate calcium), lack of exercise (loss of bone mass), lack of vitamin D – Reproduction in female birds- calcium deficit – Underlying bone disease- neoplasia, osteomyelitis Basic Orthopedic Principles – Establish early and complete rigidity – Maintain normal longitudinal and axial alignment, as well as bone length – Promote load-sharing with the bone when possible – Return the limb to normal function and ROM ASAP – Reduce morbidity – Promote patient mobility and comfort Approaches to Fracture Management – Confinement/Cage Rest – External Coaptation – Surgical Fixation – Instances occur where all three are used simultaneously or successively – Regardless of method, Fx require active management to ensure optimal outcome Prognosis and choosing best approach – Goal of repair (flight?) – Simple vs comminuted – Site of fracture – Open vs closed, infection – Size of the bird – Comorbidities – Acute vs chronic – Age of the bird Prognosis – Companion and aviary birds rarely require full mobility, generally excellent prognosis – Wild birds must have near perfect wing function to survive in the wild. Any slight rotation in the distal wing can alter flight. If synostosis occurs, the bird may not be able to fly. – Suggestions that pneumatic bones heal slower than medullary bones – Clinical stability may precede radiographic evidence that the bone is healed Prognosis – Open fractures- exposed bone readily separates from blood supply, high risk of bone infection, poorer prognosis- if there is ANY skin wound present, assume open – High-energy forces are more likely to shatter a bone, resulting in comminuted fracture, often with significant soft tissue damage, fractured bone cannot contribute to load-sharing, poorer prognosis – Low-energy forces (collision with stationary object) often results in simple transverse or oblique fracture, often easier to repair, with better prognosis – Proximity to a joint- if flight is required, fractures involving elbow or carpus have poor prognosis Amputation – Federally protected species- cannot amputate above elbow – Companion birds- may be an option – Ability of bird to adapt depends on their size, demeanor and required return to function – Amputation through bone is preferred to disarticulation, the bone end will atrophy and maintain adequate soft tissue coverage – Parrots do learn to adapt to wing amputation at the proximal 1/3 of humerus Approaches to Fracture Management Ponder and Redig 2016 Cage Rest – Suitable in a very small number of situations – Very small birds – Injuries not amenable to bandaging or surgery Coaptation – Requires less skill/experience than surgical fixation – Most common for initial or temporary immobilization – Preferred method for shoulder girdle fractures and metacarpal fractures Coaptation may be considered if – Full return to function is not required – Fx are pathologic as a result of metabolic bone diseases – Bones are too soft to hold hardware – The patient is too small for internal fixation alternatives – The surgical or anesthetic risk is judged to be too great Coaptation- warnings – Monitor carefully for tissue abrasions, swelling, slipping – Pad well to prevent pressure necrosis – Higher incidence of synostosis especially in distal third of radius/ulna – Prolonged use can decrease ROM or patagial contracture – Chances of achieving and maintaining functional alignment are generally poor when managed by coaptation alone Coaptation- Body wrap – With or without Figure-of-8 bandage – Temporary stabilization of wing fractures – Treatment of shoulder girdle problems such as coracoid Fx or luxations – Stabilization of radius OR ulna fracture (increased risk of synostosis and non-union relative to surgical repair) – With metacarpal splint for treatment of distal wing fractures – Careful to allow respiratory movements Coaptation- Body Wrap Ponder and Redig 2016 Coaptation- Figure-of-8 Wrap – Stabilize wing Fx distal to elbow, or on reduced elbow luxations – Longer term use (>7-10 days) increases risk of complications- fibrosis and decreased ROM due to hyperflexion of carpus, fibrosis and contracture of patagium – Keep lightweight with minimal bulk – PT at least twice a week, more frequently if any decrease in ROM noted Coaptation- Figure-of-8 Wrap with Body Wrap Mitchell and Tully 2009 Coaptation- Curved Edge Splint – Moldable thermoplast or SAM Splint – Support for metacarpal Fx – Placed on ventral surface and curved up along the leading edge of the wing, sandwiched with tape, body wrap – Lateral edge bent up at 90 degrees, does not extend above the plane of the dorsal surface of the wing (does not wrap around the carpus) – Monitor for soft tissue swelling Coaptation- Curved Edge Splint Ponder and Redig 2016 Coaptation- Robert Jones – NOT recommended for wing injuries – Difficult to apply, uncomfortable for patient – Too heavy for the wing Coaptation- Tape Splint – Used in small birds for leg fractures Surgical Fixation – Usually better functional alignment – Increased capacity for normal use of limb during healing, preventing loss of range of motion due to soft tissue or tendon contracture, as well as improve facture healing Surgical Fixation – Fixation device should – Be rigid, lightweight, versatile, and removable – Stabilize the forces that apply tension, torsion, shearing, and bending movements to bone – Provide load-sharing with the fracture where possible, load- bearing when not Surgical Fixation Types – Intramedullary (IM) pin – External skeletal fixator (ESF) – Hybrid fixator ESF-IM – Plates and nails – Cerclage wires – Shuttle Pins Surgical Fixation- IM Pin – Provides excellent opposition to bending forces of a long bone and good alignment, applied relatively easily – Does NOT provide resistance to torsional, compressive and tensile forces, therefore typically used with coaptation or with ESF – Must secure pin so it does not fall out, or patient does not pull it out – Most common use of single pin is in radial fracture – Single pins should fill ½ to 2/3 of medullary cavity Surgical Fixation- IM Pin Bennett 1992 Surgical Fixation- ESF – Resists rotational movement, compressive and tensile forces, moderate bending; difficult to get good end-to-end alignment of the bone fragments – Critical to ensure that each ESF pin engages both bone cortices – Used alone when an IM pin cannot be used due to joint impingement, or in highly comminuted fractures with significant soft tissue compromise – If used alone, requires 2 ESF pins in each fracture segment, one close to the end of the bone and the other as close to the fracture as possible – Often used for metacarpal or ulnar fractures Surgical Fixation- ESF Bennett and Kuzma 1992 Surgical Fixation- Hybrid Fixator (ESF-IM tie-in) – Inexpensive, easily learned, lightweight, adaptable, and often very effective – Incredible strength and integrity, resisting all forces on bone, allows for good bone alignment – Consists of an IM pin, 2 ESF pins, and an external connector to join them – Additional ESF pins can be used if load-bearing needs to be handled by the fixator – Sequential dismantling of the fixator allows transfer of load-bearing to the bone, promoting bone healing ESF-IM tie-in Ponder and Redig 2016 Intra-Op Notes – Verify pin placement with intra-op radiographs – Check rotational alignment of fracture with comparison to other wing – Check length of bone is correct,
Recommended publications
  • 3H?;Lnbcha Nb? 1?=L?Nm I@
    3H?;LNBCHANB?1?=L?NMI@ #>O=;NIL%OC>? 1?=IH>#>CNCIH @C?F>GOM?OGILA13# 'HMC>? ;=EALIOH>'H@ILG;NCIH *?MMIHM@IL%L;>?M] >>CNCIH;F0?MIOL=?M 'HNLI>O=NCIH Unearthing the Secrets of SUE No dinosaur in the world compares to SUE—the largest, most complete, and best preserved Tyrannosaurus rex ever discovered. In May 2000, the unveiling of her 67-million-year-old skeleton at The Field Museum made global headlines. Since then, more than 16 million visitors have marveled over Chicago’s prehistoric giant. Using the story of SUE to captivate students’ imagination, the Unearthing the Secrets of SUE Educator Guide takes pre-k through eighth-grade students on an interactive exploration of SUE at The Field Museum and the scientific insights she’s providing about the world in which she lived. The lessons in this guide will engage students in the science of SUE by: • providing students unique access to SUE, the largest, most complete, and best preserved TYRANNOSAURUS REX ever discovered; • providing students with hands-on activities that enable them to investigate by making observations, developing hypotheses, questioning assumptions, testing ideas, and coming to conclusions; • introducing students to careers in science by highlighting the wide professional expertise involved in the SUE project; and • introducing students to the countless resources available to them through The Field Museum including field trips, and online research and interactive learning opportunities. How to Use this Guide • Detailed Background Information is provided to support educators in sharing the story of SUE with students. Use this information to prepare yourself and your students for learning about SUE.
    [Show full text]
  • 6.3.3 Distal Radius and Wrist
    6 Specific fractures 6.3 Forearm and hand 6.3.3 Distal radius and wrist 1 Assessment 657 1.1 Biomechanics 657 1.2 Pathomechanics and classification 657 1.3 Imaging 658 1.4 Associated lesions 659 1.5 Decision making 659 2 Surgical anatomy 660 2.1 Anatomy 660 2.2 Radiographic anatomy 660 2.3 Preoperative planning 661 2.4 Surgical approaches 662 2.4.1 Dorsal approach 2.4.2 Palmar approach 3 Management and surgical treatment 665 3.1 Type A—extraarticular fractures 665 3.2 Type B—partial articular fractures 667 3.3 Type C—complete articular fractures 668 3.4 Ulnar column lesions 672 3.4.1 Ulnar styloid fractures 3.4.2 Ulnar head, neck, and distal shaft fractures 3.5 Postoperative care 674 3.6 Complications 676 3.7 Results 676 4 Bibliography 677 5 Acknowledgment 677 656 PFxM2_Section_6_I.indb 656 9/19/11 2:45:49 PM Authors Daniel A Rikli, Doug A Campbell 6.3.3 Distal radius and wrist of this stable pivot. The TFCC allows independent flexion/ 1 Assessment extension, radial/ulnar deviation, and pronation/supination of the wrist. It therefore plays a crucial role in the stability of 1.1 Biomechanics the carpus and forearm. Significant forces are transmitted across the ulnar column, especially while making a tight fist. The three-column concept (Fig 6.3.3-1) [1] is a helpful bio- mechanical model for understanding the pathomechanics of 1.2 Pathomechanics and classification wrist fractures. The radial column includes the radial styloid and scaphoid fossa, the intermediate column consists of the Virtually all types of distal radial fractures, with the exception lunate fossa and sigmoid notch (distal radioulnar joint, DRUJ), of dorsal rim avulsion fractures, can be produced by hyper- and the ulnar column comprises the distal ulna (DRUJ) with extension forces [2].
    [Show full text]
  • Pearls and Pitfalls of Forearm Nailing
    Current Concept Review Pearls and Pitfalls of Forearm Nailing Sreeharsha V. Nandyala, MD; Benjamin J. Shore, MD, MPH, FRCSC; Grant D. Hogue, MD Boston Children’s Hospital, Boston, MA Abstract: Pediatric forearm fractures are one of the most common injuries that pediatric orthopaedic surgeons manage. Unstable fractures that have failed closed reduction and casting require surgical intervention in order to correct length, alignment, and rotation to optimize forearm range of motion and function. Flexible intramedullary nailing (FIN) is a powerful technique that has garnered widespread popularity and adaptation for this purpose. Surgeons must become familiar with the technical pearls and pitfalls associated with this technique in an effort to prevent complications. Key Concepts: • Flexible intramedullary nailing is a useful technique that is widely utilized for most unstable both-bone forearm fractures except in the setting of highly comminuted fracture patterns or in refractures with abundant intrame- dullary callus formation. • Proper contouring of the rod prior to insertion and bending of the tip will help decrease the risk of malunion and facilitate rod passage across the fracture site. • The surgeon must be aware of the numerous pitfalls that are associated with flexible intramedullary nailing and the methods to mitigate each complication. Introduction Flexible intramedullary nailing (FIN) offers several key As enthusiasm grows for FIN as a treatment for pediatric advantages for the management of those pediatric fore- forearm fractures, surgeons must also clearly understand arm fractures that are not amenable to closed treatment. the technical nuances, controversies, and strategies to These advantages include cosmetic incisions for nail in- mitigate complications associated with this technique.
    [Show full text]
  • Late Pleistocene Birds from Kingston Saltpeter Cave, Southern Appalachian Mountains, Georgia
    Bull. Fla. Mus. Nat. Hist. (2005) 45(4):231-248 231 LATE PLEISTOCENE BIRDS FROM KINGSTON SALTPETER CAVE, SOUTHERN APPALACHIAN MOUNTAINS, GEORGIA David W. Steadman1 Kingston Saltpeter Cave, Bartow County, Georgia, has produced late Quaternary fossils of 38 taxa of birds. The presence of extinct species of mammals, and three radiocarbon dates on mammalian bone collagen ranging from approximately 15,000 to 12,000 Cal B.P., indicate a late Pleistocene age for this fauna, although a small portion of the fossils may be Holocene in age. The birds are dominated by forest or woodland species, especially the Ruffed Grouse (Bonasa umbellus) and Passenger Pigeon (Ectopistes migratorius). Species indicative of brushy or edge habitats, wetlands, and grasslands also are present. They include the Greater Prairie Chicken (Tympanuchus cupido, a grassland indicator) and Black-billed Magpie (Pica pica, characteristic of woody edges bordering grasslands). Both of these species reside today no closer than 1000+ km to the west (mainly northwest) of Georgia. An enigmatic owl, perhaps extinct and undescribed, is represented by two juvenile tarsometatarsi. The avifauna of Kingston Saltpeter Cave suggests that deciduous or mixed deciduous/coniferous forests and woodlands were the dominant habitats in the late Pleistocene of southernmost Appalachia, with wetlands and grasslands present as well. Key Words: Georgia; late Pleistocene; southern Appalachians; Aves; extralocal species; faunal change INTRODUCTION dates have been determined from mammal bones at Numerous late Pleistocene vertebrate faunas have been KSC. The first (10,300 ± 130 yr B.P.; Beta-12771, un- recovered from caves and other karst features of the corrected for 13C/12C; = 12,850 – 11,350 Cal B.P.) is Appalachian region (listed in Lundelius et al.
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Distal Humerus Lateral Condyle Fracture and Monteggia Lesion in a 3-Year Old Child : a Case Report
    Acta Orthop. Belg., 2008, 74, 542-545 CASE REPORT Distal humerus lateral condyle fracture and Monteggia lesion in a 3-year old child : A case report Rupen DATTANI, Surendra PATNAIK, Avdhoot KANTAK, Mohan LAL From East Surrey Hospital, Surrey, United Kingdom We describe a case of a Monteggia fracture disloca- DISCUSSION tion and an ipsilateral lateral humeral condyle frac- ture in a 3-year-old child. This is a rare combination Lateral condyle physeal fractures comprise 17% of injuries with no previously reported cases in the of all paediatric distal humerus fractures with a literature. This case emphasises that when a fracture peak incidence at 6 years of age (8). The mechanism is detected around an elbow there should be a high of injury is either an avulsion by the pull of the index of suspicion for other injuries in the region. common extensor origin owing to a varus stress Keywords : Monteggia fracture dislocation ; fracture of exerted on the extended elbow (‘pull off’ theory) or the humeral condyle ; elbow dislocation ; humerus a fall onto an extended upper extremity resulting fracture. in an axial load transmitted through the forearm, causing the radial head to impinge on the lateral head (‘push off’ theory) (2). Milch classified these fractures into two types (12). In type I injuries, the CASE REPORT fracture line courses lateral to the trochlea and into the capitello-trochlear groove representing a Salter- A 3-year-old boy presented to the emergency Harris type IV fracture : the elbow is usually stable department following a fall from a height onto his because the trochlea is intact.
    [Show full text]
  • Upper Extremity Fractures
    Department of Rehabilitation Services Physical Therapy Standard of Care: Distal Upper Extremity Fractures Case Type / Diagnosis: This standard applies to patients who have sustained upper extremity fractures that require stabilization either surgically or non-surgically. This includes, but is not limited to: Distal Humeral Fracture 812.4 Supracondylar Humeral Fracture 812.41 Elbow Fracture 813.83 Proximal Radius/Ulna Fracture 813.0 Radial Head Fractures 813.05 Olecranon Fracture 813.01 Radial/Ulnar shaft fractures 813.1 Distal Radius Fracture 813.42 Distal Ulna Fracture 813.82 Carpal Fracture 814.01 Metacarpal Fracture 815.0 Phalanx Fractures 816.0 Forearm/Wrist Fractures Radius fractures: • Radial head (may require a prosthesis) • Midshaft radius • Distal radius (most common) Residual deformities following radius fractures include: • Loss of radial tilt (Normal non fracture average is 22-23 degrees of radial tilt.) • Dorsal angulation (normal non fracture average palmar tilt 11-12 degrees.) • Radial shortening • Distal radioulnar (DRUJ) joint involvement • Intra-articular involvement with step-offs. Step-off of as little as 1-2 mm may increase the risk of post-traumatic arthritis. 1 Standard of Care: Distal Upper Extremity Fractures Copyright © 2007 The Brigham and Women's Hospital, Inc. Department of Rehabilitation Services. All rights reserved. Types of distal radius fracture include: • Colle’s (Dinner Fork Deformity) -- Mechanism: fall on an outstretched hand (FOOSH) with radial shortening, dorsal tilt of the distal fragment. The ulnar styloid may or may not be fractured. • Smith’s (Garden Spade Deformity) -- Mechanism: fall backward on a supinated, dorsiflexed wrist, the distal fragment displaces volarly. • Barton’s -- Mechanism: direct blow to the carpus or wrist.
    [Show full text]
  • Coracoid Process Anatomy: a Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B
    Quantitative Assessment of the Coracoacromial and the Coracoclavicular Ligaments With 3-Dimensional Mapping of the Coracoid Process Anatomy: A Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B. Ferrari, M.D., George Sanchez, B.S., Alex W. Brady, M.Sc., Jonas Pogorzelski, M.D., M.H.B.A., George F. Lebus, M.D., Peter J. Millett, M.D., M.Sc., Robert F. LaPrade, M.D., Ph.D., and CAPT Matthew T. Provencher, M.D., M.C., U.S.N.R. Purpose: To perform a quantitative anatomic evaluation of the (1) coracoid process, specifically the attachment sites of the conjoint tendon, the pectoralis minor, the coracoacromial ligament (CAL), and the coracoclavicular (CC) ligaments in relation to pertinent osseous and soft tissue landmarks; (2) CC ligaments’ attachments on the clavicle; and (3) CAL attachment on the acromion in relation to surgically relevant anatomic landmarks to assist in planning of the Latarjet procedure, acromioclavicular (AC) joint reconstructions, and CAL resection distances avoiding iatrogenic injury to sur- rounding structures. Methods: Ten nonpaired fresh-frozen human cadaveric shoulders (mean age 52 years, range 33- 64 years) were included in this study. A 3-dimensional coordinate measuring device was used to quantify the location of pertinent bony landmarks and soft tissue attachment areas. The ligament and tendon attachment perimeters and center points on the coracoid, clavicle, and acromion were identified and subsequently dissected off the bone. Coordinates of points along the perimeters of attachment sites were used to calculate areas, whereas coordinates of center points were used to determine distances between surgically relevant attachment sites and pertinent bony landmarks.
    [Show full text]
  • ISSN 2073 ISSN 2073 9990 East Cent. Afr. J. S
    98 ISSN 20732073----99909990 East Cent. Afr. J. s urg Pisiform Dislocation and Distal Radius Ulna Fracture F.M. Kalande Department of Surgery, Ergerton University, Nakuru-Kenya. Email: [email protected] Background Pisiform dislocation is quite rare. In literature since the 40’s little discussion is documented about this. It is quite rare without other carpal bone dislocation. Pisiform dislocates when the wrist is forced into hypertension ;the flexor carpi ulnaris (FCU) tears of the pisiform and pisohamate ligament and or pisocarpitate ligament. Flexor Carpi ulnaris is a very powerful wrist flexor in extension the pisiform acts as a sesamoid bone enhancing its action. During such injury it is pulled in hypertension and displaces proximally or it may thereafter migrates distally. We report a rare condition where dislocation of pisiform is occurring not with carpal fractures or dislocation but with distal radius ulna fracture in a young skeletally immature boy, the treatment and outcome. Key words: pisiform, traumatic dislocation excision and radius/ulna fracture Case presentation We report a case of a 15-year old boy who presented with history of a fall while playing soccer at school. He sustained injury to his right wrist when he fell on an outreached hand, he developed immediate swelling and severe pain. On further evaluation there was tenderness over the wrist and the hypothenar eminence, and loss of range of motion due to pain. Neuronal assessment revealed normal function of the ulnar nerve . Operative AP View Pre-operative Lateral View. COSECSA/ASEA Publication ---East-East & Central African Journal of Surgery. Nov/Dec 2015 Vol.
    [Show full text]
  • Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
    Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A.
    [Show full text]
  • Reconstructing Pectoral Appendicular Muscle Anatomy in Fossil Fish and Tetrapods Over the Fins-To-Limbs Transition
    Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12386 Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the fins-to-limbs transition Julia L. Molnar1,∗ , Rui Diogo2, John R. Hutchinson3 and Stephanie E. Pierce4 1Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, U.S.A. 2Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Numa Adams Building, Washington, DC 20059, U.S.A. 3Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK 4Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, U.S.A. ABSTRACT The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe-finned fish and crown tetrapods. In the light of a recent study of these homologies, we re-examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty-nine extinct and six extant sarcopterygians were included in a meta-analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony-based character optimization in order to reconstruct muscle anatomy in ancestral lobe-finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods.
    [Show full text]
  • Breathing and Locomotion in Birds
    Breathing and locomotion in birds. A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences. 2010 Peter George Tickle Contents Abstract 4 Declaration 5 Copyright Statement 6 Author Information 7 Acknowledgements 9 Organisation of this PhD thesis 10 Chapter 1 General Introduction 13 1. Introduction 14 1.1 The Avian Respiratory System 14 1.1.1 Structure of the lung and air sacs 16 1.1.2 Airflow in the avian respiratory system 21 1.1.3 The avian aspiration pump 25 1.2 The uncinate processes in birds 29 1.2.1 Uncinate process morphology and biomechanics 32 1.3 Constraints on breathing in birds 33 1.3.1 Development 33 1.3.2 Locomotion 35 1.3.2.1 The appendicular skeleton 35 1.3.2.2 Overcoming the trade-off between breathing 36 and locomotion 1.3.2.3 Energetics of locomotion in birds 38 1.4 Evolution of the ventilatory pump in birds 41 1.5 Overview and Thesis Aims 42 2 Chapter 2 Functional significance of the uncinate processes in birds. 44 Chapter 3 Ontogenetic development of the uncinate processes in the 45 domestic turkey (Meleagris gallopavo). Chapter 4 Uncinate process length in birds scales with resting metabolic rate. 46 Chapter 5 Load carrying during locomotion in the barnacle goose (Branta 47 leucopsis): The effect of load placement and size. Chapter 6 A continuum in ventilatory mechanics from early theropods to 48 extant birds. Chapter 7 General Discussion 49 References 64 3 Abstract of a thesis by Peter George Tickle submitted to the University of Manchester for the degree of PhD in the Faculty of Life Sciences and entitled ‘Breathing and Locomotion in Birds’.
    [Show full text]